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Summary. Source separation is a widely studied problems in signal processing.
Despite the permanent progress reported in the literature it is still considered a
significant challenge. This chapter first reviews the use of non-negative matrix fac-
torization (NMF) algorithms for solving source separation problems, and proposes a
new way for the supervised training in NMF. Matrix factorization methods have re-
ceived a lot of attention in recent year in the audio processing community, producing
particularly good results in source separation. Traditionally, NMF algorithms con-
sist of two separate stages: a training stage, in which a generative model is learned;
and a testing stage in which the pre-learned model is used in a high level task such
as enhancement, separation, or classification. As an alternative, we propose a task-
supervised NMF method for the adaptation of the basis spectra learned in the first
stage to enhance the performance on the specific task used in the second stage. We
cast this problem as a bilevel optimization program efficiently solved via stochastic
gradient descent. The proposed approach is general enough to handle sparsity priors
of the activations, and allow non-Euclidean data terms such as β-divergences. The
framework is evaluated on speech enhancement.

Key words: Supervised learning, tast-specific learning, bilevel optimization, NMF,
speech enhancement, source separation.

1 Introduction

The problem of isolating or enhancing an audio signal recorded in a noisy en-
vironment has been widely studied in the signal processing community [1, 2].
It becomes particularly challenging in the presences of non-stationary back-
ground noise, which is a very common situation in many applications encoun-
tered, e.g., in mobile telephony. In this chapter we address the problem of
monaural source separation by applying matrix factorization algorithms on a
transformed domain given by time-frequency representations of the signals.

The decomposition of time-frequency representations, such as the power
or magnitude spectrogram, in terms of elementary atoms of a dictionary, has
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become a popular tool in audio processing. While many matrix factorization
approaches have been used, models imposing non-negativity in their parame-
ters have been proven to be significantly more effective for modeling complex
audio mixtures. The non-negativity constraint ensures a parts-based decom-
position [3], in which the elementary atoms can be thought as constructive
building blocks of the input signal corresponding to interpretable spectral
patterns of recurrent events. Non-negative matrix factorization (NMF) [3],
and its probabilistic counterpart, the probabilistic latent component analysis
(PLCA) [4], are the first instances of a great variety of approaches proposed
over the last few years, see [5] for a recent reveiw.

NMF can be applied with different levels of supervision [6, 7]. In this work
we are interested in the supervised use of NMF, in which it is assumed that
one has access to example audio signals at a training stage. In this setting,
NMF is used to take advantage of the available data by pre-computing dic-
tionaries that accurately represent the input signals. NMF has been success-
fully used in a great variety of audio processing problems ranging from music
information retrieval to speech processing. In most approaches, the trained
dictionaries are used to facilitate a high-level task, such as speech separation
[8, 9, 10, 11, 12], robust automatic speech recognition [13, 14], and band-
width extension [15, 16], among many others. In the great majority of these
approaches the dictionaries are pre-trained independently as a separate ini-
tial step not adapted to the subsequent (and ultimate) high level task. Initial
works have recently shown the benefit of incorporating the actual objective of
source separation into the training of the model, for example in NMF [17, 18]
and deep neural network based separation [19]. It is worth mentioning that,
in the context of classification, NMF has been also trained optimized in a
discriminate way [20, 21].

In this chapter we discuss in detail a supervised dictionary learning scheme
that can be tailored for different specific high level tasks [17]. Following recent
ideas proposed in the context of sparse coding [22], our training scheme is
formulated as a bilevel optimization problem, which can be efficiently solved
using standard stochastic optimization techniques. We use speech denoising as
an example illustrating the power of the proposed framework. However, this
technique is general and can be used for various audio applications involving
NMF. We also show that these ideas can be employed in general regularized
versions of NMF.

This chapter is organized as follows. In Section 2 we begin by briefly sum-
marizing NMF (and several of its commonly used extensions) in the context of
audio source separation. We present the proposed supervised NMF framework
in Section 3 and describe how to solve the asociated optimization problem in
Section 4. Experimental results are presented in Section 5. In Section 6 we
conclude the paper and discuss future lines of work.
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2 Source separation via NMF

We consider the setting in which we observe a temporal signal x(t) that is the
sum of two speech signals xi(t), with i = 1, 2,

x(t) = x1(t) + x2(t), (1)

and we aim at finding estimates x̂i(t). Let us define x ∈ RN , a sampled version
of the input signal satisfying, x[n] = x( nfs ). with n = 1, . . . , N , where fs is the
sampling rate.

