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Abstract—Depth estimation from a single image is a well
known challenge in computer vision. With the advent of deep
learning, several approaches for monocular depth estimation have
been proposed, all of which have inherent limitations due to the
scarce depth cues that exist in a single image. Moreover, these
methods are very demanding computationally, which makes them
inadequate for systems with limited processing power. In this
paper, a phase-coded aperture camera for depth estimation is
proposed. The camera is equipped with an optical phase mask
that provides unambiguous depth-related color characteristics for
the captured image. These are used for estimating the scene depth
map using a fully-convolutional neural network. The phase-coded
aperture structure is learned jointly with the network weights
using back-propagation. The strong depth cues (encoded in the
image by the phase mask, designed together with the network
weights) allow a much simpler neural network architecture for
faster and more accurate depth estimation. Performance achieved
on simulated images as well as on a real optical setup is superior
to state-of-the-art monocular depth estimation methods (both
with respect to the depth accuracy and required processing
power), and is competitive with more complex and expensive
depth estimation methods such as light-field cameras.

Index Terms—Coded Aperture, Phase Mask, Depth Recon-
struction, Deep Learning, Computational Camera,.

I. INTRODUCTION

ASSIVE depth estimation is a well-known challenge in

computer vision. A common solution is based on stereo
vision, where two calibrated cameras capture the same scene
from different views (similarly to the human eyes), and thus
the distance to every object can be inferred by triangulation.
Yet, such a dual camera system significantly increases the form
factor, cost and power consumption.

The current electronics miniaturization trend (high quality
smart-phone cameras, wearable devices, etc.) requires a com-
pact and low-cost solution. This requirement dictates a more
challenging task: passive depth estimation from a single image.
While a single image lacks the depth cues that exist in a stereo
image pair, there are still some depth cues such as perspective
lines and vanishing points that enable depth estimation to some
degree of accuracy. The ongoing deep learning revolution
did not overlook this challenge, and some neural network-
based approaches to monocular depth estimation exist in the
literature [1]-[8].
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Eigen et al. [1] introduced a deep neural network for depth
estimation that relies on depth cues in the RGB image. They
used a multi-scale architecture with coarse and fine depth
estimation networks concatenated to achieve both dynamic
range and resolution. Two later publications by Cao et al. [2]
and Liu er al. [3] employed the novel fully-convolutional
network (FCN) architecture (originally presented by Long et
al. [9] for scene semantic segmentation) for monocular depth
estimation. In [2] the authors used a residual network [10],
and refined the results using a conditional random field (CRF)
prior, external to the network architecture. Similar approach of
using CREF to refine a DL model initial result was also used by
Li et al. [4]. In [3] a simpler FCN model was proposed, but
with the CRF operation integrated inside the network structure.
This approach was further researched using deeper networks
and more sophisticated architectures [5], [6]. The challenge
was also addressed in the unsupervised learning approach, as
presented by Garg et al. [7] and Godard et al. [8].

Common to all these approaches is the use of depth cues
in the RGB image ’as-is’, as well as having the training and
testing on well-known public datasets such as the NYU depth
[11], [12] and Make3D [13]. Since the availability of reliable
depth cues in a regular RGB image is limited, these approaches
require large architectures with significant regularization (Mul-
tiscale, ResNets, CRF) as well as separation of the models to
indoor/outdoor scenes. A modification of the image acquisition
process itself seems necessary in order to allow using a simpler
model, generic enough to encompass both indoor and outdoor
scenes.

Imaging methods that use an aperture coding mask (both
phase or amplitude) became more common in the last two
decades. One of the first and prominent studies in this field
was carried out by Dowski and Cathey [14], where a cubic
phase mask was designed to generate a constant point spread
function (PSF) throughout the desired depth of field (DOF).
Similar ideas were presented later in [15] using a random
diffuser with focal sweep [16], or by using an uncorrected
lens as a type of spectral focal sweep [17]. When a depth-
independent PSF is achieved, an all-in-focus image can be
recovered using non-blind deconvolution methods. However,
in all these methods the captured and restored images have a
similar response in the entire DOF, and thus depth information
can only be recovered to some extent using monocular cues.

In order to generate optical cues, the PSF should be depth-
dependent. Related methods use an amplitude coded mask
[18], [19] or a color-dependent ring mask [20], [21] such that
objects at different depths exhibit a distinctive spatial/spectral



structure. The main drawback of these strategies is that the
actual light efficiency is only 50% in [18], [19], 60% in
[20] and 80% in [21], making them unsuitable for low light
conditions. Moreover, those techniques (except [21]) are based
on the same low DOF setup, having a f = 50mm, f/1.8 lens
(27.8mm aperture). Thus, they are also unsuitable for small-
scale cameras since they are less sensitive to small changes in
focus.

Contribution. In this paper, we propose a novel deep learn-
ing framework for the joint design of a phase-coded aperture
element and a corresponding FCN model for single-image
depth estimation. A similar phase mask has been proposed
by Milgrom et al. [22] for extended DOF imaging; its major
advantage is light efficiency above 95%. Our phase mask
is designed to increase sensitivity to small focus changes,
thus providing an accurate depth measurement for small-scale
cameras (such as smartphone cameras).

