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Abstract. Sparse models in dictionary learning have been successfully applied in a wide variety of machine
learning and computer vision problems, and as a result have recently attracted increased research
interest. Another interesting related problem based on linear equality constraints, namely the sparse
null space (SNS) problem, first appeared in 1986 and has since inspired results on sparse basis pursuit.
In this paper, we investigate the relation between the SNS problem and the analysis dictionary
learning (ADL) problem, and show that the SNS problem plays a central role, and may be utilized
to solve dictionary learning problems. Moreover, we propose an efficient algorithm of sparse null
space basis pursuit (SNS-BP) and extend it to a solution of ADL. Experimental results on numerical
synthetic data and real-world data are further presented to validate the performance of our method.
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1. Introduction. High-dimensional data analysis has been the focus of research in diverse
areas, including machine learning, computer vision, and applied mathematics, on account of its
theoretical complexity and great relevance to big data problems. Dictionary learning has been
one of the key methodologies in addressing high-dimensional data, and has successfully been
applied in feature extraction [15], signal denoising [15], [13], [32], [36], image construction [19],
pattern recognition and classification [26], etc.

Specifically, a set of atoms learned from a given dataset are considered as a dictionary
and are expected to have the potential to analyze unknown incoming data. In order to
construct an effective dictionary, signal models play a key role. One common assumption
is that high-dimensional data is concentrated in a low-dimensional manifold embedded in a
high-dimensional space. Dimension reduction was hence a natural way to characterize the
data, and was subsequently extended to a larger family of algorithms, and often referred to as
nonlinear dimension reduction [31], [12]. With a different perspective on the same issue, recent
research has shown that sparse models may also be very useful for learning discriminating and
robust dictionaries from data (see [13] and references therein). While these were broadly
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applicable, a particularly well adapted structure of data, the so-called union of subspaces
(UoS), revealed the power of such approaches. In particular, using a parsimony constraint on
the number of atoms to represent the data at hand helps effectively recover the underlying
basis of each subspace [17], [3]. In dictionary learning, synthesis and analysis models were
proposed, and their respective strengths and limitations in obtaining sparse representations
of data are also of interest. On the one hand, synthesis models seek a synthesis dictionary
D = [d1, . . . ,dn] such that xi =

∑
j∈S djwij , ‖W‖0 ≤ k, where xi is the data of interest, dj

is the jth atom in the dictionary, and wij the associated coefficient. On the other hand, an
operator H is sought in an analysis model, so that H ◦ xi yield a sparse coefficient vector for
representing xi, where “◦” represents a linear operation such as matrix-vector multiplication
or convolution [28], [2], [32], [9], [34].

Another interesting and seemingly unrelated problem invoking sparsity is the sparse null
space (SNS) problem, first proposed in 1986 by Coleman and Pothen [10]. As we elaborate
further in this paper, the SNS problem may be stated as searching for a sparse basis for
the null space of a given matrix A. We demonstrate that the SNS solution is instrumental
in helping understand the analysis dictionary learning problem, and in providing sufficient
insight into achieving systematic and applicable solutions.

In this paper, we examine the relation between the SNS problem and the dictionary
learning problem, and we prove that the SNS problem is equivalent to the analysis dictionary
learning (ADL) problem. We then proceed to solve the ADL problem by building on the
SNS problem results. Specifically, inspired by these existing results as well as state-of-the-art
sparsity pursuit algorithms, we present an l1 minimization-based greedy algorithm to solve
the SNS problem. In contrast to current mainstream algorithms [13], [32], [26], [21], the
convergence of our method is assured by both the convergence of the greedy algorithm and
the convex l1 minimization. Moreover, we demonstrate its superior performance on both
synthetic numerical data and real-world data.

Our contribution is primarily twofold: on the one hand, we show, to the best of our
knowledge, for the first time the connection between ADL and SNS, and further exploit an
SNS-inspired approach to solve the ADL problem; on the other hand, we propose a novel
sparsity pursuit algorithm for solving the SNS/ADL problem and show its efficacy on the
subspace clustering problem. Note that in a short conference paper [4], we have shown the
preliminary results of our work. In this paper, we provide a more detailed analysis of ADL and
SNS, including the proof of the exact recovery condition of our proposed algorithm SNS-BP
for solving SNS. Additionally, we further show comprehensive experimental results compared
to the state-of-the-art methods such as analysis k-SVD [33].

