
2004 International Conference on Image Processing (ICIP) 

OPTIMAL SPARSE REPRESENTATIONS FOR BLIND SOURCE SEPARATION AND BLIND 
DECONVOLUTION: A LEARNING APPROACH 

Michael M.Bronsrein 

Department of Computer Science 
Technion - Israel Institute of Technology 

Haifa 32000, Israel 

ABSTRACT 

We present a generic approach, which allows to adapt sparse 
blind deconvolution and blind source separation algorithms 
In arbitraly sources. The key idea is to bring thc problem 
to the case in which the underlying sources are sparse by 
applying a sparsifying transformation on the mixtures. We 
present simulation results and show that such transfotma- 
lion can bc found by training. Properties of the optimal 
sparsifying transformation are highlighted by an example 
with aerial images. 

1. INTRODUCTION 

The problem of blind deconvolution (BD) and blind source 
separation (BSS), arise in numerous image processing ap- 
plications. A popular solution to these problems is the max- 
imum likelihood (ML) approach which is reported to pro- 
duce good results [ I .  2, 3, 41. However, the ML methods 
require in general (at least approximately) knowledge of the 
statistical distribution of the sources, which is usually hard 
to modcl and not well-suited for optimization. Cases where 
a suitable simple prior on the sources is available analyti- 
cally are scarce and mostly trivial. 

deconvolution and separation of sparse sources was exten- 
sively treated in [5,3,6,4]. As for themselves such sources 
are of little interest since natural sources are seldom sparse. 
If, however, the sources can be made sparse by means of 
some appropriate transformation, i t  is possible to apply the 
sparse BD and BSS algorithms. 

In this paper we present a sparsification approach which 
allows to adapt sparse BD and RSS algorithms to general 
sources. The key idea is to transform the mixtures in such a 
way that the problem would become equivalent to the case 
in which the underlying sources are sparse. In the general 

One of such important examples are sparse sources. Blind 
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case, the sparsifying transformations must be linear shift in- 
variant (LSI) and can he found by training. We exemplify 
the sparsification approach on the problem ol' pure RSS and 
SISO blind deconvolution. 

2. PROBLEM FORMULATION 

Let us consider a general problem of multiple-input multiple 
output (MIMO) 2D BD, and the BSS problem as a particular 
case'. We use tensor notation and Einstein summation con- 
vention, according to which each repeated upper and lower 
indexes are summed over, i.e. u3bjk = Cj a i jb j t .  

In a general noiseless multichannel BD setup, the source 
images (where i = 1, .._, N denotes the source num- 
ber, and m = 1, ._., M x , n  = 1, ..., NX are the pixel in- 
dexes), pass through a convolulive mixing system denoted 
by the operator A = (aij,mrt) and form mixtures xi ,mn 
(i  = 1, ._., M )  in the following way: 

= = a:mn * ~ j , ~ , ~ ,  (1) 
. I ,  

where U:[,,;* s ~ , ~ , ,  = U:," sj,,,-,,,, n-nl denotes con- 
colution w.r.1. the indexes m,n and mixing w.r.t. j ,  and 
uii,mn are direct channels and are cross-talk chan- 
nels. If there is no convolution but only crosstalk (i.e. aij,mn = 
a&,,,,), the model reduces to the BSS case: 

(2) 3 

and the coefficients (u i j )  are usually referred to as the mix- 
ing matrix. In case of a single source, we have a single-input 
multiple-output (SIMO) model without crosstalk: 

Xi" = a, SJ;mn, 

xi,mn =ai, mn * smn. (3) 

Blind deconvolution attempts to find such a deconvolu- 
tion (or restoration) operator W = ( u ~ i j , ~ ~ )  that once ap- 
plied on the observations ~ i j , ~ , , ,  produces an estimate of 

'Without loss of generality. we consider the 2D case. IO BD and BSS 
am mrticular cases of our formulation. 
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si,+,& up to a possible shift, scaling and permutation: 

i i ,n ,n ='W;f , , ,  *xj,mn ' s ~ ~ , n - A ! r ~ - A : ,  (4) 

where ci are scaling factors, A i ,  A: arc integer shifts, and 
T" is a permutation of {1, .._, N } .  In the BSS case, the 
restoration is up to scaling and permutation: 

si,,,t,L = '"il:l~j>n,o = ci ' Srr;.mn. ( 5 )  

The restoration operator is called the rmini.ring matrix. When 
N = hI ,  the unmixing matiix ( w i i )  can be found by invert- 
ing the mixing matrix (a,il). Henceforth, we will assume 
that N = M and that the identifi ability conditions hold. 