In our system, the aperture coding mask is designed for
encoding strong depth cues with negligible light throughput
loss. The coded image is fed to a FCN, designed to decode
the color-coded depth cues in the image, and thus estimate the
depth map. The phase mask structure is trained together with
the FCN weights, allowing end-to-end system optimization.
For training, we created the "TAU-Agent’ dataset! containing
pairs of high-resolution realistic animation images and their
perfectly registered pixel-wise depth maps.

Since the depth cues in the coded image are much stronger
than their counterparts in a clear aperture image, the pro-
posed FCN is much simpler and smaller compared to other
monocular depth estimation networks. The joint design and
processing of the phase mask and the proposed FCN lead to
an improved overall performance: better accuracy and faster
run-time compared to the known monocular depth estimation
methods. Also, the achieved performance is competitive with
more complex, cumbersome and higher cost depth estimation
solutions such as light-field cameras.

The rest of the paper is organized as follows: Section II
presents the phase-coded aperture used for encoding depth
cues in the image, and its design process. Section III describes
the FCN architecture used for depth estimation and its training
process. Experimental results on synthetic data as well as on
real images acquired using an optical setup with a manufac-
tured optimal aperture coding mask are presented in Section
IV. Our system is shown to exhibit superior performance
in depth accuracy, system complexity, run-time and required
processing power compared to competing methods. Section V
concludes the paper.

II. PHASE-CODED APERTURE IMAGING FOR DEPTH
ESTIMATION

The need to acquire high-quality images and videos of
moving objects in low-light conditions establish the well-
known trade-off between the aperture size (F#) and the DOF in
optical imaging systems. With conventional optics, increasing
the light efficiency at the expense of reduced DOF poses

'Dataset is available for download at http:/www.tau.ac.il/~harelhai/
TAUAgent/home.html or addTheTorontoMirrorUrl.
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Fig. 1. Spatial frequency response and color channel separation.
(a) Optical system response to normalized spatial frequency for
different values of the defocus parameter ¥. (b) Comparison between
contrast levels for a single normalized spatial frequency (0.25) as a
function of 1 for clear aperture (dotted) and when our new trained
phase mask is used (solid).

inherent limitations on any purely computational technique,
since the out-of-focus blur may result in information loss in
parts of the image.

These limitations can be overcome by manipulating the
image acquisition process. A recent study by Haim et al. [23]
used Milgrom’s aperture phase coding technique [22] to
achieve extended DOF imaging. In [23], the authors proposed
a method for utilizing the diversity between color channels
(expressed in their respective PSF) to find the corresponding
blurring model for each small image patch, and used this
model to restore the image. Here we adopt a similar phase
mask for depth reconstruction. We show that this mask intro-
duces depth-dependent color cues throughout the scene, which
lead to fast and accurate depth estimation. Due to the optical
cues based depth estimation, our method generalization ability
is better compared to the current monocular depth estimation
methods.

A. Out-of-focus imaging

An imaging system acquiring an out-of-focus (OOF) object
can be described analytically using a quadratic phase error in
its pupil plane [24]. In the case of a circular exit pupil with
radius R, the defocus parameter is defined as
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where z,g is the sensor plane location of an object in the
nominal position (zy), z; is the ideal image plane for an object
located at z, , and A\ is the optical wavelength. Out-of-focus
blur increases with the increase of |¢|; the image exhibits
gradually decreasing contrast level that eventually leads to
information loss (see Fig. 1(a)).

)

B. Mask design

Both Milgrom et al. [22] and Haim et al. [23] have shown
that phase masks with a single radially symmetric ring intro-
duce diversity between the responses of the three major color
channels (R, G and B) for different focus scenarios, such that
the three channels jointly provide an extended DOF. In order
to allow more flexibility in the system design, we use a mask
with two or three rings, whereby each ring exhibits a different



wavelength-dependent phase shift. In order to determine the
optimal phase mask parameters within a deep learning-based
depth estimation framework, the imaging stage is modeled as
the initial layer of a CNN model. The inputs to this coded
aperture convolution layer are the all-in-focus images and their
corresponding depth maps. The parameters (or weights) of the
layer are the radii r; and phase shifts ¢; of the mask’s rings.

Such layer forward model is composed of the coded aperture
PSF calculation (for each depth in the relevant depth range)
followed by imaging simulation using the all-in-focus input
image and its corresponding depth map. The backward model
uses the inputs from the next layer (backpropagated to the
coded aperture convolutional layer) and the derivatives of
the the coded aperture PSF with respect to its weights,
OPSF/0r;, OPSF/0¢;, in order to calculate the gradient
descent step on the phase mask parameters. A detailed descrip-
tion of the coded aperture convolution layer and its forward
and backward models is presented in the Appendix. One of
the important hyper-parameters of such a layer is the depth
range under consideration (in v terms). The 1) range setting,
together with the lens parameters (focal length, F# and focus
point) dictates the trade-off between the depth dynamic range
and resolution. In this study, we set the range to ¢ = [—4, 10];
its conversion to a metric depth range is presented in sec-
tion IV. As mentioned above, the optimization of the phase
mask parameters is done by integrating the coded aperture
convolutional layer into the CNN model detailed in the sequel,
followed by the end-to-end optimization of the entire model.
To validate the coded aperture layer, we compared the case
where the CNN (described in the following section) is trained
end-to-end with the phase coded aperture layer to the case
where the phase mask is held fixed to its initial value. Several
fixed patterns were examined; the training of the phase mask
improved the classification error by 5% to 10%.