The remainder of this paper is organized as follows. In section 2, we discuss the current
state of the art in the area of dictionary learning, specifically in ADL. In section 3, we an-
alyze the relationship between the SNS problem and ADL, and show their equivalence. In
section 4, we present an effective method to solve the SNS problem which essentially also
efficiently solves the ADL problem. Finally, in section 5 we validate our method on the ADL
problem by numerical experiments, and illustrate the effectiveness of our algorithm on texture
classification.
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SPARSITY AND NULLITY: PARADIGMS FOR ADL 1109

1.1. Notation. The notational conventions used throughout this paper are as follows: For
an m×n matrix X, the space spanned by its rows is denoted as row(X), and that spanned by
its columns col(X). Its null space is denoted by null(X), and the direct sum of two subspaces

is denoted by ⊕. The sparsity of X, defined as ‖X‖0mn , is denoted by ρ(X). Moreover, we denote
by PX the projection matrix onto col(X), and by PX⊥ = I − P T

XPX the projection matrix
onto null(X). Additionally, given a vector y ∈ Rn, operator (·)j returns the value of the jth
element of y. The adjoint operator of (·)j , denoted as (·)∗j , is hence (c)∗j = v ∈ Rn such that
(v)j = c and (v)i = 0, if i 6= j. Finally, we denote the set of all sparse vectors {x|‖x‖0 ≤ k}
by Σk.

2. Related work.

2.1. Sparse null space problem. The SNS problem has been proved to be an NP-hard
problem in [10]. Different algorithms have since been proposed to find approximate solutions
of SNS. For the sake of simplicity, we formulate SNS as finding sparse null vectors of A.

In [11] the authors have proposed two algorithms for the SNS problem. The algorithms
have two phases: First, a minimal dependent set of columns is found by bipartite graph
matching; second, nonzero entries in the null vector are computed accordingly. When applied
to the ADL problem, the computational cost of the algorithm is O(d3), where d is the di-
mension of the row vectors of matrix A. Additionally, the algorithm does not guarantee the
reconstruction of the sparse null vectors, which is evident from the experimental evaluation
presented in [11].

In [18] the authors outlined several families of SNS algorithms, both combinatorial and
noncombinatorial in nature. Typically, the combinatorial structure of the matrix is used to
guide the search for sparse null vectors, and noncombinatorial numerical methods are used to
decide linear dependence. An important open question raised in this paper is the trade-off
between conditioning and sparsity. In [29] SNS algorithms for several types of matrices arising
in structural optimization have been studied. Since most of the SNS algorithms require certain
structures of the null matrix such as orthogonality, the resulting null matrix may be much
denser than an arbitrary null matrix of the same rank.

In contrast to these previous algorithms, the algorithm proposed in this paper does not
make any assumption on the structure of A or that of its corresponding sparse null vectors.
By segmenting the constraint domain into convex subregions, we naturally address the issue
of linear dependency of the sparse null vectors. In fact, this approach has no constraint on
the conditioning of the sparse null matrix and hence does not have the trade-off between
conditioning and sparsity. Additionally, we improve the computational complexity to O(d2),
allowing us to apply it to ADL problems with data of moderate dimensions.

2.2. Analysis dictionary learning. Much of the research in dictionary learning has primar-
ily focused on synthesis models such as [1], [26], [25], [21], among many others. Remarkable
performance has been achieved in learning effective dictionaries which are well adapted to spe-
cific datasets, especially on imagery data. The contribution of the atoms in the representation
of the training data was constrained to be sparse. The same sparseness is exploited to recover
an input signal from corrupted data [1] or to classify signals into different clusters [20].

Specifically, the learned dictionary and the corresponding sparse coefficients are alternatelyD
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1110 XIAO BIAN, HAMID KRIM, ALEX BRONSTEIN, AND LIYI DAI

updated until convergence or until a target performance attainment. With the sparse coef-
ficients in hand, learning each atom may be solved by the gradient descent or its variations
such as the stochastic gradient descent [5]. With the dictionary atoms discovery, different
approaches have been proposed to determine the sparse coefficients. In k-SVD [1], for ex-
ample, orthogonal matching pursuit (OMP) is used to recover the sparse coefficient, while
Lasso-LARS is chosen in online dictionary learning for sparse coding [26].

A well-known issue with synthesis dictionary learning is the poor stability in its signal
representation [33], [14]. This is primarily due to the difficulty in controlling the coherence
of the learned dictionary, which may, in turn, lead to multiple representations of the same
signal [6]. While this phenomenon does not particularly adversely affect denoising [14], it
may significantly impact a consistent classification or clustering performance. In addition, the
computational cost to process new incoming data points often calls for a procedure such as
a matching pursuit procedure [1], or a sparse coding routine such as Lasso [26], and is too
significant for large high-dimensional datasets.

While ADL is known to be difficult to train, it is free of the above-mentioned SDL
(synthesis dictionary learning) limitations [33]. Additionally, upon learning the dictionary
D, the representation of any data x is unique, as it is the result of one matrix-vector multi-
plication. The latter fact also yields a low computational cost of processing new data which
is linear in both the data dimension and the sample size.