3. SPARSE BD AND BSS 

A popular technique fur BSS and BD is the ML approach. 
ML deconvolution is pcriormed by minimizing thc minus- 
log-likelihood of the data w.r.t. the restoration operator. 
In the noise-free case, the normalized minus-log-likelihood 
function of the observed data z ~ ; ~ , ~  i s  given by [ I ] :  

where Wij(S, q) = E,,, wij,mne-a(mo+n") denotes the 
discrete space Fourier transform (DSFT) of utij,,, w.r.1. 
m,n; Y;,,,,~ = U>( nl,, * ~ j , , , , ~  is a source estimate, pi(.) = 
- logpi(.) andpi(s) is the probabilitydensity function (PDF) 
of the i-th source. We tacitly assume that all the expressions 
are well-defi ned and the source image is real and i.i.d. 

even when 'pi(.si) is not exactly equal to - logpi (si). Such 
quasi-ML estimation has been shown to be practical in in- 
stantaneous RSS [Z, 61 and BD [7,4] when the source PDF 
is unknown or not well-suited for optimization. For exam- 
ple, when the source is super-Gaussian (e.g. it is sparse or 
sparsely representable), a smooth approximation of the ah- 
solute value function is a good choice forp(s)  [31. This type 
of a prior of source distribution is especially convenient for 
the underlying optimization problem due to its convexity, 
and results in  very accurate deconvolution (or separation). 
In addition, source sparsity in c a e s  of pure BSS and SIMO 
BD allows to exploit simple geomelric methods for separa- 
tion [5,  61 or deconvolution [SI. 

However, natural images arising in the majority of BD 
and BSS applications can by no means be considered to 
be neither sparse, nor i.i.d., and thus the sparisity prior is 
not valid for most natural sources. On the other hand, it 
is very difficult to model actual distributions of natural im- 
ages, which are often multi-modal and non-log-concave. This 

Consistent estimator can be obtained by minimizing !(xi w) 

apparent gap between convenient models and real-world sig- 
nals calls for an alternativc approach. 

4. SPARSIFICATION 

While it is diffi cult to derive a prior suitable for natural im- 
ages, it is much easier to transform an image in such a way 
that it fi 1s some universal prior. In this study, we limit our 
attention to the sparsity prior, and thus discuss sparsifying 
transformations, though the idea is general and is suitable 
for other priors as well. Sparsifying transformations also 
have a decorrelation effect, allowing to use simple QML 
RD and BSS apprmaches, which assume i.i.d. sources. 

Thc idea of spars~cotion by applying some transfor- 
mation (e.g. Cahor-, wavelet- or wavelet packet transforms) 
on the mixtures was successfully exploited in HSS [S, 61. 
However, these transformations were derived from empir- 
ical considerations. Here we present a method for ti nding 
optimal sparsifying transformations. 

To begin, let us assume that there exists a known spar- 
sifiing trnnsformntian 7s that makes the sources sparse. In 
this case, a BD (or a HSS) algorithm is likely to produce a 
good estimate of the restoration operator W since the source 
properties are in accord with the sparsity prior. The prob- 
lem is, however, that s is not available, and 7s can be ap- 
plied only to the observation x. Hence, it is necessary that 
the sparsifying transformation commute with the convolu- 
live mixture operation, i.e. 

d(7s.s) = 7s(A.s) = ~ S X ,  (7) 

such that applying the deconvolution (or separation) algo- 
rithm on 7 ~ x  is equivalent to deconvolving mixtures result- 
ing from sparse sources 7 ~ s .  A family of transformation 
obeying this property are linear shift-invariant (LSI) trans- 
formations*, which can be described by a convolution ker- 
ne1 tmn: 

(8) tm'n' 
(%s)i,mn = tmn * ~ i , m n  = Si,m-m' n-n', 

such that 

7sz = t"'n"Zi,m-m" "--n" = (9)  
tm"n"a 3,m'n' " Sj,m-m,'-m' n-n"-"' = 

(d(T.s ) ) i ,mn.  Sj,m-m'-m" n-n'--n" = a3.m"r1"t"n' 

Thus, we obtain a general BD (or BSS) algorithm, which is 
not limited to sparse sources. We first sparsify the mixtures 
x using 7s (which has to he found in a way described in 
Section 4.2), and then apply the sparse BD (or BSS) algo- 
rithm to the result 7 s x .  The obtained restoration opentor 
W is then applied to the original (non-sparsifi ed) mixtures 
x to produce the source estimate. 

21n pure BSS pmblems. the sparsifying transformation needs to be lin- 
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4.2. Learning the optimum sparsification kernel 

Since the source images S are not available, computation 
of the sparsifying kernel by the procedure described above 
is possible only theoretically. However, empirical results 
indicate that for images belonging to the same class, the 
proper sparsifying kernels are suffi cicntly similar. LetC de- 
note a class of imagcs, and assume that the unknown sources 
S I ,  _.., S N  belong to C. We can find imagenu,, ...: UN,,. t C 
and use them to fi nd the optimal sparsifying transformation 
of SI, _.., S N .  Optimization prohlem ( IO) becomes in this 
case 

N.,. 

convolution I mixing ! deconvolution I unmixing 

Fig. 1. Scheme of RSS I RD using sparsifi cation 

4.1. Optimum sparsification 

I t  is known that different classcs of  signals have some "nat- 
ural" sparse representation. For example, ID block signals 
hecome sparse after applying a discrete derivative; acous- 
tic signals usually appear sparse after performing a short 
time Fourier transform, etc [6]. However, such a sparsily- 
ing transformation is not necessarily the most suitable in 
case of a general class of signals. 