NMF-based source separation techniques typically operate in two stages.
First, the signal is represented in a feature space given by a non-linear analysis
operator, typically defined (in the case of audio signals) as the magnitude of
a time-frequency representation such as the Short-Time Fourier Transform
(STFT). Then, a synthesis operator, given by the NMF, is applied to produce
an unmixing in the feature space. The separation is obtained by inverting these
representations. Performing the separation in the non-linear representation is
key to the success of the algorithm. The magnitude of the STFT is in general
sparse (simplifying the separation process) and invariant to variations in the
phase (local translations), thus freeing the NMF model from learning this
irrelevant variability. This comes at the expense of inverting the unmixed
estimates in the feature space, which is a well known problem usually referred
to as the phase recovery problem [23].

Let us denote by V = Φ(x) ∈ Rm×n a time frequency representation of
x, comprising m frequency bins and n (usually overlapping) temporal frames.
When the feature extractor Φ is able to produce sparse representations of the
sources (such as in the STFT), the following approximation holds,

Φ(x) ≈ Φ(x1) + Φ(x2),

for sufficiently distinct signals. The sum is approximate due to the non-linear
effects of the phase. In such a setting, NMF attempts to find the non-negative
activations Hi ∈ Rq×n, i = 1, 2, best representing the different components in
two non-negative dictionaries Wi ∈ Rm×q. This task is achieved through the
solution of the minimization problem

min
Hi≥0

D(V|
∑
i=1,2

WiHi) + λ
∑
i=1,2

ψ(Hi) . (2)

The first term in the optimization objective is a divergence measuring the
dissimilarity between the input data V and combination of the estimated
channels. Typically, this data fitting term is assumed to be separable,

D(A|B) =
∑
i,j

D(aij |bij).

Significant attention has been devoted in the literature to the case in which
the scalar divergence D in the right-hand side belongs to the family of the
β-divergences [24],
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Dβ(a|b) =


a
b − log a

b − 1 : β = 0,
a log a/b+ (a− b) : β = 1,

1
β(β−1) (a

β + (β − 1)bβ − βabβ−1) : otherwise.

This family includes the three most widely used cost functions in NMF: the
squared Euclidean distance (β = 2), the Kullback-Leibler divergence (β = 1),
and the Itakura-Saito divergence (β = 0). For β ≥ 1, the divergence is convex.
The case of β = 0 is attractive despite the lack of convexity, due to the scale-
invariance of the Itakura-Saito divergence, which makes the NMF procedure
insensitive to volume changes [25].

The second term in the minimization objective is included to promote some
desired structure of the activations. This is done using a designed regulariza-
tion function ψ, whose relative importance is controlled by the parameters
λ.

Once the optimal activations are solved for, the spectral envelopes of each
source are estimated as WiHi. Since these estimated spectrum envelopes con-
tains no phase information, a subsequent phase recovery stage is necessary.
When the non-linearity is imposed as the magnitude of an invertible trans-
form, F , such as the STFT, a simple filtering strategy can be used [12]. In this
case we have Φ(x) = |F{x}|, where F{x} ∈ Cm×n is a complex matrix. This
strategy resembles Wiener filtering and has demonstrated very good results
in practice. The recovered spectral envelopes are used to build soft masks to
filter the input mixture signal,

x̂i = F−1 {Mi ◦ F{x}} , with Mi =
(WiH

∗
i )
p∑

j=1,2(WjH
∗
j )
p
, (3)

where H∗
i are the optimal activations obtained after solving (2), where mul-

tiplication denoted ◦, division, and exponentials are element-wise operations.
The parameter p defines the smoothnes of the mask. Note that when p goes
to infinity, the mask becomes binary, choosing for each bin the larger of the
two signals.

In this section we assumed that the dictionaries for each source were avail-
able beforehand for performing the demixing. This corresponds to a super-
vised version of NMF, in which the dictionaries for each source are trained
independently from available training data. Specifically, this is achieved by
solving

min
Hi,Wi≥0

D(Vi|WiHi) + λψ(Hi) (4)

on a training set Vi of feature representations of the unmixed signals for each
source.