Analysis k-SVD [33] provides, to the best of our knowledge, the current state-of-the-art
solution to the ADL problem. In the learning procedure, a framework similar to k-SVD is
designed to alternately update the dictionary and the sparse coefficients. At each iteration,
each atom is independently updated by minimizing the covariance between the atom and a
subset of data samples that are “almost orthogonal” to the atom. The minimization may be
formulated as searching for the singular vectors corresponding to the minimal singular value of
the data matrix of the subset of samples. Analysis k-SVD generally achieves the best known
performance in the recovery of the original data space.

Additionally, in [9] the ADL problem has been connected to filter-based MRF models such
as the field of experts model. By casting ADL into MRF models, the analysis operator has
no explicit constraint in the optimization problem, which simplifies the solution procedure.
In [36], the assumption of a uniform normalized tight frame is imposed to constrain the ADL
problem and avoid the trivial solution.

In [19] the ADL problem is formulated as an optimization problem on the set of full-
rank matrices with normalized columns. Specifically, the sparsity of output features and
the variance of sparsity of output features are both minimized under the constraint that the
analysis operator is of full rank and has no linear dependent rows. The resulting highly
nonconvex optimization problem is solved via the geometric conjugate gradient method that
is claimed to be efficient.

As a departure from analysis k-SVD, we present in this paper an alternative ADL algo-
rithm which is closely related to the SNS problem discussed next. By decomposing the DL
problem into a set of convex optimization subproblems, we can guarantee the convergence
of our proposed algorithm. Additionally, and in contrast to analysis k-SVD, our proposed
method can naturally adapt to represent data of varying underlying sparsity with no prior
knowledge.D
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3. From sparse null space to analysis dictionary learning. In this section, we reformulate
the SNS and ADL problems in matrix form, and then establish their equivalence.

Given any m× n matrix A such that row(A) ⊂ Rn, the SNS problem may be defined as
follows:

SNS(A) = arg min
N
‖N‖0 s.t. col(N) = null(A).(1)

Let X = [x1, . . . ,xn] be a generic data matrix; the ADL problem can then be formulated
as

ADL(X) = arg min
U,D
‖U‖0 s.t. DX = U, row(U) = row(X),(2)

where D is an analysis operator in matrix form, and U is the associated sparse coefficient
matrix. To avoid a trivial solution such as U = 0 (and hence D = 0), we further require
row(U) = row(X). Essentially, this is the maximum information we can preserve for X, since
all rows of U are a linear combination of the rows in X, and hence row(U) ⊆ row(X). In
practice, we may also consider the case where row(U) ⊂ row(X) by further selecting a subset
of di in D. We are focusing here on the generic formulation, i.e., row(U) = row(X), for the
sake of theoretical analysis, and will elaborate on this issue later in the detailed discussion of
the algorithm.

It should be noted that one of the first formulations of ADL discussed in [35] suggested
to solve

min
D
‖DX‖1 s.t. D ∈ F ,(3)

where F is a uniform normalized tight frame. The primary purpose of the latter constraint is
to avoid the trivial solutions D = 0. Our formulation is free of this rather arbitrary constraint.

We note that finding a sparse representation of the null space in problem (1) is equivalent
to sparsifying a given matrix N̂ such that col(N̂) = null(A). This coincides with the goal of
problem (2), where the row space of the data matrix X is invoked instead. In particular, we
have the following result.

Theorem 1. Assume null(A) = row(X). Then, a matrix N is a minimizer of the SNS
problem (1) if and only if NT is a minimizer of the ADL problem (2).

The proof of Theorem 1 is straightforward. Specifically, assume N is a minimizer of (1);
then, the constraints in (1) ensure that null(A) = col(N). Since col(XT ) = row(X) = null(A),
we have

col(XT ) = col(N).(4)

We next consider any minimizer U of problem (2); note that D is fully determined from
U. Since row(X) = row(U), when combined with the condition row(X) = null(A), we have
row(U) = row(X) = row(NT ). NT is therefore a feasible solution of problem (2), and so is
UT of problem (1). It follows that ‖U‖0 = ‖NT ‖0, and hence NT is also a minimizer of (2)
and UT is a minimizer of (1).D
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This essentially tells us that we can solve the ADL problem, should we have access to an
effective method of solving the corresponding SNS problem. Specifically, given a data matrix
X, the analysis dictionary for X may be constructed in the following three steps:

1. Construct a matrix A such that row(A) = null(X), i.e., XAT = 0 and rank(A) +
rank(X) = n.

2. Find the sparse feature vectors U = NT by solving N = SNS(A).
3. Construct the analysis operator D from DX = U.

4. An iterative sparse null space pursuit. We have discussed the relation of SNS and
ADL in section 3, and have shown that they may be cast in one unified framework of SNS
space pursuit. Nevertheless, solving SNS is itself a difficult problem. Coleman and Pothen [10]
have proved that SNS is essentially NP-hard, hence ruling out a polynomial time algorithm.
We, however, show that it is still possible to approximate the SNS basis in polynomial time.
In this section, we propose an l1-based iterative optimization method for an SNS pursuit.

