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ABSTRACT

In this work, we propose a trainable sparse model for
automatic polyphonic music transcription, which in-
corporates several successful approaches into a unified
optimization framework. Our model combines un-
supervised synthesis models similar to latent compo-
nent analysis and nonnegative factorization with met-
ric learning techniques that allow supervised discrim-
inative learning. We develop efficient stochastic gra-
dient training schemes allowing unsupervised, semi-,
and fully supervised training of the model as well its
adaptation to test data. We show efficient fixed com-
plexity and latency approximation that can replace it-
erative minimization algorithms in time-critical appli-
cations. Experimental evaluation on synthetic and real
data shows promising initial results.

1. INTRODUCTION

The goal of automatic music transcription (AMT) is
to obtain a musical score from an input audio signal.
AMT is particularly difficult when the audio signal is
polyphonic [12], as the harmonic relations and inter-
actions in music signals challenges the detection of
multiple concurrent pitches. Polyphonic AMT is still
considered an open problem and the state-of-the-art
solutions are far from the level of precision required
in many applications. We refer the reader to [4] for
a detailed description of the open questions and chal-
lenges in polyphonic AMT.
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1.1 Prior work

In what follows, we briefly review two main families
of approaches recently used for AMT, which are par-
ticularly relevant for the present work. Reviewing all
existing AMT methods is beyond the scope of this pa-
per; for recent surveys, we refer to the reader to [4,12]
and references therein.

Being essentially a classification task, music tran-
scription has been addressed by classification-based
approaches. These techniques define a set of mean-
ingful features for pitch and onset detection, and feed
them to generic classification schemes such as neural
networks [6,15], deep believe networks [16], and sup-
port vector machines [17]. In [16], the features them-
selves were learned form the data. In [17], the au-
thors argue that prior knowledge (such as harmonic-
ity) is not strictly necessary for achieving levels of
transcription accuracy comparable to the one obtained
with competing approaches, and that such assump-
tions can be substituted with discriminative learning.
While being feasible, the lack of insight makes such
pure learning-based systems hard to train, since they
need to infer from the training data all possible vari-
ations and combinations of pitches. In general, this
translates into long off-line training times and requires
huge training sets.

Another family of recent approaches is based on
spectrogram factorization techniques, such as non-
negative matrix factorization (NMF) [13], and its
probabilistic counterpart – probabilistic latent compo-
nent analysis (PLCA) [20]. The basic idea, first in-
troduced in [19], aims at factorizing a spectral repre-
sentation of the signal X ∈ Rn×k, into a product of
non-negative factors, X ≈ DZ, where the n× p non-
negative dictionary D contains templates of the indi-
vidual pitches, and the p × k non-negative factor Z
contains the corresponding activations for each frame.
Ideally one would expect Z to resemble a piano-roll
and reveal the active notes in each spectral frame.
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Unfortunately, this is not enough in practice. In or-
der to overcome this problem, many approaches have
proposed to regularize the factorization by including
sparsity [1], harmonicity, and smoothness [5, 22]. In
[2], the authors propose a shift-invariant version of
PLCA, where the dictionary contains note templates
from multiple orchestral instruments. Including such
a regularizations usually significantly improves the re-
sults but also translates into slower coding schemes.
This contrasts with the discriminative approaches that,
after training, have very light computational costs. On
one hand, the generative nature of factorization ap-
proaches allows them to handle the spectral super-
position of harmonically related pitches in a natural
way. On the other hand, however, such generative ap-
proaches seem less flexible and more difficult to adapt
to specific settings compared to their discriminative
counterparts.

1.2 Contributions

In this paper, we present an attempt to inject the gener-
ative properties of factorization approaches into a dis-
criminative setting. We aim at establishing a bridge
between pure learning and factorization-based meth-
ods. Specifically, we propose the coupled training of
a set of classifiers that detect the presence of a given
pitch in a frame of audio, taking as the input the acti-
vations produced by a generative matrix factorization
scheme. Instead of constraining the factorization al-
gorithm, we design a very simple factorization method
trained to produce the optimal input to a binary clas-
sifier in the sense of the classification performance.
Once trained, the simplicity of the proposed factor-
ization scheme allows to use fast approximation of
sparse encoders, resulting in computation complex-
ity comparable to that of pure discriminative mod-
els. With this implementation, the proposed method
bridges between factorization and classification meth-
ods, designing a neural network that solves a mean-
ingful factorization problem.