As mentioned above, the underlying assumption is that the signals form-
ing the mixture, and consequently the learned dictionaries, are sufficiently
distinct to be unambiguously decomposed into V ≈

∑
i=1,2 WiHi. However,

this assumption is often violated in practice, for which we would want to have
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the dictionaries Wi as incoherent as possible. In other words, the indepen-
dently trained dictionaries do not ensure that the solutions W1H1 and W2H2

obtained from (2) will resemble the original components of the mixture.

2.1 Case study

The method proposed in this paper, described in Section 3, can be applied to
a large family of approaches following the supervised NMF paradigm. In this
paper, we opted to use a sparsity-regularized version of NMF as a case study.
In this case, the regularizer ψ in (2) is given by the columns-wise `1 norm,

ψ(H) = λ‖H‖1 +
µ

2
‖H‖22. (5)

For technical reasons, that will be clear in Section 4, we also include an `2
regularizer on the activations.

3 Supervised NMF

As was discussed in the previous section, the optimization problem (5) is
merely a proxy to the desired estimation problem. Standard dictionary learn-
ing applied independently to each source does not guarantee that its solutions
will produce the best estimate of the unmixed sources even on mixtures cre-
ated from the training data. Ideally, we would like to train dictionaries that
explicitly maximize the performance directly on the source separation prob-
lem. In this section we describe a way of better posing this problem in the
context of NMF.

Given a mixed input signal, x, the method described in Section 2 defines
an estimator of the signal components x̂i(W1,W2,x), where we made explicit
their dependence on the dictionaries and the input signal. Ideally we would
like to train the signal dictionaries to minimize the expected estimation risk
of the estimation, for example, in terms of the mean squared error (MSE),

{Wi}i=1,2 = argmin
Wi≥0

∑
i=1,2

Ex1,x2

{
‖xi − x̂i(W1,W2,x1 + x2)‖2

}
.

Assuming that the signals are independent, we can write this expression as,

{Wi}i=1,2 = argmin
Wi≥0

∫ ∫ ∑
i=1,2

‖xi − x̂i(W1,W2,x1 + x2)‖2dP (x1)dP (x2),

where P are the distributions of each source. In practice, these distributions
are latent; a common strategy to overcome this problem is to approximate
the expected risk by computing the empirical risk over a finite set of training
examples sampled from the source distributions. In what follows, we denote
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by Xi the available sets of training signals for each source. Then, the empirical
risk is given by

{Wi}i=1,2 = argmin
Wi≥0

1

|X |
∑
k

∑
i=1,2

‖xki − x̂ki (W1,W2,x
k)‖2, (6)

where the first sum (with the index k) goes over the elements in the prod-
uct set, X = X1 × X2, containing all possible pairs of training signals. We
used xk = xk1 + xk2 to simplify the notation. While the empirical risk mea-
sures the performance of the estimators over the training set, the expected
risk measures the expected performance over new data samples following the
same distribution, that is, the generalization capabilities of the model. We can
expect a good generalization when sufficient representative training data are
available in advance.

When the feature space is given by an invertible transformation, the MSE
in (6) can be computed in the (complex) transformed domain. From Parseval’s
theorem it follows that (6) is equivalent to

{Wi}i=1,2 = argmin
Wi≥0

1

|X |
∑
k

∑
i=1,2

‖F{xki } −Mi(W1,W2,x
k)F{xk}‖2. (7)

Note that the transformed representations F{xki } of the signals are complex.
As it was discussed in Section 2, the standard setting for supervised NMF

estimates the signal dictionaries independently solving (4) for each source.
This approximation is pragmatic rather than principled, since the empirical
loss given in (6) (or (7)) is difficult to compute. While the estimators x̂i (or
the masks Mi) are functions of the dictionaries and the mixture signal, they
cannot be computed in closed form as they depend on the solution of the op-
timization problem (2). Such optimization problems are referred to as bilevel.
In the following section we describe how to solve the bilevel NMF dictionary
learning problem when the divergence used in (2) is a convex β−divergence
with appropiate regularization.

Finally, we note that another dificulty posed by the proposed training
regime (common to any discriminative approach to source separation [18, 19])
is that the estimation of the dictionaries needs to be computed over the prod-
uct set rather than each training set independently. This naturally increases
the computational load of the training stage, however, it might not be a seri-
ous limitation as this can be done in an offline manner without affecting the
computational load at testing time.

