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ABSTRACT

The increasing demand for high image quality in mobile
devices brings forth the need for better computational en-
hancement techniques, and image denoising in particular. To
this end, we propose a new fully convolutional deep neu-
ral network architecture which is simple yet powerful and
achieves state-of-the-art performance for additive Gaussian
noise removal. Furthermore, we claim that the personal
photo-collections can usually be categorized into a small set
of semantic classes. However simple, this observation has
not been exploited in image denoising until now. We show
that a significant boost in performance of up to 0.4dB PSNR
can be achieved by making our network class-aware, namely,
by fine-tuning it for images belonging to a specific semantic
class. Relying on the hugely successful existing image classi-
fiers, this research advocates for using a class-aware approach
in all image enhancement tasks.

Index Terms— Image denoising, machine learning, com-
puter vision, image enhancement, image processing.

1. INTRODUCTION

Many image acquisition artifacts such as low-light noise and
camera shake can be compensated by image enhancemnet
techniques. Denoising in the presence of additive white Gaus-
sian noise is one of the key problems studied in this context.
It has been shown in [2, 3, 4] that having a good Gaussian
denoising algorithm allows to efficiently solve many other
image processing problems such as deblurring, inpainting,
compression postprocessing, low-light Poisson denoising and
more, without compromising the reconstruction quality or the
need to design a new strategy adapted to a new setting. Nu-
merous methods have been proposed for removing Gaussian
noise from images, including k-SVD [5], non-local means
[6], BM3D [7] , field of experts (FoE)[8] and many others.
These techniques were designed based on some properties of
natural images such as the recurrence of patches at different
locations and scales, or their sparse representation in some
(possibly trained) dictionary. In the past few years, the state-
of-the-art in image denoising has been achieved by techniques
based on artificial neural networks. The first such method was
the multilayer perceptron (MLP) proposed in [9]. Which is

based on a fully connected architecture and therefore requires
a very large amount of training examples, memory and has
high arithmetic complexity at inference compared to e.g. the
recent work [10], which proposes a neural network based on
a deep Gaussian Conditional Random Field (DGCRF) model,
or the model-based Trainable Nonlinear Reaction Diffusion
(TNRD) network introduced in [1].

Class Aware Denoising. Patch-based image denoising the-
ory suggests that existing methods have practically converged
to the theoretical bound of the achievable performance [11].
As it turns out, two possibilities to break this barrier still ex-
ist. The first is to use larger patches. This has been proved
useful in [9] where the use of 39× 39 patches allowed to out-
perform BM3D. The second is to use a better image prior,
such as narrowing down the space of images to a more spe-
cific class. These two possibilities are not mutually exclusive,
and indeed we exploit both. Several studies have shown that
it is beneficial to design a strategy for a specific class. In
[12], the authors set a bound on super-resolution performance
and showed it can be broken when a face-prior is used. In
[13], a compression algorithm for face images was proposed.
Face hallucination, super-resolution and sketch-photo synthe-
sis methods have been developed by [14]. In [15], the authors
showed that given a collection of photos of the same person it
is possible to obtain a more faithful reconstruction of the face
from a blurry image. In [16, 17] class labeling at a pixel-level
was used for the colorization of gray-scale images.

Contribution. We propose a novel convolutional neural
network (CNN)-based architecture that obtains performance
higher than or comparable to the state-of-the-art for Gaussian
image denoising. We demonstrate that an additional boost in
performance is achieved when the algorithm is aware of the
semantic class of images being processed, or class-aware.
Different from previous methods, our model is made class-
aware via training and not by design. While in this paper we
focus on Gaussian denoising, our methodology can be easily
extended to much broader class-aware image enhancement,
rendering it applicable to many computational photography
and low-level computer vision tasks.



Ground truth image Noisy image Denoised by TNRD [1] Denoised by our method

Fig. 1. Perceptual comparison of class-aware and standard denoising. Our proposed face-specific denoiser produces a visually pleasant
result and avoids artifacts commonly introduced by general-purpose denoisers. The reader is encouraged to zoom in for a better view of the
artifacts.

2. DENOISE NET

Our network performs additive Gaussian image denoising in
a fully convolutional manner. It receives a noisy grayscale
image as the input and produces an estimate of the original
clean image. The network architecture is shown in Figure 2.
The layers at the top row of the diagram calculate features
using convolutions of size 3 × 3 , stride 1, and ReLU non-
linearities. While the layers at the bottom of the diagram can
be viewed as negative noise components as their sum can-
cels out the noise, and are calculated using a single channel
convolution of size 3 × 3 with stride 1. In all experiments
we used networks with 20 layers implemented in TensorFlow
[18] and trained it for 160K mini-batches on a Titan-X GPU
with a set of 8000 images from the PASCAL VOC dataset
[19]. We used mini-batches of 64 patches of size 128 × 128.
Images were converted to YCbCr and the Y channel was used
as the input grayscale image after being scaled and shifted
to the range of [−0.5, 0.5]. During training, image patches
were randomly cropped and flipped about the vertical axis.
To avoid convolution artifacts at the borders of the patches
caused by the receptive field of pixels in the deepest layer, we
used an `2 loss on the central part cropping the outer 21 pix-
els during training time and padded the image symmetrically
during test time by 21. Training was done using the ADAM
optimizer [20] with a learning rate of α = 10−4, β1 = 0.9,
β2 = 0.999 and ε = 10−8. Code and pretrained models will
be made available1.

