NetLSD: Hearing the Shape of a Graph

Expressive graph comparison is hard

Four key properties for expressive graph similarity:

- **Permutation invariance**: reordering nodes does not change the similarity
- Scale-adaptivity: structure is captured on **both** local and global scales
- Size-invariance: structure of the graph may not depend on its size
- Scalability: able to deal with both many and big graphs

Scalability is possible with a suitable **representation (descriptor)!** to **analyze** (e.g., classification, clustering) large graph collections.

Figure 1: How can we compare these two graphs?

Graph structure at different scales

In different applications, graphs are analyzed at **different scales**:

- Local interactions, e. g. molecular bonds in computational biology
- Medium-scale structure, e. g. core-periphery in economic networks
- Global connectivity, e. g. community structure in social networks

We argue that **scale is a continuum**, as in Kronecker graphs.

Figure 2: Heat distribution (diagonal of H_t) at different scales on the Karate club graph.

Code & data

code usage contact

github.com/xgfs/netlsd pip install netlsd anton.tsitsulin@hpi.de

Rushing to dinner? Read this!

- **NetLSD** is a graph descriptor that allows to compare graphs:
- **Fast:** in $\mathcal{O}(1)$, with $\mathcal{O}(m)$ precomputation;

• On multiple scales: capturing both local and global information; • **Of different sizes:** it can (optionally) disregard the size of the graphs We take a **geometric approach** to graphs. We start with the optimal transport of the heat kernel and adapt a powerful lower bound first introduced for manifolds.

We propose novel evaluation tasks, and show that our approach achieves state-of-the-art for classification.

Heat kernel to the rescue

Heat kernel can be defined in terms of the Laplacian matrix $\mathcal{L} = I - D^{-1/2} A D^{-1/2}$ that has eigenvalue decomposition $\mathcal{L} = \Phi \Lambda \Phi^{\top}$. Then, the heat equation is

$$\frac{\partial u_t}{\partial t} = -\mathcal{L}u_t,$$

Solution to the heat equation is given by the **heat kernel** matrix:

$$H_t = e^{-t\mathcal{L}} = \Phi e^{-t\Lambda} \Phi^\top = \sum_{j=1}^n e^{-t\lambda_j} \phi_j \ \phi_j^\top,$$

Heat kernel matrix involves pairs of nodes, so we use its **trace**:

$$h_t = \operatorname{tr}(H_t) = \sum_j e^{-t}$$

where timescale t encodes an **explicit notion of scale**. We sample t logarithmically, and compare h_t with L_2 distance. h_t is a family of low-pass filters, we can also use a band-pass filter such as wave kernel trace:

$$w_t = \operatorname{tr}(W_t) = \sum_j e^{-i}$$

Million-node graphs? Not an issue anymore

Computing h_t requires the eigenvalues of a graph. Full eigendecomposition takes $\mathcal{O}(n^3)$: slow for large graphs. We can employ any spectrum estimation method, but we propose **two speedup techniques**:

- **Taylor expansion** for the matrix exponential, as first two terms can be computed in $\mathcal{O}(m)$, third can be computed with counting triangles
- **Spectrum interpolation** for the middle part of the spectrum, as we can compute lower and upper parts quickly. Our interpolation has geometric justification, the Weyl's law.

We classify large-scale graph collections with up to a **million** nodes. NetLSD is the *first* method that allows expressive comparison of such graphs.

Anton Tsitsulin Alex Bronstein³

¹ Hasso Plattner Institute

Theory: computational geometry

Definition. Mémoli [1] suggests a spectral definition of Gromov-Wasserstein distance between Riemannian manifolds. Matching a pair of points (x, x') on manifold \mathcal{M} to a pair of points (y, y') on manifold \mathcal{N} at scale t costs

 $\Gamma(x, y, x', y', t) = |H_t^{\mathcal{M}}(x, x') - H_t^{\mathcal{N}}(y, y')|.$

The distance between \mathcal{M} and \mathcal{N} is defined as the infimal measure coupling

the standard measures on \mathcal{M} and \mathcal{N} .

Theorem. [1] Spectral Gromov-Wasserstein distance is lower bounded by

 $d(\mathcal{M}, \mathcal{N}) \ge \sup_{t > 0} e^{-2(t+t^{-1})} |h_t^{\mathcal{M}} - h_t^{\mathcal{N}}|.$

We adopt this result *mutatis mutandis* to graphs, substituting the Laplace-Beltrami operator of the manifold with the normalized graph Laplacian.

NetLSD is both versatile and expressive. Table 1 shows that **only** NetLSD captures nuances of graph community structure, while Table 2 shows that it captures **natural properties** of real graphs.

	$n \sim \mathcal{P}(\lambda)$					
Method	64	128	256	512	1024	
$h(G)/h(ar{K}) \ w(G)/w(K)$	54.53	62.27	70.83	76.45	78.40	
	55.51	63.85	72.12	77.59	79.39	
FGSD	55.44	54.99	53.86	52.74	50.92	
NetSimile	59.55	56.57	59.41	66.23	60.58	

Table 1: Accuracy in detecting graphs with communities.

Method	MUTAG	PROTEINS	enzymes	COLLAB	IMDB-M
$egin{array}{l} h(G) \ w(G) \end{array}$	86.47	64.89	31.99	68.00	40.51
	83.35	66.80	40.41	75.77	42.66
FGSD	84.90	65.30	41.58	67.37	39.71
NetSimile	84.09	62.45	33.23	73.96	41.14

 Table 2: Accuracy of a 1-NN classifier.

[1] Facundo Mémoli.

Applied and Computational Harmonic Analysis, 30(3):363--401, 2011.

 $-it\lambda_{j}$

Panagiotis Karras² Davide Mottin ¹ Emmanuel Müller¹

> ² Aarhus University ³ Technion

 $d(\mathcal{M}, \mathcal{N}) = \inf_{\mu} \sup_{t \ge 0} e^{-2(t+t)}$ $\||\Gamma\|\|_{L^2(\mu imes \mu)},$

where the infimum is sought over all measures on $\mathcal{M} \times \mathcal{N}$ marginalizing to

Experiments

References