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3-minutes pitch

" Few-shot classification problem: presented with a few samples of K h
novel categories, produce a classifier for the K categories

Generative approach: synthesize new samples from the few available
. examples to improve the classifier training

/

Training data — 1 sample per category

Query image

chimpanzee
dog

human
griffin
crocodile

Data synthesis —
thousands of samples

Classifier training
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" Our main idea

1. Learn to recover the relative transformation (the delta) between pairs of samples from the
same category
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A variant of an auto-encoder operating in feature space

* Network learns to encode the A between reference and target
Images

* This A is used to recover the target image as a (non-linear)
combination of the reference and A

by combining them with the new category reference examples

injmagenta (Golden retriever)
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Visualization of two-way one-shot classification trained on synthesized examples. Correctly classified images are framed

and

. The only two images seen at training time and used for

sample synthesis are framed in blue. Note the non-trivial relative arrangement of examples belonging to different classes
handled successfully by our approach. Plotted using t-SNE applied to image features.
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M ours M previous state-of-the-art

miniImageNet 58.5/76.9 59.9/ 69.7
Sample from a distribution of such transformations within the set of known categories CIFAR-100  63.4/78.4  66.7/79.8
Learn to re-apply the transformations to examples of novel categories to produce additional Caltech-256  63.8/80.5  73.2/83.6
samples thereof / CcuB 69.6/84.1  69.8/82.6
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Generated samples for 12-way one-shot. d
The red crosses mark the original 12 '
examples (one per class). The generated . ‘
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points are colored according to their class.

Synthesized samples visualization. The single example
image is framed in blue. All other images represent the
synthesized samples visualized using their nearest "real
image" neighbors in the feature space. The
two-dimensional embedding was produced by t-SNE.
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example Method AWA?2 APY SUN CUB g s
- At test time encoded As are sampled from random training Nearest neighbor (baseline) | 65.9/84.2 57.9/76.4 72.7/86.7 58.7/80.2 50 /
image pairs belonging to the same category Prototypical Networks 808/953  69.8/90.1 T47/948 T1.9/924 4l
- Sampled As are used to create samples for the new categories A-encoder 90.5/96.4 82.5/93.4 82.0/93.0 82.2/92.6 e e A

Number of generated samples



