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Abstract. With increasingly sophisticated Diffusion Weighted MRI ac-
quisition methods and modeling techniques, very large sets of streamlines
(fibers) are presently generated per imaged brain. These reconstructions
of white matter architecture, which are important for human brain re-
search and pre-surgical planning, require a large amount of storage and
are often unwieldy and difficult to manipulate and analyze. This work
proposes a novel continuous parsimonious framework in which signals
are sparsely represented in a dictionary with continuous atoms. The sig-
nificant innovation in our new methodology is the ability to train such
continuous dictionaries, unlike previous approaches that either used pre-
fixed continuous transforms or training with finite atoms. This leads to
an innovative fiber representation method, which uses Continuous Dic-
tionary Learning to sparsely code each fiber with high accuracy. This
method is tested on numerous tractograms produced from the Human
Connectome Project data and achieves state-of-the-art performances in
compression ratio and reconstruction error.
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1 Introduction

Diffusion Weighted Magnetic Resonance Imaging (DWMRI) is a powerful tool
for creating extremely detailed 3D representations of White Matter (WM) ar-
chitecture. It maps the structure of neural connections by measuring the local
orientation of water molecule diffusion [6]. With the development of DWMRI,
models are built to delineate the underlying anatomy of the WM tissue based
on the diffusion data. Since water diffusion orientation correlates with the main
neuron bundles trajectories, a natural approach is to track consistent diffusion
pathways. This approach is called tractography (Fig.1) and it creates a set of
fibers (termed tractogram) representing the brain’s main neuron bundles [9].
Each fiber is represented by an array of 3D points sampled using fixed step size.

Analyzing tractograms may pose several challenges. First, neural pathways
are continuous objects that vary in length significantly (between 10mm and
100mm). In representing the fibers as a set of 3D points, one can use a fixed
sampling frequency, ending up with signals of different dimension; Alternatively,
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Fig. 1. DWMRI image (source: https://mrimaster.com/characterise image dwi .html)
and a tractogram modeling the WM architecture (colors for visualization only).

fixed number of points can be used, leading to an inadequate representation of
long fibers. To overcome this, alternative representation schemes are proposed,
e.g. in [8] fibers and fiber bundles are presented as Gaussian Processes and this
representation enables using an inner-product based metric for fiber similarity.

Modern tractography tools often produce highly-dense tractograms, contain-
ing millions of fibers, resulting in extremely large files. In population studies,
multiple brains are analyzed and compared, therefore the storage issue is fur-
ther exacerbated. The challenges above show the need to find more efficient
representations for fibers, as well as fiber compression schemes. There have been
some efforts in recent years to address this matter. For example, [7] suggested
a compression framework for fibers which includes optimization on the num-
ber and location of samples along a given fiber in addition to quantization and
encoding steps, which reduce the memory needed to store a full tractogram.

An alternative approach is the one of sparse coding that provides a better-
compressed representation of the data compared to classic methods such as PCA
and LDA and was shown to be beneficial in various applications [4]. In this
scheme, each data point is assumed to be decomposed of a small number of
columns (known as atoms) of a given dictionary, which may be either prede-
fined (e.g., DCT or wavelet), or alternatively, can be inferred from the input
data using dictionary learning methods. The latter tends to improve the sparse
representation. While many dictionary learning strategies exist such as MOD
and K-SVD [4], they are mainly designed for the case where the data lies on the
same grid or has a fixed limited size. Therefore, the existing strategies are less
suitable for dealing with data points of varying sizes, or with continuous data.
Indeed, continuous dictionaries have been used before such as in the case of data
admitting sparsity in the Fourier domain [3]. Yet, these dictionaries have not
been learned, which limits their effectiveness in many applications.

Contribution: In this work we propose a novel continuous dictionary learning
(CDL) scheme, which allows processing data with samples that do not necessarily
lie on a grid or have a fixed size. This strategy provides a novel fiber representa-
tion, which is uniform in size and approximates with high accuracy fibers of any
length. In addition, we motivate the use of the suggested representation by pre-
senting a compatible metric that allows the calculation of inter-fiber similarities.
Such calculations are the basic building blocks of frequently performed tasks in
tractograms analysis, such as clustering, classification, and registration.
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2 Methods

Standard Dictionary Learning (SDL): The SDL strategies have been de-
signed for data with a fixed size (e.g, image patches). Given a data point f ∈ <d
that admits a sparse representation x ∈ RK in a given dictionary D ∈ <d×K
(typically K > d), i.e., f = Dx, one may recover x from f by minimizing

min
x
‖x‖0 s.t. f = Dx. (1)

