Expressive graph comparison is hard

NetLSD: Hearing the Shape of a Graph

Four key properties for expressive graph similarity:

= Permutation invariance: reordering nodes does not change the similarity
= Scale-adaptivity: structure is captured on both local and global scales

= Size-invariance: structure of the graph may not depend on its size

= Scalability: able to deal with both many and big graphs

Scalability is possible with a suitable representation (descriptor)! to analyze
(e.g., classification, clustering) large graph collections.
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(a) Protein network. |V| =190, |E| = 744,d = 9. (b) Enzyme. |V| =125, |E| = 141,d = 32.

Figure 1: How can we compare these two graphs?

Graph structure at different scales

In different applications, graphs are analyzed at different scales:

= Local interactions, e. g. molecular bonds in computational biology
= Medium-scale structure, e. g. core-periphery in economic networks
= Global connectivity, e. g. community structure in social networks

We argue that scale is a continuum, as in Kronecker graphs.

Figure 2: Heat distribution (diagonal of H,;) at different scales on the Karate club graph.

Code & data

code github.com/xgfs/netlsd
usage pip install netlsd
contact anton.tsitsulin@hpi.de

Rushing to dinner? Read this!

NetLSD is a graph descriptor that allows to compare graphs:

= Fast: in O(1), with O(m) precomputation;
= On multiple scales: capturing both local and global information:
= Of different sizes: it can (optionally) disregard the size of the graphs

We take a geometric approach to graphs. VWe start with the optimal transport
of the heat kernel and adapt a powerful lower bound first introduced for
manifolds.

We propose novel evaluation tasks, and show that our approach achieves
state-of-the-art for classification.

Heat kernel to the rescue

Heat kernel can be defined in terms of the Laplacian matrix L=I—D 7?AD™’
that has eigenvalue decomposition £ = ®AP'. Then, the heat equation is

ou
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Solution to the heat equation is given bythe heat kernel matrix:
Ht — e_tﬁ — CDe_tACPT — 231 G_t)\j¢j ¢;|_,
7=
Heat kernel matrix involves pairs of nodes, so we use its trace:
ht = tl"(Ht) = Z €_t>\j,
J

where timescale ¢ encodes an explicit notion of scale. \WWe sample ¢ logarith-
mically, and compare h; with Ly distance. h; is a family of low-pass filters, we
can also use a band-pass filter such as wave kernel trace:

Wy — tl"(Wt) — Z G_it)\j
J

Million-node graphs? Not an issue anymore

Computing h; requires the eigenvalues of a graph. Full eigendecomposition
takes O(n?): slow for large graphs. We can employ any spectrum estimation
method, but we propose two speedup techniques:

= Taylor expansion for the matrix exponential, as first two terms can be
computed in O(m), third can be computed with counting triangles

= Spectrum interpolation for the middle part of the spectrum, as we can
compute lower and upper parts quickly. Our interpolation has geometric
justification, the Weyl s law.

We classify large-scale graph collections with up to a million nodes. NetLSD
Is the first method that allows expressive comparison of such graphs.
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Theory: computational geometry

Definition. Mémoli [1] suggests a spectral definition of Gromov-VWasserstein
distance between Riemannian manifolds. Matching a pair of points (x, ") on
manifold M to a pair of points (y,y') on manifold N at scale t costs

F(xayaxlaylvt) — |Hi/\/l(33,ﬂf/) o Hi/\/(yvy/)‘

The distance between M and N is defined as the infimal measure coupling

d(M,N) = inf sup e~ 2+t 1] 220 )

K >0

where the infimum is sought over all measures on M x N marginalizing to
the standard measures on M and N

Theorem. [ 1] Spectral Gromov-Wasserstein distance is lower bounded by

d(M,N) > supe 2 M — BV,

t>0

We adopt this result mutatis mutandis to graphs, substituting the Laplace-
Beltrami operator of the manifold with the normalized graph Laplacian.

Experiments

NetLSD is both versatile and expressive. Table 1 shows that only NetLSD
captures nuances of graph community structure, while Table 2 shows that it
captures natural properties of real graphs.

n ~ P\
Method 64 128 256 512 1024
h(G)/h(K) 54.53 62.27 70.83 76.45 78.40
w(G)/w(K) 5551 63.85 72.12 77.59 79.39
FGSD 55.44 54.99 53.86 52.74 50.92
NetSimile 59.55 56.57 59.41 66.23 60.58

Table 1: Accuracy in detecting graphs with communities.

Method MUTAG  PROTEINS ENZYMES COLLAB  IMDB-M
h(G) 86.47 64.89 31.99 68.00 40.51
w(G) 33.35 66.80 40.41 75.77 42.66
FGSD  84.90 65.30 41.58 67.37 39.71
NetSimile 84.09 62.45 33.23 73.96 41.14

Table 2: Accuracy of a 1-NN classifier.
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