3. CLASSIFICATION IN THE PRESENCE OF NOISE

The tacit assumption of our class-aware approach is the abil-
ity to determine the class of the noisy input image. While the
goal of this research is not to improve image classification,
we argue that the performance of modern CNN based classi-
fication algorithm such as Inception [21, 22] or ResNet [23] is
relatively resilient to a moderate amount of noise. In addition,
since we are interested in canonical semantic classes such as

1https://github.com/TalRemez/deep_class_aware_
denoising

Fig. 2. DenoiseNet fully convolutional architecture. All convo-
lutions are of size 3 × 3 and stride 1. Convolution resulting feature
sizes are listed as Width × Height × #Channels. The bottom
row of outputs can be viewed as a negative noise components as their
sum cancels out the noise.

faces and pets which are far coarser than the 1000 ImageNet
classes [24], the task becomes even easier. Furthermore, the
aforementioned networks can be fine-tuned using noisy ex-
amples to increase their resilience to noise. To illustrate the
noise resilience property we ran the pre-trained Inception-v3
[22] network on a few tens of images from the pets class. We
then gradually added noise to these images and counted the
number of images on which the classifier changed its label to
non-pet. Observe that in Figure 3 the network classification
remains stable even in the presence of large amounts of noise.
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Fig. 3. Noise resilience of image classification. Correct classifica-
tion rate of inception-v3 in the presence of noise.
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4. EXPERIMENTS

In all experiments our network was compared to (a) BM3D
;(b) multilayer perceptrons (MLP) using sigma specific, pre-
trained models trained on ImageNet and made available on-
line; and (c) TNRD using sigma specific, pre-trained models
published by the authors; on the following test sets: (i) im-
ages from PASCAL VOC [25]; and (ii) the commonly used
68 test images chosen by [8] from the Berkeley segmentation
dataset [26].

4.1. Class-agnostic denoising

In all experiments in this section our network was trained on
8K images from the PASCAL VOC [25] dataset.
PASCAL VOC. In this experiment we tested the denoising
algorithms on 1K test images from [25]. Table 1 summarizes
performance in terms of average PSNR for white Gaussian
noise with σ ranging from 10 to 75. It is evident that our
method outperforms all other methods for all noise levels by
a significant margin.

σ 10 15 25 35 50 65 75

BM3D 34.26 32.10 29.62 28.14 26.61 25.64 25.12
MLP [9] 34.29 − 29.95 28.49 26.98 26.07 25.54
TNRD [1] − 32.35 29.90 − 26.91 − −
DenoiseNet 34.87 32.79 30.33 28.88 27.32 26.30 25.75

Table 1. Performance on PASCAL VOC. Average PSNR values
on a 1000 image test set. Our method outperforms all other methods
for all noise levels.

To examine the statistical significance of the improvement our
method achieves for σ = 25, in Figure 4 we compare the
gain in performance with respect to BM3D achieved by our
method, MLP and TNRD. The plot visualizes the large and
consistent improvement in PSNR achieved by our method and
that it outperforms all others on 92.4% of the images, whereas
MLP, BM3D, and TNRD win on 6.6%, 1% and 0% respec-
tively.
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Fig. 4. Performance profile relative to BM3D. Image indices are
sorted in ascending order of performance gain relative to BM3D. The
improvement of our method is demonstrated by (i) decrease of the
zero-crossing point, and (ii) consistently higher values of gain. The
comparison was made on images from PASCAL VOC for σ = 25.

Berkeley segmentation dataset. In this experiment we tested
the performance of our method, trained on PASCAL VOC,
on the widely used test-set of 68 images selected by [8] from
Berkeley segmentation dataset [26]. Even though these test
images belong to a different dataset, Table 2 shows that our
method outperforms previous methods for all σ values.

σ 10 15 25 35 50 65 75

BM3D 33.31 31.10 28.57 27.08 25.62 24.68 24.20
MLP [9] 33.50 − 28.97 27.48 26.02 25.10 24.58
TNRD [1] − 31.41 28.91 − 25.95 − −
DenoiseNet 33.58 31.44 29.04 27.56 26.06 25.12 24.61

Table 2. Performance on images from Berkeley segmentation
dataset. Average PSNR values on a test set of 68 images selected
by [8]. Our method outperforms all others for all noise levels.