4.1. A greedy algorithm for the sparse null space problem. Previous works on the SNS
problem have shed some light on a polynomial time solution. In [10], the authors proposed a
greedy algorithm for the SNS problem. For the sake of clarity and of further discussion, we
refer to it as Algorithm 1. Additionally, it has been proved in [10] that Algorithm 1 can be
used to construct an SNS basis, as stated in our Theorem 2 (see [10]).

Algorithm 1 A greedy algorithm for the SNS problem.

Initialize: matrix A ∈ Rm×d, N = ∅
for i = 1,. . . ,q do

Find a sparsest null vector ni such that rank(N⊕ ni) = i.
N = N⊕ ni

end for

Theorem 2. A matrix N is a sparsest null basis of A if and only if it can be constructed
by the greedy algorithm.

It is worth noting that the maximum number of iterations q in Algorithm 1 is constrained
by the rank of A, i.e., q = d− rank(A). Moreover, this greedy algorithm can find the global
optimal solution for the SNS problem. This elegant result amounts to finding the sparsest
null space basis of A in exactly q steps. The subproblem of finding a sparsest null vector itself
is, however, also an NP-hard problem [10]. We therefore next focus on finding a method to
solve this subproblem in each iteration of Algorithm 1.

4.2. l1-based search for sparse null space. We first reformulate the subproblem of finding
a sparsest null vector in Algorithm 1 as follows:

min
ni
‖ni‖0

s.t. Ani = 0, PN⊥i−1
ni 6= 0,(5)

where Ni−1 is the subspace spanned by the thus constructed null space vectors at the previous
(i − 1)th iteration. The condition PN⊥i−1

ni 6= 0 implies that ni is not in the current span of
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N, and hence rank(Ni ⊕ ni) = rank(Ni) + 1.
There are two inherent difficulties in this formulation. First, ‖ · ‖0 is of combinatorial

nature, and hence is the reason for the NP-hardness of the problem. Second, the constraint
in (5),

PN⊥i
ni 6= 0,(6)

defines a region that is neither compact nor convex. To address the first problem, we propose
to take advantage of established results on sparsity pursuit via l1 minimization [7], [8]. To
address the second problem, and to hence obtain a convex and compact feasible region, we
propose to restate the condition PN⊥i

ni 6= 0 as follows:

∃j ∈ {1, . . . , d}, (PN⊥i−1
ni)j = c,(7)

where c can be any positive constant.
Additionally, we establish the following lemma to justify the variation on the constraint

from (6) to (7).

Lemma 3. The solution of problem (5) remains invariant if the constraint (6) is substituted
by constraint (7).

The proof of Lemma 3 is presented in Appendix A.
The meaning of Lemma 3 is that we may then separate the region defined by (7) into

compact and convex regions based on j, i.e., the location of the forced nonzero element. Since
the optimal solution must reside in one of these regions, we may search for the sparsest null
vector in each region from j = 1 to d. We subsequently have a convex formulation of l1
minimization for each j. Algorithm 1 may then be specifically realized as Algorithm 2.

Algorithm 2 SNS basis pursuit.

Initialize: matrix A,N = ∅
for i = 1,. . . ,p do

for j = 1,. . . ,d do
Find nj

i = arg min ‖n‖1 s.t. An = 0, (PN⊥n)j = c
end for
ni = arg min ‖nj

i‖0
N = N⊕ ni

end for

This is tantamount to solving the following optimization problem for each j in Algorithm
2:

min
n
‖n‖1

s.t. An = 0, (PN⊥n)j = c.(8)

It is worth noting that the exact recovery of each n via (8) is determined by the incoherence
of the linear operator defined by the two constraints and the sparsity of each n, which we willD
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discuss in more detail in section 4.3. To solve (8), we adopt the framework of the augmented
Lagrange method (ALM) on account of its good performance in matrix-norm minimization
problems [23], [24]. Specifically, we have the augmented Lagrange function of (8) as

L(n,Y1,Y2, µ) = ‖n‖1 + 〈Y1,An〉+ 〈Y2, (PN⊥n)j − c〉

+
µ

2
‖An‖2 +

µ

2
‖(PN⊥n)j − c‖2.(9)

The primal variable n is first updated in each iteration with fixed dual variables Y1, Y2, and
µ. By introducing an auxiliary variable η, we have

nk+1 = T 1
µkη

(
nk −

n1
k + n2

k

η

)
,(10)

where T is the soft-thresholding operator, and ‖η‖2 ≥ ‖A‖2 + ‖PN⊥‖2, 1 and

n1
k = AT

(
Ank +

Yk
1

µk

)
,(11)

n2
k = PN⊥

(
(PN⊥n)j − c+

Yk
2

µk

)∗
j

.(12)