For the setup we used, the optimization process yielded
a three rings mask such that the outer ring is deeper than
the middle one as illustrated in Fig. 2. Such a design poses
significant fabrication challenges for the chemical etching
process used at our facilities. Since an optimized three-rings
mask surpass the two-ring mask only by a small margin,
in order to make the fabrication process simpler and more
reliable, a two-ring limit was set in the training process; this
resulted in the normalized ring radii » = {0.55,0.8,0.8,1}
and phases ¢ = {6.2,12.3} [rad] (both ¢ and ¢ are defined
for the blue wavelength, where the RGB wavelengths taken
are the peak wavelengths of the camera color filter response:
Ar.c,B = [610,535,455|nm). Figure 1(b) shows the diversity
between the color channels for different depths (expressed in
1) values) when using a clear aperture (dotted plot) versus our
optimized phase mask (solid plot).

III. FCN FOR DEPTH ESTIMATION

We now turn to describe the architecture of our fully
convolutional network (FCN) for depth estimation, which
relies on optical depth cues encoded in the image, provided by
the phase coded aperture incorporated in the lens as described
in Section II. These cues are used by the FCN model to

(a) (b)

Fig. 2. Aperture phase coding mask. (a) 3D illustration of the
optimal three-ring mask (b) cross-section of the mask. The area
marked in black acts as a circular pupil.

estimate the scene depth map. Our network configuration is
inspired by the FCN structure introduced by Long et al. [9].
In this work, an ImageNet classification CNN was converted
to a semantic segmentation FCN by adding a deconvolu-
tion block to the ImageNet model, and fine-tuning it for
semantic segmentation (with several architecture variants for
increased spatial resolution). For depth estimation using our
phase coded aperture camera, a totally different ’inner net’
should replace the ’ImageNet model’. The inner net should
classify the different imaging conditions (i.e. 1 values), and
the deconvolution block will turn the initial pixel labeling
into a full depth estimation map. We tested two different
’inner’ network architectures: the first based on the DenseNet
architecture [25], and the second based on a traditional feed-
forward architecture. An FCN based on both inner nets is
presented, and the trade-off is discussed. The following sub-
sections present the ¢ classification inner nets, and the FCN
model based on them for depth estimation.

A. 1 classification CNN

As presented in Section II, the phase coded aperture is
designed along with the CNN such that it encodes depth-
dependent cues in the image by manipulating the response of
the RGB channels for each depth. Using these strong optical
cues, the depth slices (i.e. ¥ values) can be classified using
some CNN classification model.

For this task, we tested two different architectures; the first
one based on the DenseNet architecture for CIFAR-10, and
the second based on the traditional feed-forward architecture
of repeated blocks of convolutions, batch normalization [26]
and rectified linear units [27] (CONV-BN-ReLU, see Fig. 3).
In view of the approach presented in [28], pooling layers
are omitted in the second architecture, and stride of size 2
is used in the CONV layers for lateral dimension reduction.
This approach allows much faster model evaluation (only 25%
of the calculation in each CONV layer), with minor loss in
performance.

To reduce the model size and speed up its evaluation even
more, the input (in both architectures) to the first CONV layer
of the net is the captured raw image (in mosaicked Bayer
pattern). By setting the stride of the first CONV layer to 2,
the filters’ response remains shift-invariant (since the Bayer
pattern period is 2). This way the input size is decreased by a
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Fig. 3. Neural network architecture for the depth classification CNN: (the ’inner’ net in the FCN model in Fig. 4). Spatial dimension reduction is achieved
by convolution stride instead of pooling layers. Every CONV block is followed by BN-ReLU layer (not shown in this figure).

factor of 3, with minor loss in performance. This also omits
the need for a demosaicking stage, allowing faster end-to-end
performance (in cases where the RGB image is not needed
as an output, and one is interested only in the depth map).
One can see the direct processing of mosaicked images as
a case where the CNN representation power ’contains’ the
demosaicking operation, and therefore it is not really needed
as a preprocessing step.

Both inner classification net architectures are trained on the
Describable Textures Dataset (DTD) [29]. About 40K texture
patches (32x32 pixels each) were selected from the dataset.
Each patch was ’replicated’ in the dataset 15 times, where
each replication corresponds to a different blur kernel (corre-
sponding to the phase coded aperture for ¢ = —4, -3, ..., 10).
The first layer of both architectures represents the phase-
coded aperture layer, whose inputs are the clean patch and
its corresponding 1) value.