We formulate our model as a bilevel optimization
program, generalizing supervised dictionary learning
devised for sparse coding schemes [14]. We also in-
corporate elements of metric learning into this super-
vised sparse NMF setting in order to increase its dis-
criminative power. The proposed approach is natu-
rally amenable to semi-supervised training regimes, in
which unlabeled data can be used to adapt the system.
Finally, the output of these classifiers is temporally
smoothed as is normally done in AMT [2, 17].

In Section 2 we present the proposed model cou-
pling the codes with the pitch classifiers. Then, in
Section 3, we formulate its supervised variant as a
bilevel optimization problem. In Section 4, we de-

scribe how the proposed method can be significantly
accelerated. Section 5 shows how to incorporate the
proposed scheme into higher-level temporal models.
Experimental evaluation is reported in Section 6. Fi-
nally, Section 7 concludes the paper.

2. NON-NEGATIVE SPARSE MODEL

Like the majority of music and speech analysis tech-
niques, music transcription typically operates on the
magnitude of the audio time-frequency representation
such as the short-time Fourier transform or constant-Q
transform (CQT) [8], as adopted in this work. Given
a spectral frame x ∈ Rn+ at some time, the transcrip-
tion problem consists of producing a binary label vec-
tor y ∈ {−1,+1}p, whose i-th element indicates the
presence (+1) or absence (−1) of the i-th pitch at that
time. We use p = 88 corresponding to the span of the
standard piano keyboard (MIDI pitches 21− 108).

In the proposed model, the output vector is pro-
duced by applying a simple linear classifier y =
sign(Wz + a), parametrized by the p×m matrix W
and p× 1 vector a, to the m-dimensional feature vec-
tor z obtained by solving the following non-negative
sparse representation pursuit problem

z(x) = (1)

arg min
z≥0

1

2
‖M(x−Dz)‖22 + λ1‖z‖1 + λ2‖z‖22.

Here, D is an n × m over-complete (m > n) non-
negative dictionary, whose columns represent differ-
ent templates for each of the individual pitches, and
M is a r × n metric matrix (r ≤ n).

The first data fitting term requires the data to be
well-approximated by a sparse non-negative combina-
tion of the atoms of D, expressing the assumption that
at each time, only a few pitches are simultaneously
present. Replacing the standard Euclidean fitting term
by a more general Mahalanobis metric parametrized
by the matrix M allows to give different weights to
different frequencies, as frequently practiced in music
processing. The second term, whose relative impor-
tance is governed by the parameter λ1, actually pro-
motes the sparsity of the solution vector, while the
third term is added for regularization.

Pursuit problem (1) is a strictly convex optimiza-
tion problem, which can be solved efficiently us-
ing (among other alternatives) a family of optimiza-
tion techniques called proximal methods. We adopt
a non-negative variant of the iterative shrinkage-
thresholding algorithm (ISTA) [9], summarized in Al-
gorithm 1. While faster versions of this fixed-step
proximal method can be used to reach linear conver-
gence rates, the discussion of these extensions is be-
yond of the scope of this paper.
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input : Data x, dictionary D, metric matrix M,
parameters λ1, λ2, step size α.

output: Non-negative sparse code z.
Define H = (1− λ2

α )I− 1
αMTDTDM,

G = 1
αMTDT, t = 1

αλ1.
Initialize z1 = 0 and b1 = Gx.
for k = 1, 2, . . . until convergence do

zk+1 = σt(b
k)

bk+1 = bk + H(zk+1 − zk)
end

Algorithm 1: Non-negative iterative shrinkage-
thresholding algorithm (ISTA). σt(b) = max{0,b − t}
denotes element-wise single-sided soft thresholding.

We observe that given a collection of spectral
frames X = (x1, . . . ,xk), the solution of the pur-
suit problem aims at finding a non-negative factoriza-
tion of X into DZ, thus being essentially an instance
of a non-negative matrix factorization (NMF) problem
with a fixed left factor D. The approach proposed in
the paper can be essentially viewed as a supervised
version of NMF.

Denoting the parameters of the sparse model as
Θ = {D,M}, and those of the linear classifier as
Φ = {W,a}, the proposed pitch transcription system
can be expressed as y = yΦ(zΘ(x)), where zΘ de-
notes the non-linear map produced by solving (1), and
yΦ refers to the application of the classifier. In what
follows, we will address how to train and adapt the
parameters Θ and Φ for the AMT task.
Dictionary initialization. The initial dictionary is
constructed to contain spectral templates for each pos-
sible pitch. The training of the dictionary is done by
learning a set of small sub-dictionaries, one per pitch,
minimizing

min
D∈D,Z≥0

1

2
‖M(X−DZ)‖2F + λ1‖Z‖1 + λ2‖Z‖2F, (2)

where ‖ · ‖F denotes the Frobenius norm, D is the
space of appropriately sized non-negative matrices
with unit columns, and M = I. Additional constrains
such as harmonicity can be included by changing D
to be more restrictive. The initial dictionary can be
constructed for a specific instrument or for multiple
instruments as in [2], via simple concatenation.
Classifier initialization. Once the initial dictionary
has been trained, we can learn the classifier parameters
Φ. To that end, we construct a training set X contain-
ing pairs of the form (x,y), of spectral frames with the
corresponding groundtruth pitch labels. Here, unlike
in the unsupervised dictionary training, the best per-
formance of the classifier is obtained when the train-
ing set contains representative examples of chords and
pitch combinations.