Next, the dual variables Y1, Y2, and µ are updated as

Yk+1
1 = Yk

1 + µk (Ank+1) ,(13)

Yk+1
1 = Yk

1 + µk ((PN⊥n)j − c) ,(14)

µk+1 = min{ρµk, µmax}.(15)

The strategy of the linearized ALM method provides a fast convergence rate [24]. This
effectively provides us a method (Algorithm 2), named sparse null space basis pursuit (SNS-
BP) in this paper, to efficiently solve the SNS problem.

4.3. Exact recovery of the sparse null space using sparse null space basis pursuit. In
(8), we consider the l1 minimization problem as a convex relaxation of the l0 norm to find
sparse null vectors of A. For the sake of simplicity, we rewrite (8) as follows:

min
n
‖n‖1

s.t. [AT p]Tn = [0T c]T ,(16)

where pTn = (PN⊥n)j = c. We further denote B = [AT p]T .
The exact recovery of a sparse solution by solving an l1 minimization problem has been well

studied in the literature. In particular, one sufficient condition of the exact recovery requires
the linear constraint B of the l1 minimization problem to satisfy the restricted isometry

1The value of η is selected in this way to ensure the convergence of the algorithm. The details are discussed
in [24].D
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property of order 2k with δ2k <
√

2−1 (Theorem 1.2 in [6]). The restricted isometry property
(RIP) of order k for a matrix B [16] is defined as

(1− δk)‖n‖22 ≤ ‖Bn‖22 ≤ (1 + δk)‖n‖22(17)

for every k-sparse vector n.
A first look at the constraint of (16) tells us that, if n is k-sparse, B does not satisfy RIP

of order 2k with δ2k <
√

2 − 1. Specifically, assume that the sparse null vector found in the
previous iteration of Algorithm 2 is ni−1; then we have Bni−1 = 0 since ni−1 is in the null
space of A and ni−1 is orthogonal to N⊥. Given the fact that ni−1 is k-sparse, B fails to
satisfy the RIP of order k as 0 = ‖Bni−1‖22 < (1− δ)‖ni−1‖22 for any δ < 1.

However, if we further check the matrix B = [AT p]T , its specific structure shows that
not every k-sparse vector is a feasible solution. In particular, at iteration i, only k-sparse
vectors n satisfying n ∈ null(A) ∩N⊥i are feasible solutions. At each iteration, we therefore
need only to satisfy with δ <

√
2 − 1 the constrained version of RIP defined next, and using

similar arguments in [8] for recovery.

Definition 4. B satisfies the constrained RIP of order k with δ if for any n,n′ ∈ null(A)∩
N⊥i ∩ Σk,

(1− δ)‖n− n′‖22 ≤ ‖B(n− n′)‖22 ≤ (1 + δ)‖n− n′‖22.(18)

4.4. Solving the analysis dictionary learning problem via sparse null space basis pursuit.
In section 3, we discussed the equivalence of the ADL problem and the SNS problem, and
hence further describe the details of solving the ADL problem (as in (2)) via SNS-BP.

For a typical ADL problem as in (2), the first step, as discussed in section 3, is to construct
a matrix A whose transpose is the null space of X. Concretely, we have the following problem.

Problem 1. Find A such that XAT = 0.

A simple way would be to consider a singular value decomposition of X, and keep the
right singular vectors with zero singular values coinciding with the rows of A. Note that at
the training stage, we need the training data to be clean and admit the union of subspaces
model. For a common scenario where the data matrix X is contaminated by Gaussian noise,
we can set A to the right singular vectors with small singular values, instead of exactly zero.
This in fact offers an additional advantage of filtering out dense Gaussian noise from the data
matrix X.

Upon constructing A, we proceed to obtain the sparse coefficient matrix UT = SNS(A).
Note that U is computed independently of the analysis operator D. In case D is required for
further processing of incoming data, using DX = U, we may easily obtain D = UX†, where
X† is the pseudo-inverse of X. In particular, if all entries of the dataset are independent, i.e.,
X is full row rank, then X† = XT (XXT )−1.

While we formulated the ADL problem with the constraint row(U) = row(X) in section 3,
if a more compact representation of X is preferred, we may opt for row(U) ⊂ row(X), hence
further reducing the dimension of the original data space.

It is worth noting that in the above approach, we choose not to further normalize the
learned dictionary D, i.e., to have each atom as unit-length. Instead, we normalize each dataD
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(a) Randomly generated sparse basis N.

(b) Recovered sparse null space basis N̂.