After the imaging stage is done (as explained in II), an Addi-
tive White Gaussian Noise (AWGN) is added to each patch to
make the network robust to the typical noise level that exists in
images taken with a real-world camera. Though increasing the
noise level improves the robustness, it is important to consider
the trade-off that exists between noise robustness and depth
estimation accuracy, which limits the amount of noise that
should be added in training, making the noise level a hyper-
parameter one should tune. In our tests, when we set a specific
noise level, the accuracy of the depth results is deteriorated for
inputs with higher noise level (as one would expect). At the
same time, when we train the CNN with relatively high noise
levels, the system becomes more robust to noise at the expense
of accuracy reduction for images with lower noise. Therefore,
o = 3 is chosen as a good compromise since it resembles
the noise level of images of a well-lighted scene taken with
the selected camera. Of course, one may consider a different
noise level, according to the target camera and its expected
noise level.

Data augmentation via four rotations is used to increase
the dataset size as well as achieving rotation invariance. The
dataset size is about 2.4M patches, where 80% of it is used
for training and 20% is used for validation. Both architectures
were trained to classify into 15 integer values of 1) (between
—4 and 10) using the softmax loss. These nets are used as
an initialization for the depth estimation FCN, as presented in
1I-C.

B. RGB-D Dataset

The deep learning based methods for depth estimation from
a single image mentioned in Section I [1]-[8] rely strongly
on the input image details. Thus, most studies in this field
assume an input image with a large DOF such that most of
the acquired scene is in focus. This assumption is justified
when the photos are taken by small aperture cameras as
is the case in datasets such as NYU Depth [11], [12] and
Make3D [13] that are commonly used for the training and
testing of those depth estimation techniques. However, such
optical configurations limit the resolution and increase the
noise level, thus reducing the image quality. Moreover, the
depth maps in these dataset are prone to errors due to depth
sensor inaccuracies and calibrations issues (alignment and
scaling) with the RGB sensor.

Our method is based on a phase-coded aperture imaging
process, which encodes the image. To train or evaluate our
method on images not taken with our camera, the phase coded
aperture imaging process has to be simulated on those images.
To simulate the imaging process properly, the input data should
contain high resolution, all in-focus images with low noise,
accompanied by accurate pixelwise depth maps. Evaluating
depth datasets such as NYU depth [11], [12] and Make3D
[13] for our coded aperture imaging simulation is impossible
due to the limited image and depth resolution provided in
these datasets, which limit the possibility of simulating our
image acquisition process on these datasets. Proper input for
such imaging simulation may be generated primarily using 3D
graphic simulation software.

We use the popular MPI-Sintel depth images dataset [30],
created by the Blender 3D graphics software. The Sintel
dataset contains 23 scenes with a total of 1k images. Yet,
because it has been designed specifically for optical flow
evaluation, the depth variation in each scene is limited. Thus,
we could only use about 100 unique images, which are not
enough for training. The need for additional data has led us to
create a new Sintel-like dataset (using Blender) called *TAU-
Agent’, which is based on the recent open movie *Agent 327°.
This new animated dataset, which relies on the new render
engine ’Cycles’, contains 300 realistic images (indoor and
outdoor), with a resolution of 1024 x 512, and corresponding
pixelwise depth maps. With rotations augmentation, our full
dataset contained 840 scenes, where 70% are used for training
and the rest for validation.
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Fig. 5. (a) Confusion matrix for the depth segmentation FCN validation set
(b) MAPE as a function of the focus point using our continuous net.

C. Depth estimation FCN

In similarity to the FCN model presented by Long et al. [9],
the inner v classification net is wrapped in a deconvolution
framework, turning it to a FCN model (see Fig. 4). The desired
output of our depth estimation FCN is a continuous depth
estimation map. However, since training continuous models
is prone to over-fitting and regression to the mean issues,
we pursue this goal in two stages. In the first one, the FCN
is trained for discrete depth estimation. On the second step,
the discrete FCN model is used as an initialization for the
continuous model training.

To train the discrete depth FCN, the Sintel and Agent
datasets RGB images are blurred using the coded aperture
imaging model, where each object is blurred using the cor-
responding blur kernel associated with its depth (indicated in
the ground truth pixelwise depth map). The imaging is done
in a quasi-continuous way, with ¢ step of 0.1 in the range
of ¢ = [—4,10]. This imaging simulation can be carried in
the same way as the ’inner’ net training, i.e. using the phase
coded aperture layer as the first layer of the FCN model.
However, such step is very computationally demanding, and
does not provide significant improvement (since the phase-
coded aperture parameters tuning reached its optimum in the
inner net training). Therefore, in the FCN training stage, the

optical imaging simulation is done as a pre-processing step
with the best phase mask achieved in the inner net training
stage. In the discrete training step of the FCN, the ground-
truth depth maps are discretized to ¢ = —4, —3, .., 10 values.
The Sintel/Agent images (after imaging simulation with the
coded aperture blur kernels, RGB-to-Bayer transformation and
AWGN addition), along with the discretized depth maps, are
used as the input data for the discrete depth estimation FCN
model training. The FCN is trained for reconstructing the
discrete depth of the input image using softmax loss.