4 Optimization

As in any empirical risk minimization task, both formulations (6) and (7),
are written as the average over a training set of a given cost function. We are



Supervised non-negative matrix factorization for audio source separation 7

going to adopt the formulation in the frequency domain, given in (7), since
it has the aditional advantage that can be easily separable on a frame-wise
maner.

For now, we will assume that the regularizer in (2) is frame-wise spearable,
and defer the discussion of the more general case to Section 4.3. In this way,
the cost function of the NMF problem also becomes frame-wise separable. In
order to aleviate the notation, we are going to write the minimization of the
empirical risk over a collection of frames rather than the actual audio signals.
With this notation, the training data are composed by the set Xf containg

pairs of frames of the form (f j1, f
j
2), being f ji ∈ Cm the j−th frame in the

collection, corresponding to one column of the time frequency representation,
F{xki }, of some signal, xki , in the original training set of signals Xi. Now we

denote the mixture as f j = f j1 + f j2. Let us define the loss function

`(f1, f2,W1,W2,h
∗
1,h

∗
2) =

∑
i=1,2

‖f i −Mi(W1,W2, f ,h
∗
1,h

∗
2) f‖2, (8)

where we made explicit the dependency of ` and the masks on the optimal
activations h∗

1 and h∗
2. These optimal activations are themselves functions of

the input mixture and the dictionaries, h∗
i = h∗

i (f ,W1,W2), and are obtained
by solving the frame-wise version of (2) given by,

{h∗
i }i=1,2 = argmin

hi≥0
Dβ(v|

∑
i=1,2

Wihi) +
∑
i=1,2

λψ(hi) , (9)

where, following previous notation, v = Φ(f), and we explicitly wrote a ridge
regression term controled by the non-negative parameter µ. This is included to
guarantee that (9) is strictly convex and has a unique solution. The supervised
NMF problem can be stated as the optimization program given by

{Wi}i=1,2 = argmin
Wi≥0

1

|Xf |
∑
j

`(f j1, f
j
2,W1,W2,h

∗
1,h

∗
2). (10)

This optimization problem is referred to as bilevel, with (10) and (9) being the
high and low level problems, respectively. It is important to notice that while
(10) depends on knowing the ground truth demixing, (9) only depends on the
mixture signal, hence matching exactly the situation encountered at testing.
As NMF itself, this bilevel optimization problem is non-convex. Hence, we aim
at finding a good local minimizer. In what follows, we describe the general
optimization algorithm used for this purpose.

4.1 Stochastic gradient descent

Problem (9) has a unique solution when β ≥ 1 and µ > 0, due to the strict
convexity of the objective. In this situation, a local minimizer of (10) can
be found via (projected) stochastic gradient descent (SGD) [26]. SGD is a
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gradient descent optimization algorithm for minimizing an objective function
expressed as a sum or average of some training data of an almost-everywhere
differentiable function. At each iteration, the gradient of the objective function
is approximated using a randomly picked sub-sample.

At iteration j we randomly draw a sample pair from the training set of
frames Xf and sum them together to obtain a mixture sample in the feature
space, vj = Φ(f j). Then the combined dictionary at iteration j + 1, Wj+1 =
[Wj+1

1 ,Wj+1
2 ], is obtained by

Wj+1 ← P(Wj − ηj∇W`(f j1, f
j
2,W

j
1,W

j
2,h

∗j
1 ,h

∗j
2 ),

where 0 ≤ ηi ≤ η is a decreasing sequence of step-sizes, and P is a pro-
jection operator making the argument matrix be non-negative with column
having the norm smaller or equal than one. Note that the learning requires
the gradient ∇W`, which in turn relies (via the chain rule) on the gradients
of ∇Mi`, ∇h∗

i
Mi, and ∇Wh∗

i (v,W). As in the context of dictionary learning
for sparse coding [22], even though the h∗

i are obtained by solving a non-
smooth optimization problem, they are almost everywhere differentiable, and
one can compute their gradient with respect to W in a closed form. In the
next section, we summarize the derivation of the gradients ∇W`.

