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Expressive graph comparison is hard

Four key properধes for expressive graph similarity:

Permutaধon invariance: reordering nodes does not change the similarity

Scale-adapধvity: structure is captured on both local and global scales

Size-invariance: structure of the graph may not depend on its size

Scalability: able to deal with both many and big graphs

Scalability is possible with a suitable representaধon (descriptor)! to analyze

(e.g., classificaধon, clustering) large graph collecধons.

(a) Protein network. |V | = 190, |E| = 744, d = 9. (b) Enzyme. |V | = 125, |E| = 141, d = 32.

Figure 1: How can we compare these two graphs?

Graph structure at different scales

In different applicaধons, graphs are analyzed at different scales:

Local interacধons, e. g. molecular bonds in computaধonal biology

Medium-scale structure, e. g. core-periphery in economic networks

Global connecধvity, e. g. community structure in social networks

We argue that scale is a conধnuum, as in Kronecker graphs.

(a) Small t (b) Medium t (c) Large t

Figure 2: Heat distribuধon (diagonal of Ht) at different scales on the Karate club graph.

Code & data

code github.com/xgfs/netlsd
usage pip install netlsd
contact anton.tsitsulin@hpi.de

Rushing to dinner? Read this!

NetLSD is a graph descriptor that allows to compare graphs:

Fast: in O(1), with O(m) precomputaধon;
On mulধple scales: capturing both local and global informaধon;

Of different sizes: it can (opধonally) disregard the size of the graphs

We take a geometric approach to graphs. We start with the opধmal transport

of the heat kernel and adapt a powerful lower bound first introduced for

manifolds.

We propose novel evaluaধon tasks, and show that our approach achieves

state-of-the-art for classificaধon.

Heat kernel to the rescue

Heat kernel can be defined in terms of the Laplacian matrix L=I−D−1/2AD−1/2

that has eigenvalue decomposiধon L = ΦΛΦ>. Then, the heat equaধon is

∂ut

∂t
= −Lut,

Soluধon to the heat equaধon is given bythe heat kernel matrix:

Ht = e−tL = Φe−tΛΦ> =
n∑

j=1
e−tλjφj φ>

j ,

Heat kernel matrix involves pairs of nodes, so we use its trace:

ht = tr(Ht) =
∑

j

e−tλj,

where ধmescale t encodes an explicit noধon of scale. We sample t logarith-
mically, and compare ht with L2 distance. ht is a family of low-pass filters, we

can also use a band-pass filter such as wave kernel trace:

wt = tr(Wt) =
∑

j

e−itλj

Million-node graphs? Not an issue anymore

Compuধng ht requires the eigenvalues of a graph. Full eigendecomposiধon

takes O(n3): slow for large graphs. We can employ any spectrum esধmaধon

method, but we propose two speedup techniques:

Taylor expansion for the matrix exponenধal, as first two terms can be

computed in O(m), third can be computed with counধng triangles
Spectrum interpolaধon for the middle part of the spectrum, as we can

compute lower and upper parts quickly. Our interpolaধon has geometric

jusধficaধon, theWeyl`s law.

We classify large-scale graph collecধons with up to a million nodes. NetLSD

is the first method that allows expressive comparison of such graphs.

Theory: computational geometry

Definiধon. Mémoli [1] suggests a spectral definiধon of Gromov-Wasserstein

distance between Riemannian manifolds. Matching a pair of points (x, x′) on
manifold M to a pair of points (y, y′) on manifold N at scale t costs

Γ(x, y, x′, y′, t) = |HM
t (x, x′) − HN

t (y, y′)|.

The distance between M and N is defined as the infimal measure coupling

d(M, N ) = inf
µ

sup
t>0

e−2(t+t−1) ‖Γ‖L2(µ×µ),

where the infimum is sought over all measures on M × N marginalizing to

the standard measures on M and N .

Theorem. [1] Spectral Gromov-Wasserstein distance is lower bounded by

d(M, N ) ≥ sup
t>0

e−2(t+t−1) |hM
t − hN

t |.

We adopt this result mutaࣅs mutandis to graphs, subsধtuধng the Laplace-

Beltrami operator of the manifold with the normalized graph Laplacian.

Experiments

NetLSD is both versaধle and expressive. Table 1 shows that only NetLSD

captures nuances of graph community structure, while Table 2 shows that it

captures natural properধes of real graphs.

n ∼ P(λ)
Method 64 128 256 512 1024

h(G)/h(K̄) 54.53 62.27 70.83 76.45 78.40

w(G)/w(K) 55.51 63.85 72.12 77.59 79.39

FGSD 55.44 54.99 53.86 52.74 50.92

NetSimile 59.55 56.57 59.41 66.23 60.58

Table 1: Accuracy in detecধng graphs with communiধes.

Method MUTAG PROTEINS ENZYMES COLLAB IMDB-M

h(G) 86.47 64.89 31.99 68.00 40.51

w(G) 83.35 66.80 40.41 75.77 42.66

FGSD 84.90 65.30 41.58 67.37 39.71

NetSimile 84.09 62.45 33.23 73.96 41.14

Table 2: Accuracy of a 1-NN classifier.
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