The classifier is trained by minimizing

min
Φ

1

|X |
∑

(x,y)∈X

`(yΦ(z),y) (3)

on the outputs z = zΘ(x) of the pursuit algorithm.
Here, ` denotes a loss function penalizing for the mis-
match between the ground truth labels and the actual
output of the classifier. We use the logistic regression
loss function `(y′,y) = log(1 + e−yTy′

). The mini-
mization of (3) can scale to very large training sets by
using (projected) stochastic gradient descent (SGD)
techniques [7], which we adopt in all our experiments.

3. BILEVEL SPARSE MODEL

A striking disadvantage of the two-stage training de-
scribed so far is the fact that the training of the dictio-
nary D aims at reducing the data reconstruction error
‖X−DZ‖F rather than reducing the classification er-
ror (3). Consequently, the dictionary trained in the
initial unsupervised regime is suboptimal in the sense
of (3); furthermore, there is no natural way to train the
metric matrix M. The ultimate way to perform super-
vised training of the entire system would be therefore
by minimizing

min
Θ,Φ

1

|X |
∑

(x,y)∈X

`(yΦ(zΘ(x)),y) + µ||Φ||2F (4)

not only with respect to the parameters Φ of the clas-
sifier, but also with respect to the parameters Θ of the
pursuit. This leads to a bilevel optimization problem,
as we need to optimize the loss function `, which in
turn depends on the minimizer of (1). Note that, as is
standard practice in machine learning, a regularization
term on the classifier parameters is added to prevent
over-fitting.

In particular, one would need to compute the gra-
dients of the loss with respect to the parameters Θ =
{D,M} of the pursuit. Fortunately, z is almost every-
where differentiable with respect to D and M [14].
Denoting by Λ the active set of z (i.e., the set of in-
dices at which it attains non-zero values), we define

βΛ = (DT
ΛMTMDΛ + λ2IΛ)−1(∇z`(yΦ(z),y))Λ,

where ∇z` is the gradient of the loss function with
respect to z. The elements of β outside Λ are set to
zero. The gradients of `(yΦ(z),y) with respect to D
and M can be expressed as

∇D` = MTM((x−Dz∗)βT −Dβz∗) (5)

∇M` = MDΛβΛ(x−Dz∗)T −M(x−Dz∗)DT
Λ.

We omit the derivation details due to lack of space,
and refer the reader to [14] for a related discussion.
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We perform the minimization of (4) again by using
SGD alternating descents on Φ keeping Θ fixed, and
on Θ keeping Φ fixed. Θ and Φ are initialized as de-
scribed in Section 2. It is also worthwhile noting that
the minimization of the discriminative loss (4) with
respect to the matrix M can be viewed as a particular
setting of metric learning – a family of problems that
aim at designing task-specific metrics. In our case,
we design a Mahalanobis metric MTM such that the
pursuit with respect to it minimizes the classification
errors.

The purely discriminative objective of (4) is sus-
ceptible to over-fitting since the learned matrix M will
not aim at producing faithful data reconstructions. In
that case, the generative advantage of NMF would be
lost. To avoid this problem, the minimization of (4)
can be regularized by adding an data reconstruction
term of the form ‖x−DzΘ(x)‖22.

We distinguish between two training regimes: in
the fully supervised setting, all samples in the training
set come with label information y, and the training is
performed as described above. Since label informa-
tion is often difficult to obtain, in many practical cases
only some of the samples in the training set are la-
beled. We call such a setting semi-supervised. Given
a set of unlabeled data, Xu, we can change the learn-
ing process by augmenting the discriminative loss (4)
on the labeled data (eventually regularized with data
reconstruction term), with the unsupervised term∑
x∈Xu

1

2
‖x−DzΘ(x)‖22+λ1‖zΘ(x)‖1+λ2‖zΘ(x)‖22.