If D is unknown, it may be learned from a given set of data points fi by solving:

min
D,X
‖F −DX‖2F s.t. ∀i ‖xi‖0 6 T0, (2)

where F ∈ Rd×N and X ∈ RK×N contain in their columns the data points
fi ∈ Rd and their sparse representations xi ∈ RK respectively; T0 is the target
sparsity; and ‖·‖F is the Frobenius norm. While both Eqs. 1 and 2 are NP hard
problems, many approximation methods have been proposed for them such as
orthogonal matching pursuit (OMP) for the first and K-SVD for the second [4].

In order to use SDL such as K-SVD for data which is continuous or of varying
size, one needs to sample (perhaps with the use of an interpolation) the data
points with a fixed size and only then train a dictionary for the sampled versions.
This kind of coding is clearly suboptimal for fibers and many other types of data
in which the length of the data points varies significantly and therefore many of
them might be overly or underly sampled. Thus, a continuous dictionary that
may be sampled in accordance to a given data sample is much needed.

Continuous Dictionary Learning (CDL): A possible way for coding data
points of varying size is to use a continuous dictionary (CD), in which each atom
is a continuous function. Then, given a certain data point, the functions of the
dictionary can be sampled at the same sampling locations of this point. Then
any standard sparse coding strategy may be used to recover the representation
of this signal. Notice that this method provides us with a representation of the
same size (as the number of the functions in the CD) for all the data points.

As SDL improves the sparse coding, it is expected that the same would
happen also with CDL. Yet, it is impossible to learn the columns of the CD
directly as is done in the discrete case. Inspired by the double sparsity model
for dictionary learning [4], we propose to learn a parametric dictionary D = ΦA
such that each of its atoms is a linear combination (defined by A ∈ RK×K) of
the CD Φ. In this case, the number of parameters to be learned is finite but
results with a CD. Given a set of N continuous functions fi, the CDL problem
becomes

min
A,xi

N∑
i=1

∫
t∈Ωi

(fi(t)− Φ(t)Axi)
2dt s.t. ∀i ‖xi‖0 6 T0, (3)

where Ωi is the domain of fi (we assume it is included in the domain of the
functions in Φ). The integration in Eq. 3 may be approximated by a finite sum
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over di samples of fi and the functions in Φ. Assuming a uniform sampling, this
approximation results with the following minimization problem

min
A,xi

N∑
i=1

di∑
t=1

(fi(t)− Φ(t)Axi)
2 s.t. ∀i ‖xi‖0 6 T0. (4)

For calculating A we use stochastic gradient descent with mini-batches of size
b and a varying learning rate. At iteration n, given the previous approximation
An−1, we re-sample the dictionary ΦAn−1 for all the data points of the current
mini-batch in their corresponding locations and calculate their sparse represen-
tation using OMP. Then we calculate An by taking a gradient step based on the
current batch and its representation in An−1.
Fiber Representation: In the context of fibers, we initialize A to be the iden-
tity matrix and Φ to be randomly selected fibers. We get a continuous version
for each by using a cubic spline interpolation, which both promotes smoothness
and preserves the locations of the fibers’ sampled points. To improve Φ, we may
select a smaller number of atoms for it at the beginning of the training and then
every several iterations add to it as an atom the data point that has the worst
representation. The matrix A is expanded accordingly (the new entries are ini-
tialized to zero except the corner, which is set to be 1 to select the new atom to
the dictionary). This technique improves the training.
Sparse Inter-Fiber Similarity: We base our suggested similarity measure on
the known Cosine similarity which was found to be beneficial for fibers [10]:

simcos (fi, fj) =
〈fi, fj〉
‖fi‖‖fj‖

(5)

where 〈·〉 stands for inner product and ‖·‖ for L2 norm. Cosine similarity cannot
be applied to signals of different length. It also cannot be used directly on the
sparse representations due to the non-orthogonal nature of the dictionary.

