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NON-UNIFORM FAST FOURIER TRANSFORM 

ABSTRACT 

We show an iterative reconstruction framework for 
diffraction ultrasound tomography. The use of broadband 
illumination allows significantly reduce the number of 
projections compared to straight ray tomography. The 
proposed algorithm makes use of fast forward non- 
uniform Fourier transform (NUFFT) for iterative Fourier 
inversion. Incorporation of total variation regularization 
allows reduce noise and Gib& phenomena whilst 
preserving the edges. 

1. INTRODUCTION 

Ultrasound tomography with diffracting sources is an 
important type of acoustic imaging. Since the used wave- 
lengths are comparable to the object feature dimensions, 
the straight ray tomography theory is no more applicable. 
Particularly, the Fourier Slice Theorem should be 
replaced by the Fourier DiRraction Theorem [Ill. 

Image reconstruction in difiaction tomography can be 
considered as a problem of signal reconstruction from 
non-uniform freqnency samples. Reconstruction methods 
used before addressed the problem as straightforward 
approximation of the inverse non-uniform Fourier 
transform (NUFT) and involved frequency interpolation 
[ l l l ,  which is liable to introduce significant inaccuracies. 
More accurate and computationally efficient methods 
[2,6,7] were proposed for forward and inverse ID NUFT. 
Fast forward NUFT algorithms can be generalized to 
higher dimensions, whereas the generalization of the 
inverse ones is not trivial. For this reason, we limit our 
work to the use of the forward NUFFT. 

Recently, fast and accurate approximation of the 
forward NUF€T was introduced by Fessler and Sutton 
[SI. Inverse NUFFr can be achieved iteratively in this 
framework [9]. We adopt this approach for iterative 
reconstruction in diffraction tomography. We combine it 
with total variation regularization [4,10] in order to 
suppress noise preserving the sharpness of edges. 

Simulation studies with the Shepp-Logan phantom 
show promising results. 

2. PRINCIPLES OF DIFFRACTION 
TOMOGRAPHY 

In diffraction ultrasound tomography, the object is 
illuminated with a plane acoustic wave. The forward 
scattered field is measured on a line of detectors, as 
shown in Figure 1. Data samples collected along this line 
are usually referred to as projection. As in straight ray 
tomography, changing the orientation of the incident 
plane waves, it is possible to acquire projections at 
different angles. Unlike conventional tomography, 
incident wave frequency can also be changed. 
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Fig. 1. Acquisition of a single projktion in ultrasound 
diffraction tomography [I I]. 

A fundamental tool of diffraction tomography is the 
Fourier Difiaction Theorem, which relates the Fourier 
transform of the measured scattered field projection with 
the Fourier transform of the object: 

The Fourier DijJraction Theorem 
Given a projection P, ( r )  of the forward scattered field 

obtained by illuminating an object f ( x )  with a plane 
wave as shown in Figure 1, the following equation holds: 

5% ( r ) ) ( 4  = G { f ( x ,  Y)l(Kx (44 (4) 
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where 

Kx(o)=wcos6-  K i - d  - K O  sine, v- 1 
K,(o)=wsin6+ 6- K z - d  -KO 1 cos6, 

2x 
K --, 

O -  a 
1 is the wavelength and F and Fm denote the one- and 
two-dimensional Fourier transforms, respectively. 

In other words, the Fourier transform of the projection 
gives the values of the 2D Fourier transform of the object 
along a semi-circular arc in the spatial frequency domain, 
as depicted in Figure 2. For proof see, for example, Kak 
and Slaney [I l l .  

One can note that the arc radius becomes large as the 
wavelength shortens and the Dieaction Theorem 
approaches the Slice Theorem. 

Since wave phenomena obey the superposition 
principle, illuminating the object with a wave consisting 
of a set of frequencies (referred to as broadband 
illumination), rather than a monochromatic wave, will 
produce samples along a set of semi-circular arcs with 
different radii. Hence, a single projection potentially 
contains much more information a b u t  the object than a 
single projection in straight ray tomography. By taking 
advantage of this fact, one can achieve sufficient image 
quality with few projections. 

I '  

Figure 2. Illustration of the Fourier Diffraction Theorem. 

3. THE NON-UNIFORM FOURIER TRANSFORM 

The heart of iterative image reconstruction is the forward 
non-uniform fast Fourier transform (NUFFT). To define 
the "ET problem, we first consider a one-dimensional 
case. k t  5 =(& ,...,lN) : 5, E [-x4 be avectorofnon- 

uniformly distributed frequencies and 
X = ( X . ~  ,..., x ~ ~ . ~ )  :x,EC beavectorofsamplesofa 
signal. The non-uniform Fourier transform can be 
considered as an operator 'E : CN + Cx , defined by the 
formula 

N/Z-l 

X, =('Ex), = x,exp(-ik&) (1) 
" = - N I 1  

In matrix notation 

where Y E  CrxN ( K  2 N )  is a full column rank matrix 
containing K discrete exponent functions in its rows 

v=(v, ;... ;vx) ; vk(n)=exp(-%) 
Fast approximation of the NUFI  operator can be 
achieved by projecting the signal x on some 
oversampled uniform Fourier basis 0 E VNXN using 
standard m, with consequent efficient interpolation: 

where U, denotes the interpolation operator, which 
makes use of p neighbring uniform samples for 
approximation of each non-uniform sample. The overall 
complexityof such an algorithm is O ( q N l o g q N + p K ) .  