This new training scheme aims at producing a dictio-
nary D that is good for classifying (and reconstruct-
ing) the labeled data but that can also used to sparsely
represent the unlabeled data. Note that this regime can
also be used as a way to adapting the system to unseen
testing data. Both factorization- and classification-
based approaches suffer a performance drop when the
testing data are not well represented by the training
samples. In this way, our system can be adapted to
new unseen (and unlabeled) data.

4. FAST APPROXIMATION

The proposed approach relies on solving optimiza-
tion problem (1) using an iterative method. One of
the drawbacks of such iterative schemes is their rel-
atively high computational complexity and latency,
which is furthermore data-dependent. For exam-
ple, non-negative ISTA typically requires hundreds
of iterations to converge. However, while the clas-
sical optimization theory provides worst-case (data-
independent) convergence rate bounds for many fam-
ilies of iterative algorithms, very little is known about
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Figure 1. Accuracy of the optimization-based and neural
network encoders as a function of the number of iterations
or layers. Evaluation was performed on dataset from [17].
The networks were trained in the unsupervised regime.

their behavior on specific data, coming e.g., from a
distribution supported on a low-dimensional manifold
– properties often exhibited by real data. Common
practice of sparse modeling concentrates on creating
sophisticated data models, and then relies on compu-
tational and analytic techniques that are totally agnos-
tic of the data structure.

From the perspective of the pursuit process, the
minimization of (1) is merely a proxy to obtaining
a highly non-linear map between the data vector x
and the corresponding feature vector z. Adopting
ISTA as the iterative algorithm, such a map can be
expressed by unrolling the iterations into the compo-
sition f ◦ f ◦ · · · ◦ f(0,Gx) of T elementary op-
erations of the form f : (z,b) 7→ (σt(b),b +
H(σt(b) − b)), where T is a sufficiently large num-
ber of iterations required for convergence. By fixing
T , we obtain a fixed-complexity and latency encoder
ẑT,Ψ(x), parametrized by Ψ = {H,G, t} (recall
that ISTA defines the latter parameters as functions of
Θ = {D,M}). Such an encoder can be thought of
as a time-recurrent neural network, or a feed-forward
network with T identical layers.

Note that for a sufficiently large T , ẑT,Ψ ≈ zΘ.
However, when complexity budget constraints require
T to be truncated at a small fixed number, the output
of ẑT,Ψ is usually unsatisfactory, and the worst-case
bounds provided by the classical optimization theory
are of little use. However, within the family of func-
tions {ẑT,Ψ}, there might exist better parameters for
which ẑ performs better on relevant input data. These
ideas advocated by [11], have been recently shown
very effective in sound separation problems [21].

Adapted to our problem, the encoder ẑT,Ψ can be
trained in lieu of the iterative pursuit process in one of
the discussed regimes, using the standard backpropa-
gation techniques to compute the gradients of the net-
work with respect to its parameters [11]. The training
of the encoder can be achieved by minimize the dis-
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criminative objective

min
Ψ,Φ

1

|X |
∑

(x,y)∈X

`(yΦ(ẑT,Ψ(x)),y) + µ||Φ||2F (6)

Similar ideas can be used in the unsupervised set-
ting. Figure 1 shows, as a function of T , the per-
formance of the exact pursuit (ISTA truncated after
T iterations), and its approximation using the neural
networks. About two orders of magnitude of speedup
is observed.

This perspective bridges between two popular ap-
proaches to music transcription: those based on ex-
plicit data modeling and relying on optimization to
solve some kind of a representation pursuit problem,
and those relying on pure learning of a neural net-
work. However, while training ẑT,Ψ is technically a
pure learning approach, it is very much rooted into the
underlying data model. First and most importantly,
the training objective is solving a matrix factorization
problem. Second, the architecture of the neural net-
work is derived from an iterative process that is guar-
anteed to minimize a meaningful objective. Third,
the network comes with a very good initialization of
the parameters (as prescribed by ISTA). Since neural
network training is a highly non-convex optimization
problem, such an initialization is crucial.

5. TEMPORAL REGULARIZATION

Independent analysis of spectral frames fails short of
exploiting the temporal structures and dependencies
of music signals. This prior knowledge can be incor-
porated by temporally regularizing the output of the
classifiers. A popular way to achieve this is by adding
a post-processing stage based on hidden Markov mod-
els (HMMs) [18]. Following [2, 17], in this work
we smooth the classifier outputs using an independent
two-state HMM for each pitch. We now think of the
output of the sparse coding Z = (z1, . . . , zk) as a se-
quence of k input observations. For each pitch p, the
states are represented as a sequence of hidden vari-
ables qp = (qp1 , . . . , q

p
k) that take the value of +1 in

the presence, or −1 in the absence of the pitch, fol-
lowing the convention used throughout the paper. The
HMM aims at finding for each pitch, the optimal se-
quence of states minimizing

min
qp

p(z1|qp1)p(qp1)

k∏
i=2

p(zi|qpi )p(q
p
i |q

p
i−1), (7)

where the initial probabilities p(qp1) and the transition
probabilities p(qpi |q

p
i−1) are learned from the data.