After training, both versions of the FCN model (based on
the DenseNet architecture and the traditional feed-forward
architecture) achieved roughly the same performance, but with
a significant increase in inference time (x3), training time
(x5) and memory requirements (x10) for the DenseNet model.
When examining the performance, one can see that most of
the errors are on smooth/low texture areas of the images,
where our method (that relies on texture) is expected to be
weaker. Yet, in areas with ’sufficient’ texture, there are enough
encoded depth cues, enabling good depth estimation even
with relatively simple DNN architecture. This similarity in
performance between the DenseNet based model (which is
one of the best CNN architectures known to date) to a simple
feed-forward architecture is a clear example to the inherent
power of optical image processing using coded aperture; a task
driven design of the image acquisition stage can potentially
save significant resources in the digital processing stage. As
such, we decided to keep the simple feed-forward architecture
as the chosen solution.

To evaluate the discrete depth estimation accuracy, we
calculated a confusion matrix for our validation set (~ 250
images, see Fig. 5(a)). After 1500 epochs, the net achieves
accuracy of 68% (top-1 error). However, the vast majority of
the errors are to adjacent 1) values, and on 93% of the pixels
the discrete depth estimation FCN recovers the correct depth
with an error of up to +11). As already mentioned above, most
of the errors originate from smooth areas, where no texture
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Fig. 6. Depth estimation results on simulated image from the ’Agent’
dataset: (a) original input image (the actual input image used in our net was
the raw version of the presented image), (b) Continuous ground truth (c-d)
Continuous depth estimation achieved using the L1 loss (c) and the L2 loss
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exists and therefore no depth dependent color-cues were
encoded. This performance is sufficient as an initialization
point for the continuous depth estimation network.

The discrete depth estimation (segmentation) FCN model is
upgraded to a continuous depth estimation (regression) model
using some modifications. The linear prediction results serve
as an input to a 1X1 CONV layer, initialized with linear
regression coefficients from the 1) predictions to continuous
1) values (¢ values can be easily translated to depth values in
meters, once lens parameters and focus point are known).

The continuous network is fine-tuned in an end-to-end
fashion, with lower learning rate (by a factor of 100) for the
pre-trained discrete network layers. The same Sintel & Agent
images are used as an input, but with the quasi-continuous
depth maps (without discretization) as ground truth, and L2
or L1 loss. After 200 epochs, the model converges to Mean
Absolute Difference (MAD) of 0.6¢. Again, we found that
most of the errors originate from smooth areas (as detailed in
Section IV-A hereafter).

IV. EXPERIMENTAL RESULTS AND COMPARISON
A. Validation set results

As a basic sanity check, the validation set images can be
inspected visually. In Fig. 6 it can be seen that while the
depth cues encoded in the input image are hardly visible to the
naked eye, the proposed FCN model achieves quite accurate
depth estimation maps compared to the ground truth. Most
of the errors are concentrated in smooth areas, as mentioned
in Section III-C. The continuous depth estimation smooths the
initial discrete depth recovery, achieving a more realistic result.

As mentioned above, our method estimates the blur kernel
(1) value), using the optical cues encoded by the phase coded
aperture. An important practical analysis is the translation

of the 1 estimation map to a metric depth map. Using
the lens parameters and the focus point, transforming from
1 to depth is straight-forward (see Section II). Using this
transformation, the relative metric depth error can be analyzed.
The ¢ = [—4,10] domain is spread to some depth dynamic
range, depending on the chosen focus point. Near-by focus
point dictates small dynamic range and high depth resolution,
and vice versa. However, since the FCN model is designed for
1) estimation, the model (and its 1)'s related MAD) remains
the same. After translating to metric maps, the Mean Absolute
Percentage Error (MAPE) is different for each focus point.
Such analysis is presented in Fig. 5(b), where the aperture
diameter is set to 2.3[mm] and the focus point changes from
0.1[m] to 2[m], resulting with a working distance of 9[cm]
to 30[m]. One can see that the relative error is roughly linear
with the focus point, and remains under 10% for relatively
wide focus-point range. A summary of the depth estimation
performance with several error measures is presented in Table I

Additional simulated scenes examples are presented in
Fig. 7. The proposed FCN model achieves accurate depth
estimation maps compared to the ground truth. Notice the
difference in the estimated maps when using the L1 loss
(Fig. 7(c)) and the L2 loss (Fig. 7(d)). The L1 based model
produces smoother output but reduces the ability to distinguish
between fine details, while the L2 model produces noisier
output but provides sharper maps. This is illustrated in all
scenes where the gap between the body and the hands of
the characters is not visible, as observed in Fig. 7(c). Note
that in this case the L2 model produces a sharper separation
(Fig. 7(d)). The estimated maps in Fig. 7(c-d) also presents
a few limitations of our method. In the top row, the fence
behind the bike wheel is not visible since the fence wires
are too thin. In the middle and bottom rows, the background
details are not visible due to low dynamic range in these
areas (the background is too far from the camera). One may
overcome the dynamic range limitations by changing the
aperture size/focus point, as explained in the following.

As mentioned above, our system is designed to handle
1 range of [—4,10], but the metric range depends on the
focus point selection (as presented above). This codependency
allows one to use the same FCN model with different optical
configurations. To demonstrate this important advantage, we
simulated an image (Fig.10(a)) captured with a lens having
an aperture of 3.45[mm] (1.5 the size of our original aperture
used for training). The larger aperture provides better metrical
accuracy in exchange of reducing the dynamic range. The
focus point was set to 48[cm], providing a working range of
39[cm] to 53[cm]. We then produced an estimated depth map,
which was translated into point cloud data using the camera
parameters (sensor size and lens focal length) from Blender.
The 3D face reconstruction shown in Fig. 10(b) validates our
metrical depth estimation capabilities and demonstrates the
efficiency of our strategy as we were able to create this 3D
model in real time.