Figure 1. An example of the result of SNS-BP.

sample to unit-length and the l∞ norm of each column of the sparse coefficient matrix U.
The norm of D is automatically constrained by D = UX†. Since the sparse coefficients are
the features needed for representing the original data, we directly apply the norm constraint
on sparse coefficients instead of the learned dictionary.

The computational complexity of SNS-BP is determined by the inner loop of Algorithm
2 as O(pd2), where p is the dimension of the null space and d is the dimension of data. In
particular, all d locations of the possible nonzero elements need to be calculated, and each of
these subproblems is of O(d).

5. Numerical experiments on sparse null space and analysis dictionary learning. For
a quantitative evaluation of our algorithm, we synthesize data that are compatible with the
model of SNS and ADL, and show that SNS-BP is able to reconstruct the sparse null space
basis of the SNS problem and the sparse coefficients of the ADL problem.

First, we synthesize a d × p sparse matrix N as the SNS basis of some matrix A, where
A may be constructed by exploiting the SVDS of N, and by selecting its left singular vectors
corresponding to the zero singular values as the rows of A, i.e., AN = 0.

All elements in N follow a binomial distribution as zero/nonzero entries. Moreover, the
amplitude of each nonzero element is generated from a Gaussian distribution.

The matrix A can then be seen as the input to SNS-BP, and we may therefore compare
the recovered null space basis N̂ with the ground truth N. In Figure 1, we show one example
of exact recovery of a sparse null space basis up to permutation and scale.

In Figure 2, we present the sparsity level of N̂ with the sparsity of N varying from 0.01
to 0.2, i.e., 1% nonzero to 20% nonzero. If our method works well, we expect it to find the
sparsest basis, and therefore ρ(N̂) ≈ ρ(N), i.e., the relative sparsity ρ(N̂)/ρ(N) ≈ 1. In
Figure 2, 10 experiments have been carried out and the average sparsity is calculated. We
can see that the sparse bases discovered by SNS-BP have similar sparsity with N, with ρ(N)
varying from 0.01 to 0.2. Additionally, we define the relative error of N̂ as

err(N̂) =
‖N̂PΓ−N‖F
‖N‖F

,(19)

where P is an arbitrary permutation matrix, and Γ is a diagonal matrix representing the
scales of each sparse basis. The average relative error of all the experiments with the sparsity
of N varying from 0.01 to 0.2 is 1.69%.D
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Figure 2. ‖N̂‖0/‖N‖0 versus sparsity.

(a) Synthetic data matrix X. (b) Sparse coefficient matrix W.

Figure 3. Sample synthetic data matrix and its underlying structure.

We next test the ADL via SNS-BP by exploring data samples with hidden underlying
sparse structures. In particular, data samples are randomly selected from a union of low-
dimensional subspaces S = S1 ∪ S2 · · · , in which each subspace is also randomly constructed
by using the orthogonal basis of a set of uniformly distributed vectors. Under this setting,
each sample can be represented as a linear combination of other samples in the same subspace.
The dataset, written as a matrix X = [x1,x2, . . . ,xn] as shown in Figure 3(a), has a sparse
intrinsic structure W such that X = XW, where W is a block-diagonal matrix as Figure 3(b),
and each block represents one subspace. In our experiment, we have data points distributed
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(a) The sparse coefficient matrix U by ADL using SNS-BP.

(b) Permute rows of U to show the structure of X.

Figure 4. Sparse coefficients using ADL.

in five three-dimensional subspaces within the ambient space R100. It hence implies that the
null space of A constructed from X is of dimension 15. An analysis dictionary D is then
trained using SNS-BP, and the associated sparse coefficient matrix U is obtained as shown in
Figure 4(a). Specifically, we can see that all nonzero entries of each sparse vector are clustered
together, corresponding to data samples from the same subspace. In other words, for an atom
di in the analysis dictionary D, all the data points that have a significant response to it are
from one subspace, and the rest of the data have zero response.

Next, we cluster the rows of U and permute them accordingly, as presented in Figure 4(b).
It is interesting to see that a more compact block-diagonal structure emerges again. Note that
in this example we find in totality 15 atoms, with each of three atom sets supporting the data
samples (have largely nonzero inner product) in a subspace. This number corresponds to the
intrinsic dimension of each subspace. Having trained D, it is subsequently simple to figure out
which subspace a data point belongs to: we may simply separate D into D = [D1,D2, . . .],
with Di being the set of atoms supporting the ith subspace, and ultimately determine the
maximal ‖Dix‖. It is therefore more efficient to recover the underlying structure of a given
dataset and represent this structure in a more compact way.