We propose a modified cosine similarity measure that suits the suggested
representation. This is a modification of the method suggested in [2]. The non-
orthogonality is treated by the addition of weighting matrix that contains the
similarity measure between atoms. The approximation of the cosine similarity
measure is achieved by replacing the original fibers with the reconstructed fibers:

simcos (fi, fj) ∼= simcos
(
f̃i, f̃j

)
=
〈ΦAxi, ΦAxj〉
‖ΦAxi‖‖ΦAxj‖

=
xTi A

TΦTΦAxj
‖ΦAxi‖‖ΦAxj‖

, (6)

We strive to avoid adding unnecessary reconstruction error and to perform
the similarity computation without going back to the original space. Therefore,
we propose to substitute the denominator’ norms by the norms of the original
fibers, which can be saved before the sparse coding phase and later saved as part
of the compressed data. This step would add one additional value to the repre-
sentation, which does not have a significant impact on the representation length
while allowing to use the original fiber norm for similarity approximation. The
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modified compressed representation x̂ will contain the value: normi = ‖fi‖, con-
catenated to the sparse coefficients vector xi. In addition, we define the similarity
matrix S = ATΦTΦA ∈ RK×K , whose entries measure the similarity between
the atoms in ΦA. Based on the above, we propose a new similarity measure be-
tween fibers, the Cosine using Continuous Dictionary Similarity (CCDS), which
relies only on the compressed representation and can be calculated efficiently:

simCCDS (x̂i, x̂j) =
xTi Sxj

‖normi‖‖normj‖
(7)

3 Experiments and Results

Data: The proposed method was evaluated on MRI datasets of 5 healthy volun-
teers from the Human Connectome Project (HCP). Acquisition protocol included
3 shells (b-values of 1000, 2000, 3000), 96 unique directions for each, isotropic
resolution of 1.25 mm and imaging matrix of 144×168×111 pixels [1]. Diffusion
data was preprocessed using the HCP diffusion pipelines [5]. WM fibers were
obtained using Q-Space Diffeomorphic Reconstruction (QSDR) and streamline
tractography using DSI-Studio1 software. Tractography was terminated upon
reaching 1M fibers. In all the following experiments, we used three types of sets
per brain, randomly selected from the full tractogram: 20,000 fibers used as the
training-set (TrS) for the dictionaries, 2,000 used as the validation-set (VS) and
10,000 other fibers served as the testing set (TS).
Sparse Coding of Fibers using Different Types of Dictionaries: For each
of the 5 tractograms, we created 3 different dictionaries based on the TrS, using
the CDL and the other two alternatives described in Section 2: CD and SDL.
The training was performed with the following configurations for each technique:
CDL: The sparsity constraint, T0, was set to 7 non-zero coefficients. Initial
dictionary of size 500 was chosen to be the best out of 5 random initializa-
tions, evaluated on the VS. Every 10 iterations, a new atom was added to
Φ, increasing it to a final size of 700 atoms. These parameters were found in
our experiments to provide a reasonable compromise between error rate and
compression rate. Batch size was set to b = 500. A Learning rate (LR) of
LR(n) = min(10−6, 6 ∗ 10−6/log(n)) was used, where n is the iteration number.
The training process was stopped after 4k iterations, as the average reconstruc-
tion error on the VS was no longer descending.
CD: The dictionary is the initial CD selected for CDL. SDL: The fibers under
evaluation were interpolated and sampled at 20 3D points along the fiber’s path,
equidistantly. This choice of m was found to be good in [11]. Instead of learning
the dictionary on an entire fiber set, a representative subset of fibers is used in
order to reduce the learning time. This subset was selected by randomly choosing
10000 fibers out of the full set. Such a train-set is diverse and empirically well
represent the full tractogram. The K-SVD learning process was initiated with a

1 developed by Fang-Cheng Yeh from the Advanced Biomedical MRI Lab, NTU Hos-
pital, Taiwan, and made available at http://dsi-studio.labsolver.org/Download/
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(a) (d)

(b) (c)

Fig. 2. (a) RE convergence of SDL (blue) and CDL (magenta) and CD fixed value
(dashed-black); (b) 500 original fibers (blue) and their matching reconstructions (red);
(c) sample pairs of fibers with their RE; (d) Cosine vs. CCDS similarities for one brain.

set of K fibers representing the centroids of K cluster of the TrS, computed using
K-means. The dictionary size was set to 700, T0 was set to 7 and the process
was terminated after 200 K-SVD iterations, where no significant improvement
was recorded in the VS reconstruction error.

Performance Evaluation: In order to evaluate the accuracy of the new repre-
sentation relative to the original data from the tractography process, we need to
reconstruct each fiber fi. This is done by sampling the continuous dictionary in
the same sampling locations t of the original fiber and applying f̂i(t) = Φ(t)Ax.