Following [22], we use a step size of the form ηi = ηmin(1, i0/i) in all our
experiments, which means that a fixed step size is used during the first i0 it-
erations, after which it decays according to the 1/i annealing strategy. We set
in all our experiments i0 to be half of the total number of iterations. However,
other standard tools commonly used in SGD optimization, such as momen-
tum, could also be used. A common heuristic used in practice for accelerating
the convergence speed of SGD algorithms consists randomly drawing several
samples (a mini batch) at each iteration instead of a single one. A natural
initialization of the speech and noise dictionaries is the individual training via
the solution of (4), as in standard supervised NMF denoising.

4.2 Gradient computation

Let us denote by ρ the objective function in (9),

ρ(W,h) = Dβ(v|Wh) +
∑
i=1,2

λψ(hi) + µ||hi||22,

where, for simplicity, we define the vector h = [h1; h2] (using Matlab-like
notation), containing the column-concatenated activations for each source,
such that the product of h with the row-concatenated matrix W = [W1,W2]
is well defined. Let us denote by Λ the active set of the solution of (9), that
is, the indeces of the non-zero coefficients of h∗. We use the sub-index Λ to
indicate the sub-vector restricted to the active set, e.g., h∗

Λ. The first-order
optimality conditions of (9) require the derivatives with respect to hΛ to be
zero,
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h∗ ≥ 0, ∇hρ(W,h∗) ≥ 0, h∗ ◦ ∇hρ(W,h∗) = 0, (11)

where ◦ denotes element-wise multiplication (Hadamard product). For each
coefficient in the active set of any stationary point of (9), the partial derivative
of ρ with respect to that coefficient needs to be zero. Hence, if we look only
at the active set we have,

[∇hρ(W,h∗)]Λ = WT
ΛΦ + λ∇h

∑
i=1,2

ψ(h∗
i )Λ + µh∗

Λ = 0, (12)

where WΛ is the matrix retaining only the columns of the dictionary associ-
ated with the active set, and Φ = (WΛh∗

Λ)β−2 ◦ (WΛh∗
Λ−v). When ψ is the

`1 norm as in the case of study described in Section 2.1, the derivative of the
regularization term, ∇hψ(hi) = p, is equal to a constant vector that assumes
the value of one on the coefficients of Λ and zero otherwise.

For a given coordinate, say indexed by r, the conditions given in (11)
imply three cases, either only one of [h∗]r or [∇hρ(W,h∗)]r are zero or both
are. As it was shown in the sparse coding context [22], a key observation is
that, almost surely, the set of active constraints in the solution of (9) remains
constant on a local neighborhood of v and W. That is, for small changes in
the dictionary, the active set Λ remains constant. The only points in which
h∗ is non-diferentiable are points where the active set changes.

Hence, we know that only the gradient ∇WΛ
h∗ will be non-zero, that is,

changes in the columns of W that do not affect the coefficients in Λ do not
affect the cost function. Since we cannot write h∗ in closed form as a function
of W, we need to perform implicit differentiation. Taking the derivative in
(12) with respect to WΛ we obtain,

dWT
Λφ + WT

ΛΦ(dWΛh∗
Λ + WΛdh

∗
Λ) + µdh∗

Λ = 0, (13)

where we used d to denote the differentials, and

Φ = diag
(
(WΛh∗

Λ)β−2 + (β − 2)(WΛh∗
Λ)β−3 ◦(WΛh∗

Λ − v)
)
. (14)

We can obtain an expression for dh∗
Λ from (13) as,

dh∗
Λ = Q (dWT

Λφ + WT
ΛΦdWΛh∗

Λ), (15)

where Q = (WT
ΛΦWΛ+µI)−1. Note that the size of the matrix being inverted

is given by the sparsity level of the representation. Now we can proceed to
compute the gradient of the loss function in with respect to the dictionary.
Invoking the chain rule, we have

∇W` = trace(∇h∗`Tdh∗) +∇W
ˆ̀, (16)

where ∇W
ˆ̀ represents the gradient of ` with respect to W assuming h∗ fixed.

To compute the gradient ∇h∗` one has to also use the chain rule considering
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the definition of the masks given in (3). Combining (15) and (16) and using
the properties of the trace function, it follows that

∇W` = φξT + ΦWΛξh∗
Λ
T

+∇W
ˆ̀, (17)

where ξ = Q∇h∗`.