The probability of observing a sparse code given a
pitch state, p(zi|qpi ), can be obtained naturally from

Table 1. Precision, recall, F1 and accuracy in percent on
the test data presented in [17] for the proposed approach
under different training regimes. For reference, the accu-
racy obtained for three recent alternative methods is: 57.6
% for [2], 56.5 % for [17], and 47.0 % for [3].

Training regime Pre. Rec. F1 Acc.
Supervised 81.6 69.8 74.3 60.0
Supervised+Fitting 79.7 69.9 73.7 59.2
Semi-supervised 79.7 70.0 73.7 59.2
Semi-supervised+Fitting 82.0 70.9 75.1 61.0

the output of the classifiers. The logistic classifiers
can be thought as generalized linear predictors for
Bernoulli variables, leading to p(zi|qpi = y) = 1/(1+

e−yW
Tzi). Problem (7) is solved using the Viterbi al-

gorithm [18].

6. EXPERIMENTAL EVALUATION

Similarly to the factorization-based methods, the pro-
posed model can be trained to transcribe pieces con-
taining mixtures of instruments by appropriately train-
ing the initial dictionaries. However, since the scope
of the paper is rather a proof-of-concept than the de-
sign of a full-featured AMT system, we limit the ex-
perimental evaluation to piano recordings only.

Data. The system was tested on the Disklavier
dataset proposed in [17]. For training of the initial dic-
tionaries (pitch templates), two different piano types
were used from the MAPS dataset [10]. Then, the
classifier and the dictionary were trained in the super-
vised regime using the first 30 seconds of 50 songs
from MAPS and the training data in [17]. Spec-
tral frames were represented using CQT with 48 fre-
quency bins per octave.

Performance measures. We adopted the frame-
based accuracy measure proposed in [17], Acc =
TP/(FP+FN+TP), where TP (true positives) is the
number of correctly predicted pitches, and FP (false
positives) and FN (false negatives) are the number of
pitches incorrectly transcribed as ON or OFF, respec-
tively. We also include the standard frame-based pre-
cision, recall and F1 measures.

Evaluation. The proposed system was evaluated
under different training regimes. Training the sys-
tem by solving the bilevel optimization problem (4)
is referred to as Supervised, and Supervised+Fitting
when using the additional data fitting term described
in Section 3. We also tested the capability of our sys-
tem to use unlabeled data to unsupervisedly adapt to
the test data (the Semi-supervised+Fitting settings).
The obtained performance was compared against one
successful representative approach from each of the
main existing philosophies. We used [2] to represent
the factorization-based approaches, and [17] for the
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classification-based ones. Both of these methods in-
clude a post-processing stage very similar to the one
used in the work. We also included a third method
based on onset detection [3]. It is worth mention-
ing that the training of [2] does not use the Disklavier
training data given in [17]; the authors train their sys-
tem using samples of three different piano types of the
MAPS dataset.

Table 1 summarizes the obtained results. The pro-
posed method is competitive with the alternative ap-
proaches. The inclusion of unlabeled data allows a
significant improvement in the system performance.
Adding the fitting term seems to have more impact
when unlabeled data are available. We attribute this
to the reduction of over-fitting risks that such a regu-
larization offers. In both semi- and fully-supervised
regimes, the reconstruction properties of the dictio-
nary are much better preserved with the mentioned fit-
ting regularization.

7. CONCLUSION

We showed a trainable bilevel non-negative sparse
model model for polyphonic music transcription. Our
model can be interpreted as a supervised variant of
NMF as well as a flavor of metric learning. We also
showed that the original iterative optimization-based
approach can be efficiently approximated by fixed-
complexity feed-forward architectures that give a two-
order-of-magnitude speedup at little expense of accu-
racy. This creates an interesting relation between the
optimization-based transcription methods, and those
relying on pure learning, which are traditionally dealt
with by two, practically disjoint, communities. The
approach can naturally benefit from the inclusion of
unlabeled data via a semi-supervised training scheme.

Despite the limited scope of the experimental eval-
uation on piano music, the proposed model is general,
and is therefore suitable to wider classes of instru-
ments and their mixtures. We intend to explore such
generalizations in future studies. We will also study
the extension of the proposed data model to more gen-
eral non-generative forms, including the very popular
sparse analysis models.
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