Next, the distance between the two sets of 3D points, fi, f̂i is evaluated. We as-
sume that a good approximation for the distance between the two curves can be
inferred from the distances between compatible pairs of sampling points from the
two curves. We computed two measurements: average Euclidean distance over
all point pairs, and maximal Euclidean distance among all point pairs. For a set
of fibers, we computed mean and median values of the above two measurements,
over all fibers. The aforementioned evaluation scheme was slightly modified to
match the SDL framework: Using the SDL, one can reconstruct fibers with a
prefixed number of samples as opposed to the original representation that had a
varying number of sampling points. To solve this we interpolated the SDL recon-
structed output fibers using spline interpolation. Next, the fibers were sampled
equidistantly with the same number of sampling points as was in the original
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tractogram. Figure 2(a) presents the reconstruction error (RE) measured as the
mean distance in the VS as a function of the learning iteration of SDL and
CDL. For the CD, a fixed value is plotted as no learning is performed. Figure
2(b) and (c) visualizes original fibers from TS and their reconstructions using
SDL. Table 1 shows the RE of the TS for all 5 brains. Notice that even the CD
without learning provides a more accurate coding than the SDL. The addition
of learning further improves the representation.

Table 1. Performance evaluation: Reconstruction error in mm using the suggested
method (CDL) compared to SDL and CD, tested on the TS of 5 different brains.

RE[mm] mean of mean

Method SDL CD CDL

Brain1 1.650 1.068 0.859

Brain2 1.575 0.989 0.801

Brain3 1.709 1.084 0.882

Brain4 1.662 1.012 0.816

Brain5 1.596 1.011 0.808

Avg 1.638 1.033 0.833

median of mean

SDL CD CDL

1.395 0.849 0.747

1.338 0.815 0.683

1.469 0.857 0.748

1.367 0.833 0.696

1.361 0.858 0.717

1.380 0.842 0.718

mean of max

SDL CD CDL

3.335 2.731 2.234

3.170 2.595 2.113

3.425 2.858 2.362

3.400 2.689 2.196

3.217 2.669 2.202

3.309 2.708 2.221

median of max

SDL CD CDL

2.839 2.094 1.845

2.724 2.044 1.707

2.934 2.161 1.911

2.838 2.055 1.758

2.750 2.147 1.805

2.817 2.100 1.805

Approximation of cosine similarity using CCDS: The proposed CCDS
similarity measure was evaluated by comparing the distances between the fibers
in their original representation (Eq. 5) and the distances between the same fibers
as calculated in the sparse representation using CCDS (Eq. 7). The distances
were evaluated on 10,000 randomly selected fibers from the TS. Figure 2(d)
shows the correlation graph of cosine vs. CCDS similarities for one of the brains.

4 Discussion and Conclusions

This work proposes a novel continuous dictionary learning scheme, which allows
training a dictionary on diverse training sets such that samples do not need to
lie on a grid or have a fixed size. The significance of the new methodology is
the ability to train continuous dictionaries. This strategy provides a novel fiber
representation, which is uniform in size and approximates with high accuracy
fibers of any length.

We have tested the suggested method on 5 tractograms that were created
from HCP data, leading to very satisfying results. With only 7 non-zero co-
efficients per fiber, we achieved average reconstruction error of 0.83mm and
max reconstruction error of 2.22mm. Based on the average number of points per
fiber in the original representation, our compression ratio is comparable with the
state-of-the-art (95.6%) [7] that relies on a tractography with two times shorter
step, which means initial representation two times larger. According to Table 1,
CDL clearly outperformed the two alternative examined methods. Omitting the
learning stage gives about 25% higher average reconstruction error. This em-
phasizes the importance of the learning process. Using K-SVD on a fixed size
version of the data led to the least satisfying results. We believe K-SVD did not
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succeed due to the varying length of the WM fibers. The experiments conducted
use constrained nonzero coefficients number, T0 ≤ 7, and a dictionary size of 700.
Additional tests (not included herein due to lack of space), suggest that if more
accuracy is needed, it may be achieved with higher T0 and a bigger dictionary,
obviously with additional computational cost.

The suggested representation is advantageous over other compression schemes
also due to the ability to estimate inter-fiber similarity using the proposed CCDS
measure, directly in the compressed form, thus allowing common operations on
fibers without decompressing the data. In addition, common metrics that can
be used on signals of different length are usually computationally expensive, as
opposed to CCDS, which is highly efficient. The legitimacy of CCDS was verified
by achieving high correlation to the known Cosine similarity on the original rep-
resentations (Fig. 2(d)). The proposed continuous dictionary learning method-
ology is general and can be applied to in other application with similar data
characteristics.
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