4.3 Implementation details

There are a few important implementation that need to be considered in
practice. First, the β−divergences are not differentiable at zero when βleq2.
A common way to solve this problem is to consider a translated version of the
divergence insted, which is obtained by adding a small constant in the second
argument,

D̃β(a|b) = Dβ(a|b+ δ)

where δ > 0 is a small constant. In our experiments we used δ = 0.001. It is
worth mentioning that this is common practice even in every setting of NMF
in order to avoid instabilities produced by extremely large values.

During the iterations of the SGD algorithm, the estimation of the gradi-
ent of the cost function on the current sample (or mini-batch) requires the
computation of the optimal activations h∗ by solving (9). The precision with
which this activations are computed is very important for obtaning mean-
ingful gradients. In that sense, it is preferable to use algorithms with fast
converge rates, for example the least angle regression (LARS) in the case of
β = 2 [27], or the alternating method of multipliers (ADMM) [28] in the case
of β ≤ 2. While running multiplicative algorithms for a small number of iter-
ations produces sactifactory results when running NMF for separation, their
slow convergence rate makes them extremely unefficient in this case, requiring
a very large number of iterations for computing meaningful gradients.

5 Experimental results

Data sets. We evaluated the separation performance of the proposed meth-
ods on a subset of the GRID dataset [29]. Three randomly chosen sets of
distinct clips each were used for training (500 clips), validation (10 clips),
and testing (50 clips). The clips were resampled to 8 KHz. For the noise sig-
nals we used the AURORA corpus [30], which contains six categories of noise
recorded from different real environments (street, restaurant, car, exhibition,
train, and airport). Three sets of distinct clips each were used for training (15
clips), validation (3 clips), and testing (15 clips).

Evaluation measures. As the evaluation criteria, we used the source-
to-distortion ratio (SDR), source-to-interference ratio (SIR), and source-to-
artifact ratio (SAR) from the BSS-EVAL metrics [31]. We also computed the



Supervised non-negative matrix factorization for audio source separation 11

1000 2000 2000

1

1.1

1.2

1.3
x 105

SGD terations

C
o
st

 f
u

n
ct

io
n

 S
D

R
 [

d
B

]

1000
SGD terations

5.0

6.0

4.4

5.6

5.8

5.4

5.2

4.6

4.8

Fig. 1. Evolution of the average high level cost function (left) and the average SDR
(in dB) on the validation set (mixed at SNR = 0dB) with the SGD iterations for
task-specific NMF with β = 1.

standard signal-to-noise ratio (SNR). When dealing with several frames, we
computed a global score (GSDR, GSIR, GSAR and GSNR) by averaging the
metrics over all test clips from the same speaker and noise weighted by the
clip duration.

The goal of this experiment was to apply the proposed approach in the con-
text of audio denoising. Here the noise is considered as a source and modeled
explicitly. We used dictionaries of size 60 and 10 atoms for representing the
speech and the noise, respectively. These values were obtained using cross-
validation. We used different values of the parameter λ for the signal and
the noise, namely λs = 0.1 for speech and λn = 0 for the noise (the latter
means that no sparsity was promoted in the representation of the noise) and
µ = 0.001. As an example, we used β = 1 and β = 0, and α = 0 in the high
level cost (10). For the SGD algorithm we used η = 0.1 and minibatch of size
50. These were obtained by trying several values of during a small number of
iterations, keeping those producing the lowest error on a small validation set.
All training signals where mixed at 5 dB.

Results. Figure 1 shows the evolution of the high level cost (10) and the
SDR on the validation set with the SGD iterations. The algorithm converges
to a dictionary that achieves about 2 dB better SDR on the validation set, this
behaivior is also verified on the test set. Tables 1 and 2 show results for the pro-
posed approach on the test setting. We compare the performance of standard
supervised sparse-NMF (referred simply as NMF) against the performance
of the same model trained in the proposed task-specific manner (referred as
TS-NMF) on denoising two with different SNR levels. Observe that the task-
specific supervision leads to improvements in performance, maintaining (at
5dB SNR) the improvements observed on the validation set. Interestingly, the
method also works when using β = 0 (Itakura-Saito), even if the develop-
ments in Section 4 are technically not valid in this case, since the divergence
is not convex. While the non-convexity of the problem implies that there
might be multiple minimums, we initialize the pursuit algorithm always with
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Table 1. Average performance (in dB) for NMF and proposed supervised NMF
methods measured in terms of SDR, SIR, SAR and SNR. Speech and noise were
mixed at 5dB of SNR. The standard deviation of each result is shown in brackets.