Fessler [8,9] proposed obtaining the interpolation 
coefficients from the solution of the following min-max 
problem: 

X = Y x  (2) 

(3) 

x = UpQx (4) 

min "L r:lrl,0 max ~ ~ u ~ ~ ~ x - ~ ~ x \ ~  ( 5 )  

where uk is the non-zero part of the k-th row of the 

interpolation matrix U, and 0; is a part of the 
overcomplete DFT basis 0 ,  containing p nearest 
neighbors of vk . The problem has an analytic solution: 

corresponding to the cwfficients of the best 
approximation of vk in 0;. In practice, the 
interpolation coefficients can be pre-computed. 

4. ITERATIVE SOLUTION OF THE INVERSE 
PROBLEM 

4.1. Formulation of the optimization problem 

Straightforward solution of the inverse problem (2) is a 
computationally extensive operation. It is given by the 
Moore-Penrose pseudoinverse: 

x = 'Y'X = ('Y"Yy Y"X (7) 

Alternatively, equation (2) can be reformulated as an 
optimization problem: 
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min pi - xg (8) 

*II=-xII:+w (9) 

It is possible to add penalty on some kind of signal 
irregularity to the object function: 

where 1 is a parameter controlling the influence of the 
penalty. This problem can be solved iteratively using 
various optimization techniques, like Conjugate 
Gradients, Truncated Newton, etc. (see, for example [I]). 
They require efficient computation of the objective 
function and its gradient, which use in tam fast forward 
operator 7 ,  and its adjoint 7’. The gradient of the cost 
function in (9) is given by 

vf(~)=zr~(r~-x)+v~(~) (IO) 

4.2. Total variation regularization 

Empirical observations show that the majority of images 
that occur in nature, and particularly in medical imaging 
applications, belong to the class of functions of bounded 
total variation (defined as the integral of the gradient 12- 

norm) [12]. 
The penalty term for total variation can be used in 

problem (9). For discrete image, the total variation is 
given by 

where x is the estimated discrete image being found 
during the iterative process and x, , xy are its discrete 
directional derivatives. Since this function is not smooth, 
which can be an obstacle for smooth optimization 
techniques, adding a positive smoothing parameter I], we 
finally get 

Total variation regularization removes small oscillations 
(resulting from noise and Gibbs phenomena), without 
significantly affecting the edges. 

For analytic expression of the gradient and the Hessian 
of the cost function, see 131. 

5. SIMULATIONS 

In order to avoid forward-projection errors, we used an 
analytic Shepp-Logan phantom. This phantom is a 
superposition of ellipses representing features of the 
human brain. The advantage of such phantom is that its 
Fourier transform has a simple analytical expression. 

Eight simulated broadband projections (each 
containing 10 frequencies) are shown in Figure 3. For 

comparison, in similar conditions, a conventional filtered 
backprojection (FBP) would require about I00 straight 
ray projections for good reconstruction results. 

4 ....... ....... ~ .... ’ . .  ~ . . . .  ~ 
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Figure 3. k-space sampling (spatial frequency is 
normalized to K,, ). 

Figure 4. a. original band-unlimited phantom, b. iterative 
least-squares reconstruction, c. and d. iterative 
reconstruction with total variation penalty (5 = IO and 
100, respectively). 

Fessler’s NUFFT algorithm [8,9] was used as the 
forward operator. Images of size 64x64 were iteratively 
reconstructed using Conjugate Gradients (Figure 4). 
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Figure 5 shows images reconstructed from data 
contaminated by additive Gaussian noise with different 
variance. One can observe that the total variation penalty 
significantly improves the image quality. 

Figure 5 .  Iterative reconstruction in presence of noise (a, 
b S N R  = 20&, c, d S N R  = 1OdB) with total variation 
penalty h = 100 (b, d) and without penalty (a, c), 

6. CONCLUSIONS 

In this work we showed an iterative reconstruction 
algorithm for ultrasound tomography with diffracting 
sources. The presented method is capable of taking 
advantage of broadband illumination and requires fewer 
projections for plausible image reconstruction. 

Total variation regularization removes the Gihbs 
phenomena and suppresses the noise, thus allowing 
obtain sufficient reconstruction quality from noisy data 
when most methods fail to produce plausible results. 

Possible developments of the iterative approach can be 
generalization of the regularizer for other classes of 
signals and incorporation of different NUFFI 
implementations. We intend studying novel non-smooth 
optimization techniques for efficient minimization of 
functions with non-smooth penalty terms. 
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