5.1. The relation to analysis k-SVD. Analysis k-SVD arguably provides the state-of-the-
art solution for the ADL problem and has achieved a much improved performance in signal
denoising by discovering the underlying UoS structure of a wide class of signals [33]. We
next comparatively evaluate the performance of SNS-BP and analysis k-SVD in the recovery
problem of UoS of synthesized data.

The synthesis of data from a UoS is similar to the setting in section 5. In particular, data
samples are randomly chosen from a union of low-dimensional subspaces S = S1 ∪ S2 · · · , in
which each subspace is also randomly constructed by using the orthogonal basis of a set of
uniformly distributed vectors. In generating our data, we pick an ambient space of dimension
100, and collectively five subspaces. We evaluate the performance of SNS-BP and analysis
k-SVD by varying the intrinsic dimensions of each subspace. Interestingly, SNS-BP shows
consistent performance with the increase of the intrinsic dimension of each subspace, while
the performance of analysis k-SVD deteriorates when the intrinsic dimension of each subspace
increases.
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(a) The sparse coefficient matrix U by ADL using SNS-BP.

(b) The sparse coefficient matrix U by ADL using analysis k-SVD.

Figure 5. Sparse coefficients for five subspaces with intrinsic dimension 5.

As shown in Figure 5, when the intrinsic dimension is low, both SNS-BP and analysis
k-SVD can effectively learn atoms from the dataset which yield sparse coefficients to effi-
ciently reflect the underlying subspace of each data point. More precisely, each atom has a
strong response on data in only one subspace and is rather absent in other subspaces. Five
blocks corresponding to five subspaces appear in the sparse coefficient matrix using both ap-
proaches. SNS-BP exhibits a clearly improved performance over analysis k-SVD in recovering
the intrinsic dimension of each subspace, as shown in Figure 5. This may be understood
by recalling that the algorithm SNS-BP ensures that the sparse vector determined at each
iteration is orthogonal to the subspace spanned by the previously found sparse vectors (i.e.,
truly novel). Equivalently, the rows in Figure 5(a) are linearly independent—a property which
provides an accurate estimate of the intrinsic dimension of each subspace. In contrast, since
analysis k-SVD can possibly find collinear sparse vectors, it yields more sparse vectors than
the dimension of a given subspace, and hence may partially miss another subspace.

As the intrinsic dimension increases, analysis k-SVD begins to learn atoms which span
two or more subspaces. Such cases become more prevalent as the intrinsic dimension of each
subspace increases. In Figure 6, for instance, the five coefficient blocks representing the five
subspaces merge and display significant responses from two or more subspaces. SNS-BP,
in contrast, exhibits a more consistent performance even as the intrinsic dimension of each
subspace increases, thus resulting in recovering a correct dimension for each subspace. In
Figure 7, we show a case of UoS with different randomly generated dimensions. It is worth
noting that given the ambient space of R100, we limit the intrinsic dimension of each subspace
to between 1 and 19, to avoid the extreme case that when every subspace is of dimension 20,
we may run into the situation where all samples are randomly chosen from R100 and lose any
nontrivial UoS structure. In this case, analysis k-SVD misses one subspace with the lowest
dimension entirely after 45 atoms learned, and a nonnegligible portion of the dictionary fails
to distinguish data from different subspaces. SNS-BP clearly shows five subspaces of the same
dataset.D
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(a) The sparse coefficient matrix U by ADL using SNS-BP.

(b) The sparse coefficient matrix U by ADL using analysis k-SVD.

Figure 6. Sparse coefficients for five subspaces with intrinsic dimension 15.
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(a) The sparse coefficient matrix U by ADL using SNS-BP.

(b) The sparse coefficient matrix U by ADL using analysis k-SVD.

Figure 7. Sparse coefficients for five subspaces with intrinsic dimension randomly picked between 1 and 19
as 9, 8, 3, 12, 13.

We further thoroughly test the performance of SNS-BP and analysis k-SVD on a dataset
with intrinsic dimension from 5 to 16 using the measure of intra-cluster covariance ratio. For
each dimension, we repeat the process of data generation 20 times to obtain the mean value
of the intra-cluster correlation ratios for both methods.

We define the intra-cluster covariance ratio as

CV (U) =
intra-cluster covariance of U

total covariance of U
.(20)

In Figure 8, we can see that the CV of analysis k-SVD deteriorates from 1.00 to around
0.75 with the increase of the intrinsic dimension of each subspace, while SNS-BP maintains a
consistently high performance throughout.

We further test the performance of SNS-BP and analysis k-SVD by randomly choosing
the intrinsic dimension of each subspace between 1 and 19. In this experiment, the intrinsic
dimension of each subspace can be different. We repeat the data generation 100 times to
obtain mean CV values for both methods. The results show a higher CV value 1.00 of
SNS-BP versus 0.97 of analysis k-SVD.