SDR SIR SAR SNR

NMF β = 1 7.5 [1.5] 13.7 [0.9] 8.9 [1.7] 8.2 [1.3]

TS-NMF β = 1 9.5 [1.4] 15.2 [0.7] 11.0 [1.7] 10.0 [1.2]
TS-NMF β = 0 8.6 [1.3] 14.1 [1.2] 10.3 [1.5] 9.1 [1.1]

Table 2. See description of Table 1. In this case, speech and noise were mixed at
0dB of SNR.

SDR SIR SAR SNR

NMF β = 1 4.5 [1.1] 9.3 [0.9] 6.8 [1.2] 5.8 [0.8]

TS-NMF β = 1 6.3 [1.0] 11.9 [0.7] 8.0 [1.1] 7.2 [0.8]
TS-NMF β = 0 5.2 [1.2] 12.0 [1.7] 6.6 [1.2] 6.3 [0.9]

the exact same initial condition (all zeros).Intuitively, one can expect that
a small perturbation on the dictionary will the local minims of the solution
change slightly and consequently the algorithm will still converge to the same
(perturbed) minimum.

6 Discussion

In this chapter we reviewed the use of NMF for solving source separationg
problems. We discussed different ways of solving the supervised training of
the NMF model and proposed an algorithm for the task-supervised training
of NMF models following the ideas introduced in [22] in the context of sparse
coding. Unlike standard supervised NMF, the proposed approach matches the
optimization objective used at the train and testing stages. In this way, the
dictionaries can be trained to optimize the performance of the specific task.
We cast this problem as bilevel optimization that can be efficiently solved
via stochastic gradient descent. The proposed approach allows non-Euclidean
data terms such as β-divergences. A simple case study of sparse-NMF with
task specific supervision demonstrates promising results.
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2. E. Hänsler and G. Schmidt, Speech and Audio Processing in Adverse Environ-

ments, Springer, 2008.
3. D.D. Lee and H.S. Seung, “Learning parts of objects by non-negative matrix

factorization,” Nature, vol. 401, no. 6755, pp. 788–791, 1999.
4. P. Smaragdis, B. Raj, and M. Shashanka, “A probabilistic latent variable model

for acoustic modeling,” NIPS, vol. 148, 2006.
5. P. Smaragdis, C. Fevotte, G Mysore, N. Mohammadiha, and M. Hoffman,

“Static and dynamic source separation using nonnegative factorizations: A uni-
fied view,” Signal Processing Magazine, IEEE, vol. 31, no. 3, pp. 66–75, 2014.

6. Paris Smaragdis, Bhiksha Raj, and Madhusudana Shashanka, “Supervised and
semi-supervised separation of sounds from single-channel mixtures,” in Indepen-
dent Component Analysis and Signal Separation, pp. 414–421. Springer, 2007.

7. N. Mohammadiha, P. Smaragdis, and A. Leijon, “Supervised and unsupervised
speech enhancement using nonnegative matrix factorization,” Audio, Speech,
and Language Processing, IEEE Transactions on, vol. 21, no. 10, pp. 2140–2151,
2013.

8. M. N. Schmidt and R. K. Olsson, “Single-channel speech separation using sparse
non-negative matrix factorization,” in INTERSPEECH, Sep 2006.

9. M. V. S. Shashanka, B. Raj, and P. Smaragdis, “Sparse Overcomplete Decom-
position for Single Channel Speaker Separation,” in ICASSP, 2007.

10. C. Joder, F. Weninger, F. Eyben, D. Virette, and B. Schuller, “Real-time speech
separation by semi-supervised nonnegative matrix factorization,” in LVA/ICA,
2012, pp. 322–329.

11. Z. Duan, G. J. Mysore, and P. Smaragdis, “Online plca for real-time semi-
supervised source separation,” in LVA/ICA, 2012, pp. 34–41.

12. M. N. Schmidt, J. Larsen, and F.-T. Hsiao, “Wind noise reduction using non-
negative sparse coding,” in MLSP, Aug 2007, pp. 431–436.

13. J. F. Gemmeke, T. Virtanen, and A. Hurmalainen, “Exemplar-based sparse
representations for noise robust automatic speech recognition,” IEEE Trans.
on Audio, Speech, and Lang. Proc., vol. 19, no. 7, pp. 2067–2080, 2011.
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