B. Real-world results

To test the proposed depth estimation method, several
experiments were carried. The experimental setup included an
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Fig. 8. lab setup
TABLE I
DEPTH ESTIMATION RESULTS SUMMARY

Measure Result
Initial discrete depth segmentation 68% (top-1), 93% (£1v)
Continuous depth estimation error [1] 0.6
Val. set- rel. error [m] 5.5%
Val. set- log10 error [m] 0.056
Val. set- RMS error [m] 0.12
Experimental scene (spot check, rel.) [m] 6.25%
Run time (Full-HD image) [s] 0.22

f = 16mm, F/7 lens (LM16JCM-V by Kowa) with our phase
coded aperture incorporated in the aperture stop plane (see
Fig.8(a)). The lens was mounted on a UI3590LE camera made
by IDS Imaging. The lens was focused to z, = 1100mm, so
that the ¢ = [—4, 10] domain was spread between 0.5 —2.2m.
Several scenes were captured using the phase coded aperture
camera, and the corresponding depth maps were calculated
using the proposed FCN model.

For comparison, two competing solutions were examined
on the same scenes: Illum light-field camera (by Lytro), and
the monocular depth estimation net proposed by Liu et al. [3].
Since the method in [3] assumes an all in-focus image as an
input, we used the Lytro camera all in-focus imaging option
as the input to [3].

It is important to note that our proposed method provides

depth maps in absolute values (meters), while the Lytro camera
and [3] provide a relative depth map only (far/near values
with respect to the scene). Another advantage of our technique
is that it requires the incorporation of a very simple optical
element to an existing lens, while light-field and other solu-
tions (like stereo cameras) require a much more complicated
optical setup. In the stereo camera, two calibrated and laterally
separated cameras are mounted on a rigid base. In the light-
field camera, special light-field optics and sensor are used. In
both cases the cumbersome optical setup dictates large volume
and high cost.

We examined all the solutions on both indoor and outdoor
scenes. Several examples are presented, with similar and
different focus points. Indoor scenes examples are shown in
Fig. 9. Several objects were laid on a table with a poster in
the background (see Fig. 8(b) for a side view of the scene).
Since the scenes lack global depth cues, the method from
[3] fails to estimate a correct depth map. The Lytro camera
estimates the gradual depth structure of the scene with good
object identification, but provides a relative scale only. Our
method succeeds to identify both the gradual depth of the table
as well as the fine details of the objects (top row- note the
screw located above the truck on the right, middle row- note
the various groups of screws). Although some scene texture
’seeps’ to our recovered depth map, it causes only a minor
error in the depth estimation. A partial failure case appears
in the leaflet scene (Fig. 9, bottom row), where our method
misses only on texture-less areas. Performance on non-textured
areas is the most challenging scenario to our method (since it
relies on color-coded cues generated on texture areas), and it
is the source for almost all failure cases. In most cases, our
net learns to associate non-textured areas with their correct
depth using adjacent locations in the scene that happen to have
texture and are at similar depth. However, this is not always
the case (as can be seen in Fig. 9(d)- bottom), where it fails
to do so in the blank white areas. This issue can be resolved
using a much deeper network, and it imposes a performance
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Fig. 9. Indoor scene depth estimation. Left to right: (a) the scene and its depth map acquired using (b) Lytro Illum camera, (c) Liu et al. [3] monocular
depth estimation net, (d) our method. As each camera has a different field of view, the images were cropped to achieve roughly the same part of the scene.
The depth scale on the right is relevant only for (d). Because the outputs of (b)&(c) provide only a relative depth map (and not absolute as in the case of
(d)), their maps were brought manually to the same scale for visualization purposes.

(a) Input image

(b) Point cloud map

Fig. 10. 3D face reconstruction

vs. model complexity trade-off.

Similar comparison is presented for two outdoor scenes in
Fig. 11. On its first row, we chose a scene consisting of a
granulated wall. In this example, the global depth cues are
also weak, and therefore the monocular depth estimation fails
to separate the close vicinity of the wall (right part of the
image). Both the Lytro and our phase coded aperture camera
achieve good depth estimation of the scene. Note though that
our camera has the advantage that it provides an absolute scale
and uses much simpler optics.

On the second row of Fig. 11, we chose a grassy slope
with flowers. In this case, the global depth cues are stronger.
Thus, the monocular method [3] does better compared to
the previous examples, but still achieves only a partial depth
estimate. Lytro and our camera achieve good results.

Additional outdoor examples are presented in Fig. 12. Note

that the scenes in first five rows of Fig. 12 were taken with
a different focus point (compared to the indoor and the rest
of the outdoor scenes), and therefore the depth dynamic range
and resolution are different (as can be seen in the depth scale
on the right column). However, since our FCN model is trained
for ¢ estimation, all depth maps were achieved using the same
network, and the absolute depth is calculated using the known
focus point and the estimated 1y map.