4.2. Class-aware denoising

This experiment evaluates the boost in performance gained
by fine-tunning a denoiser on a set of images belonging to
a particular class. In order to do so we collected images
from ImageNet [24] of the following six classes: face, pet,
flower, beach, living room, and street. The 1, 500 images
per class were split into train (60%), validation (20%) and
test (20%) sets. We then trained a separate class-aware de-
noiser for each of the classes for a noise level of σ = 25.
This was done by fine-tuning all the parameters of our class-
agnostic model, that had been trained on PASCAL VOC (and
used in section 4.1), using the images from ImageNet. The
performance of the class-aware denoisers was compared to
their class-agnostic counterpart and to other denoising meth-
ods (using their online published coed and models). Aver-
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Fig. 5. Left: Class-aware denoising on ImageNet. Average
PSNR values on images belonging to six different semantic
classes. It is evident that the class-specific fine-tuned models
outperform all other methods. In addition, being class-aware
enables to gain as much as 0.4 dB PSNR compared to our
class-agnostic network. Right: Cross-class denoising. Each
row represents a specific semantic class of images while class-
aware denoisers are represented as columns. The (i, j)-th ele-
ment in the confusion matrix shows the probability of the j-th
class-aware denoiser to outperform all other denoisers on the
i-th class of images.
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Fig. 6. Gradual denoising process by flower-specific DenoiseNet.
The top row presents the noisy image (left) and the intermediate re-
sult obtained by removing the noise estimated up to the respective
layer depth. The second row presents the ground truth image (left)
and the noise estimates produced by individual layers; the noise im-
ages have been scaled for display purposes. We encourage the reader
to zoom-in onto the images to best view the fine details and noise.

age PSNR values summarized in Figure 5 indicate that our
class-aware models outperforms our class-agnostic network,
as well as BM3D, MLP and TNRD; demonstrating a boost in
performance by as much as 0.4dB. An extensive qualitative
comparison is available in the supplementary material.
Cross-class denoising. To further demonstrate the effect of
refining a denoiser to a particular class, we tested each class-
specific denoiser on images belonging to other classes. To
quantify the effect of mismatching we evaluated the percent-
age of wins of every fine-tuned denoiser on each type of im-
age class. A win means that a particular denoiser produced
the highest PSNR among all the others. Figure 5 (right) shows
a confusion matrix for all combinations of class-specific de-
noisers and image classes. Qualitatively it is clear our class-
specific denoisers learn to better handle textures, edge types,
and structures that are common in each of the classes, and
that using the wrong denoiser creates artifacts that resemble
the statistics of textures and edges from the densoier class.
We refer the reader to the supplementary material for exam-
ples. We conclude that applying a denoiser of the same class
as the image results in the best performance.

4.3. Network noise estimation

In order to gain some insights about our network’s noise es-
timation process, in Figure 7 we show the error after 5, 10,
and 20 layers (middle row). Surprisingly, even thought it has
not been explicitly enforced at training, the error monotoni-
cally decreases with the layer depth (plot at the bottom left).
This non-trivial behavior is consistently produced by the net-
work on most test images. By visualizing which layer was the
most dominant in the denoising process of each pixel we ob-
serve that the first few layers govern the majority of smooth
image areas, while the deeper layers contribute the most to
edges (bottom right). In addition, as demonstrated in Fig-
ure 6, each layer of the network contributes differently to the

Ground truth Noisy Denoised

Error after 5 layers Error after 10 layers Error after 20 layers

RMSE per layer Most significant layer

Fig. 7. Gradual denoising process. Top row: ground truth, noisy
(σ = 25) and denoised images. Middle: difference images evalu-
ated after accumulating noise estimations from the first 5, 10, and
20 layers. Bottom left: RMSE at each layer. Bottom right: To vi-
sualize which of the layers was the most dominant in the denoising
process, we assigned a different color to each layer according to it’s
depth, and colored each pixel according to the layer in which its
value changed the most. Images are best viewed electronically, one
should zoom in for a better view. More examples are available in the
supplementary material.

noise removal process. The shallower layers seem to handle
local noise statistics while the deeper layers recover edges and
enhance textures that might have been degraded by the first
layers. A possible explanation for this may reside in their re-
ceptive field sizes. Deeper layers correspond to larger recep-
tive fields, therefore can better recover large patterns such as
edges, contours, and textures, which might be indistinguish-
able from noise when viewed by smaller receptive fields of
shallower layers.

5. DISCUSSION

We introduced a new fully convolutional neural network for
image denoising with state-of-the-art performance. We fur-
ther showed that fine-tuning the network per class is prefer-
able over a universal filter, achieving an additional boost of up
to 0.4dB PSNR. That said, the decision to split according to a
semantic class was made due to the immediate availability of
off-the-shelf classifiers and their resilience to noise. Yet, this
splitting scheme may very well be sub-optimal and one could
instead incorporate it into the network architecture and refine
via end-to-end training. We defer this to future research.
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