By def nition, the sparsifying transformation'Ts milst 
produce a sparse representation of the source; it  is obvious 
that 7s would usually depend on the sources s, and also, 
'Is does not necessarily have to he invertible, since we use 
it as a pre-processing of the data and hence never need its 
inverse. A general way to fi nd'j-3, is by maximizing some 
sparsity criterion of TSS. Particularly. the el norm (the sec- 
ond term in the quasi ML function) can be used as the ob- 
jective function, i.e. 

N 
7s = a r g m i n C C ( t , , * s i , , , l  s.t. Iltlli=1, (10) 

i=l m,,, 

where the constant energy constraint is imposed on t to 
avoid the trivial (zero kernel) solution. This is an optimiza- 
tion problem with nonlinear convex objective and a non- 
convex quadratic constraint; one of the most common meth-' 
ods to solve such a problem is by using the penalty method. 

In the SISO BD problem, the optimal sparsifying trans- 
formation can be found according to 7s = argmin, e(s; t ) ,  
as proposed in [91. As the result, wmn = 6,,, is a local min- 
imizer of e(%; w), and due to the equivariance property', 
w,, = (d-l)m,L is a local minimizer of !(dTss;w) = 
8(7.5; w), i.e., the QML estimate of the restoration kernel 
given the sparsifi ed observationlsz is the inverse of A (see 
details in [9]).  

ear and not necessady shift-invariant: ( ' T s ) ~ , ~ "  = tm,"'"'3.,mrn, For 
example. wavelet packets were used for spanifi cation in 15.61. 

3Equivariance implies that for any invertible B. the estimalor W ( x )  
of the restoration opentor W-given the observation I. obtained by mini- 
mization of e(x, w )  obeys: W ( B X )  = B-'W(x), i.e. W form a group 
1101. 

i.e. t is required to be the optimal sparsifying kernel for all 
' ~ 1 ,  ..., UN., simultaneously. The imagcs 711, ..., u ~ , ~  cunsti- 
lute a training set, and the process of fi  nd inglu  is called 
training. Given that the images in the training set are"suffi - 
ciently similar" to s, the optimal sparsifying translormation 
'Tu obtained by training is similar enough to IS. 

5. RESULTS 

In the fi rst experimenl we exemplify the use of sparsifi cation 
in  pure BSS with N = M = 2. The sources wcrc two 100 x 
100 aerial images of San Francisco metro area. The training 
image was a synthetic aerial image drawn in Adobe Pho- 
toShop. The optimal sparsifying LSI transformation was 
found by solving (1 1) with MATLAB constrained optimiza- 
tion solver fmincon and was very close to the 2D comer 
detector. Separation was carried out using the relative New- 
ton algorithm 131 with sparsity prior. 

The separation results are presented in Figure 2 (the 
images were normalized). Note the very high signal-to- 
interference ratio (SIR), signifi cantly higher than typical SIR 
values obtained using wavelet transform as in [6]. 

The second experiment demonstrates SISO deconvolu- 
lion. The suurce was an aerial image, blurred by a Lurenzian- 
shaped kernel, typical of atmospheric scattering. The train- 
ing image was the same as  in the fi rst experiment. Blind 
deconvolution was performed with a 3 x 3 FIR kernel using 
the relative Newton algorithm described in [4]. The restora- 
tion results are presented in Figure 3. 

6. CONCLUSIONS 

The proposed approach allows the extension of sparse BD 
and BSS algorithms to arbitrary sources by using sparsify- 
ing transformations. An interesting observation is that in 
many natural images the optimal sparsifying LSI transfor- 
mation is the 2D comer detector. 
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Training image 

Mixture I 

Sparsifi ed training image 

Mixture 2 

Reconstructed source I 
SIR = 88.45dB 

Reconstructed source 2 
SIR = 92.87dB 

Fig. 2. Example of BSS with optimal sparsifi cation. 

Another important observation is when selecting ‘p to 
he the smoothed absolute value and using a complex  spar- 
sifying kernel t,,, = r,,,, + qmn. the prior term of the 
likelihood function becomes 

mn m n  

which is a generalization of the discrete 2D fofal variation 
(TV) norm. The TV norm found to  he a successful prior in 
numerous studies related to signal restoration and denoising 
(e.g. i l l ,  12]), is obtained when rmn and qmn are chosen to 
h e  discrete derivatives in x- and y-direction. 
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