Quantitative evaluation of the real-world setup with a cam-
era equipped with our phase-coded aperture was performed
’in the wild’, since exact depth GT is difficult to acquire in
the general case. For quantitative evaluation on real data, we
performed a ’spot-check’- we measured the depth recovery
error of our network for the known object distances in the lab
setting of Fig. 9. We got an average depth estimation error of
6.25%. This accuracy is comparable to Lytro accuracy (Zeller
et al. [31]) and much better than monocular (25%), while both
require a cumbersome calibration phase.

Besides the depth map recovery performance and the sim-
pler optics, another important benefit of our proposed solution
is the required processing power/run time. The fact that depth
cues are encoded by the phase mask enables much simpler
FCN architecture, and therefore much faster inference time.
This is due to the fact that some of the processing is done by
the optics (in the speed of light, with no processing resources
needed). For example, for a full-HD image as an input, our
proposed network evaluates a full-HD depth map in 0.22s
(using Nvidia Titan X Pascal GPU). For the same sized input



(a) scene

(b) Light-Field (Lytro)
Fig. 11.

(c) monocular (d) ours

Outdoor scenes depth estimation. Depth estimation results for a granulated wall (upper) and grassy slope with flowers (lower) scenes. Left to

right: (a) the scene and its depth map acquired using (b) Lytro Illum camera, (c) Liu et al. [3] monocular depth estimation net, (d) our method. As each
camera has a different field of view, the images were cropped to achieve roughly the same part of the scene. The depth scale on the right is relevant only for
(d). Because the outputs of (b)&(c) provide only a relative depth map (and not absolute as in the case of (d)), their maps were brought manually to the same

scale for visualization purposes. Additional examples appear in Fig. 12.

on the same GPU, the net presented in [3] evaluates a 3-times
smaller depth map in 10s (Timing was measured using the
same machine and the implementation of the network available
at the authors’ website). Of course, if a one-to-one input image
to depth map is not needed, the output size can be reduced
and our FCN will run even faster.

Another advantage of our method is that the depth esti-
mation relies mostly on local cues in the image. This allows
performing of the computations in a distributed manner. The
image can be simply split and the depth map can be evaluated
in parallel on different resources. The partial outputs can be
recombined later with barely visible block artifacts.

V. SUMMARY AND CONCLUSIONS

In this paper we have presented a method for real-time
depth estimation from a single image using a phase coded
aperture camera. The phase mask is designed together with the
FCN model using back propagation, which allows capturing
images with high light efficiency and color-coded depth cues,
such that each color channel responds differently to OOF
scenarios. Taking advantage of this coded information, a
simple convolutional neural network architecture is proposed
to recover the depth map of the captured scene.

This proposed scheme outperforms state-of-the-art monocu-
lar depth estimation methods by having better accuracy, more
than an order of magnitude speed acceleration, less memory
requirements and hardware parallelization compliance. In ad-
dition, our simple and low-cost solution shows comparable
performance to expensive commercial solutions with complex
optics such as the Lytro camera. Moreover, as opposed to the
relative depth maps produced by the monocular methods and
the Lytro camera, our system provides an absolute (metric)
depth estimation, which can be useful to many computer vision
applications, such as 3D modeling and augmented reality.

APPENDIX
PHASE-CODED APERTURE IMAGING AS A NEURAL
NETWORK LAYER

As described in the paper, our depth estimation method is
based on a phase-coded aperture lens that introduces depth-
dependent color cues in the resultant image. The depth cues are
later processed by a Fully-Convolutional Network (FCN) to
produce a depth map of the scene. Since the depth estimation
is done using deep learning, and in order to have an end-to-
end deep learning based solution, we model the phase-coded
aperture imaging as a layer in the deep network and optimize
its parameters using backpropagation, along with the network
weights. In the following we present in detail the forward and
backward model of the phase coded aperture layer.

A. Forward model

Following the imaging system model presented in [24],
the physical imaging process is modeled as a convolution
of the aberration free geometrical image with the imaging
system Point Spread Function (PSF). In other words, the final
image is the scaled projection of the scene onto the image
plane, convolved with the system’s PSF, which contains all the
system properties: wave aberrations, chromatic aberrations and
diffraction effects.? In this model, the PSF calculation contains
all the optical properties of the system. Following [24], the
PSF of an incoherent imaging system is defined as:

PSF = |h|* = |F{P(p,0)}, 2)

where h,. is the coherent system impulse response, and P(p, 0)
is the system’s exit pupil function (the amplitude and phase
profile in the imaging system exit pupil). The pupil function
reference is a perfect spherical wave converging at the image

Note that in this model, the geometric image is a perfect reproduction of
the scene (up to scaling), with no resolution limit.
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Fig. 12. Outdoor scenes depth estimation. From left to right: (a) the scene and its depth map acquired using (b) Lytro Illum camera, (c) Liu er
monocular depth estimation net, (d) our method. See caption of Fig. 9 for full details.
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plane. Thus, for an in-focus and aberration free (or diffraction
limited) system, the pupil function is just the identity for the
amplitude in the active area of the aperture, and zero for the
phase.