All these experiments in this part prove a more robust performance of SNS-BP comparedD
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Figure 8. Intra-cluster covariance ratio for SNS-BP and analysis k-SVD. The x-axis is the intrinsic
dimension of each subspace, and the y-axis is the CV value.

to analysis k-SVD when the intrinsic dimension of each subspace is higher. Moreover, SNS-BP
demonstrates the ability to recover the intrinsic dimensionality of each underlying subspace,
and automatically avoids redundant atoms.

5.2. Applications on real-world data. In this experimental section, we explore the infer-
ence potential of our method on images. The performance of our algorithm is evaluated on
texture images from the Brodatz database [30]. Each texture image is partitioned into a set of
patches, and their analysis operator is learned from patches of different textures. The latter
is subsequently applied to incoming data, which is also segmented into sets of patches. The
properties of various textures may lead to different patterns of the corresponding sparse coef-
ficients. For example, the texture with more randomness may lead to less sparsely structured
coefficients and more coherent/correlated textures, i.e., on account of a broadly spread distri-
bution of its patches, discovered upon applying the learned operator to incoming data. Note
that we avoid the complexity of processing the order of patches by considering the distribution
of the coefficients instead of matching the output vectors.

Specifically, we segment each texture image into 10 × 10 patches, and randomly pick a
subset of patches as the training set from each texture image, and the rest of the patches
are used as a testing set. The texture images from the Brodatz database [30], and the corre-
sponding sample patches, are shown in Figure 9. In our experiment, we first train the analysis
operator by using half of the data in the training set without knowing the label of each patch,
and then calculate the distribution of the coefficients Pi of the rest of the patches from the ith
class of texture in the training set. In the next testing stage, texture images are used as a set
of patches, for which the distribution of the coefficients Uj = DXj with all Pi are compared.
In particular, we assign Xj to the class with the closest distribution, such as

class(Xj) = arg min
i
d(Pi, PUj ).(21)
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Figure 9. Textures and the corresponding patches for training.

We use the total variation distance in (21), as defined in [22],

d(p, q) = ‖p− q‖TV =
1

2

∑
x∈Ω

|p(x)− q(x)|.(22)

In this experiment, we first segment the entire texture image into 10 × 10 patches and
randomly select 120 patches from each texture for training. The rest of the patches are treated
as test data. In the test stage, we randomly select 120 patches from one texture, and then use
(21) to determine the label of the test data. The classification rate is 94.78% for the texture
images shown in Figure 9. The performance is higher than known state-of-the-art methods
based on predesigned features, such as [37] with an 86.63% classification rate, and comparable
to the supervised dictionary learning algorithm [27]. It is important to note that the training
set in our case is only composed of around 1% of the dataset. A less stringent training set
implies a lower computational cost. This also demonstrates the scalability of our method, in
light of its competitive classification performance.

6. Conclusion. We have proposed in this paper a novel approach for the sparse null
space (SNS) problem, and have unveiled its equivalence to the analysis dictionary learning
(ADL) problem. We have presented the sparse null space basis pursuit (SNS-BP), an iterative
algorithm based on l1 minimization, to pursue the solution of the SNS problem. We have
further applied this algorithm to ADL, and showed the efficacy of our approach by experiments
on both synthetic datasets and real-world data in texture classification.

Future work may include several aspects related to both SNS and ADL problems. The
relation between SNS and nonlinear dimension reduction needs further investigation and may
lead to results on graph embedding. Moreover, our future goal is to explore the potential
application of ADL on other high-dimensional databases such as image/video classification.D
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Appendix A. Proof of Lemma 3. Lemma 3 states that the following optimization
problems are equivalent:

min
n
‖n‖0

s.t. An = 0, PN⊥n 6= 0,(A)

min
n
‖n‖0

s.t. An = 0,∃j ∈ {1, . . . , d}, (PN⊥n)j = c.(B)

Proof. First, we show that if n is an optimal solution of (A), then for some real number
α, αn is also a minimizer of (B).

Any minimizer n′ of (B) also satisfies the constraints of (A). It hence follows that

‖n′‖0 ≥ ‖n‖0.(23)

Assuming |(PN⊥n)k| = ‖PN⊥n‖∞, and noting that ‖PN⊥n‖∞ 6= 0, we construct

n̂ =
c

(PN⊥n)k
· n = αn.(24)

Since (PN⊥n̂)k = c, n̂ is also feasible in (B). Suppose that ‖n̂‖0 = ‖n‖0 ≤ ‖n′‖0, and in
combination with (23), we can conclude that n̂ = αn and is also a solution of (B), and
therefore ‖n̂‖0 = ‖n′‖0.

Then it is trivial to show that n′ is also a minimizer of (A), given the fact that n′ is a
feasible solution of (A) and ‖n′‖0 = ‖n̂‖0 = ‖n‖0, thus proving Lemma 3.
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