Out-of-Focus (OOF): An imaging system acquiring an
object in OOF conditions suffers from blur that degrades the
image quality. This results in low contrast, loss of sharpness
and even loss of information. The OOF error is expressed
analytically as a quadratic phase wave-front error in the pupil
function. To quantify the defocus condition, we introduce the
parameter 1. For the case of a circular exit pupil with radius
R, we define ¢ as:

TR? < 1 1 1) TR? < 1 1>
YV=—|—+ —= ) =— S
A \2  Zimg S A\ Zimg %

_7wR? (1 1
D 2o  n )’

where 2z, is the image distance (or sensor plane location)
of an object in the nominal position 2, z; is the ideal image
plane for an object located at z,, and )\ is the illumination
wavelength. The defocus parameter ¢ measures the maximum
quadratic phase error at the aperture edge. For a circular pupil:

Poor = P(p,0) exp{jvp?}, )

where Poor is the OOF pupil function, P(p, #) is the in-focus
pupil function, and p is the normalized pupil coordinate.

Aperture Coding: As mentioned above, the pupil function
represents the amplitude and phase profile in the imaging
system exit pupil. Therefore, by adding a coded pattern
(amplitude, phase or both) at the exit pupil,® the PSF of the
system can be manipulated by some pre-designed pattern. In
this case, the pupil function can be expressed as:

Poa = P(p,0)CA(p,0), (5)

where Pc 4 is the coded aperture pupil function, P(p,0) is
the in-focus pupil function, and C' A(p, 0) is the aperture/phase
mask function. In our case of phase coded aperture, C A(p, 9)
is a circularly symmetric piece-wise constant function repre-
senting the phase rings pattern. For the sake of simplicity, we
will consider a single ring phase mask, applying a ¢ phase shift
in a ring starting at r; to . Therefore, CA(p, 0) = C'A(r, ¢)
where:

exp{jo}

1 otherwise

r<p<ry ©)

CA(I‘, (b) = {
This example can be easily extended to a multiple rings
pattern.
Depth dependent coded PSF: Combining all factors, the
complete term for the depth dependent coded pupil function
becomes:

P(¢) = P(p,0)CA(r, ¢) exp{jp°}. ©)

3The exit pupil is not always accessible. Therefore, the mask may be added
also in the aperture stop, entrance pupil, or in any other surface conjugate to
the exit pupil.

Using the definition in (2), the depth dependent coded
PSF(1)) can be easily calculated.

Imaging Output: Using the coded aperture PSF, the imag-
ing output can be calculated simply by:

This model limits us to a Linear Shift-Invariant (LSI) model.
However, this is not the case in real imaging systems, and the
PSF varies across the Field of View (FOV). This is solved
by segmenting the FOV to blocks with similar PSF, and then
applying the LSI model in each block.

B. Backward model

As described in the previous subsection, the forward model
of the phase coded aperture layer is expressed as:

Iout = Iin * PSFW) (9)

The PSF(v) varies with the depth (1), but it has also a
constant dependence on the phase ring pattern parameters r
and ¢, as expressed in (7). In the network training process, we
are interested in determining both r and ¢. Therefore, we need
to evaluate three separate derivatives: 01, /0r; for i = 1,2
(the inner and outer radius of the phase ring, as detailed in
(6)) and OI,,:/0¢. All three are derived in a similar fashion:

Opr O
87’1/¢ o 8rl/¢

0
= Iin * mPSF(’(/J7I‘7¢)

Thus, we need to calculate OPSF/0r; and OPSF/0¢.
Since both derivatives are almost similar, we start with
OPSF/J¢ and then describe the differences in the derivation
of OPSF/0r; later. Using (2), we get

0 0
~Z_ PSF = =
a¢ S (’l/)) r? d)) 8¢
9 -

=[5 PW T 9P P, r, o)1+

[Iin * PSF(wa r, ¢)]
(10)

[F{P(,r, ) F{P(4,r,$)}]

+FPr ) F P T 0]
(11)

We may see that the main term in (11) is 3%) [F{P(¢,r, 9)]
or its complex conjugate. Due to the linearity of the derivative
and the Fourier transform, the order of operations can be
reversed and rewritten as: JF{ %P(w,r,qb)}. Therefore, the
last term remaining for calculating the PSF derivative is:

9 p(g,r,0) =

2 9 [P(p,0)CA(r, ¢) exp{jipp*}]

¢
0
= P(p,0) eXp{jwpz}aTb[CA(f, 2l (12

_ {ij, r, )

r<p<ry
0 otherwise



Similar to the derivation of OPSF/d¢, for calculating
OPSF/dr; we need also 72~ P(1),r,¢). Similar to (12), we
have

0 0
aT,iPW,P,@ = %[P(Pv 0)CA(r, ¢) exp{jvp°}]

= P(p,0) exp{jip®} 5‘% [CA(r, ¢)]

Since the ring radius is a step function, this derivative has to
be approximated. We found that tanh(100p) achieves good
enough results for the phase step approximation.

With the full forward and backward model, the phase coded
aperture layer can be incorporated as a part of the FCN model,
and the phase mask parameters r and ¢ can be learned along
with the network weights.

(13)
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