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Abstract. Matching of rigid shapes is an important problem in numerous ap-
plications across the boundary of computer vision, pattern recognition and com-
puter graphics communities. A particularly challenging setting of this problem is
partial matching, where the two shapes are dissimilar in general, but have signif-
icant similar parts. In this paper, we show a rigorous approach allowing to find
matching parts of rigid shapes with controllable size and regularity. The regular-
ity term we use is similar to the spirit of the Mumford-Shah functional, extended
to non-Euclidean spaces. Numerical experiments show that the regularized partial
matching produces better results compared to the non-regularized one.

1 Introduction

Shape matching is one of the cornerstone problems arising in many applications across
the boundaries of computer vision, shape recognition and computer graphics commu-
nities. By sayingmatching, we actually refer here to two separate problems:similarity
andcorrespondence. The first problem consists of computing a “distance” between the
shapes and is usually dealt with in computer vision and pattern recognition applica-
tions. The purpose of the second is finding the matching points between the shapes;
it arises in computer graphics community in shape synthesis applications. Usually, the
two problems are inter-related and one can be solved as a byproduct of the other.

Many matching algorithms exist in the literature depending on the nature of shapes
and their representation [17]. A more complicated setting of shape matching is encoun-
tered when the shapes have similar parts but are dissimilar as a whole. For example,
the shapes of a centaur and a human fall into this category [9]. A semantically correct
matching between such shapes would be the upper part of the body, which both the
centaur and the human share. We call this type of matchingpartial. Partial matching
plays a crucial role in many practical problems, in which the data to be matched are not
available entirely due to acquisition imperfections. For example, if one wishes to match
two instances of the same shape acquired using a three-dimensional scanner, the shapes
may be different due to scanning artifacts (noise, holes, etc.) It is often important to
have control over the selected parts, e.g. controlling their size and regularity.

In computer graphics applications, rigid shape matching is usually performed us-
ing different flavors of the classicaliterative closest point(ICP) algorithm [6,2,12,8].
ICP algorithms try to optimally align the shapes by finding a rigid transformation mini-
mizing a surface-to-surface distance between them. Partial matching can be performed
using ICP with the rejection or down-weighting of points with a “bad” correspondence.
This approach allows to find best matching parts of shapes, but does not allow direct
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control of their size and regularity. Another common family of approaches is based on
finding a set of features on the shapes, followed by computation of invariant local de-
scriptor for each feature. The reader is referred to [17] for a comprehensive review of
these methods. A recent study on using local descriptor-based approaches for partial
shape similarity is presented in [7].

In the computer vision community, the problem of partial matching of objects is
sometimes approached using the “recognition by parts” idea [15]: segmenting the shape
into significant parts and matching pairs of parts as whole shapes [10,16,3]. The main
difficulty of this approach is that the definition of “significant parts” is semantic rather
than geometric, and therefore, automatically finding such parts is not a well-defined
problem [1]. Trying to avoid this problem, Lateckiet al. [11] proposed a partial similar-
ity criterion that removed the arbitrarity of shape partition. A meaningful part is defined
as the most similar common part of two shapes, and is practically found by simplify-
ing the shapes until they look the most similar. Bronsteinet al. [4] extended this idea,
proposing a Paretian framework for the computation of partial matching ofnonrigid
shapes. Their approach consists of solving a multicriterion optimization problem trying
to simultaneously maximize the similarity and the size of the parts and allows control
the size of the selected parts. The main disadvantage of this approach is that it ignores
the shape of the selected parts, which theoretically can be irregular.

In this paper, we show that the method of [4] can also be used for partial matching of
rigid shapes and improve it by taking into account the regularity of parts besides their
size. The regularity term proposed here is similar to the spirit of the Mumford-Shah
[13] and Chan-Vese [5] functionals. The rest of the paper is organized as follows. In
Section2, we present the problem of partial rigid shape matching and iterative closest
point (ICP) algorithms with rejection of points attempting to solve this problem. We
point out the main drawback of this method: the part size and regularity are not directly
controllable. In Section3, we present our approach for regularized partial shape match-
ing with controllable part size and regularity and in Section4 describe its numerical
computation. Section5 shows experimental results. Finally, Section6 concludes the
paper.

2 Problem definition

Let X andY be two rigid shapes, considered here as a subsets of the Euclidean space
R3. The shapes are said to becongruentif applying arigid motion to one of the shape
we can obtain the other, or in other words,X = RY + t (hereR is a rotation matrix
andt is a translation vector). Using congruence as an equivalence relation, we say that
two rigid shapes are equivalent if they are congruent.

In practice, shapes rarely happen to be precisely congruent. We can still use the de-
gree of incongruence of two shapes in order to quantify their dissimilarity. It is common
to use theHausdorff distance

dH(X, Y ) = max
{

max
x∈X

min
y∈Y

‖x− y‖ , max
y∈Y

min
x∈X

‖x− y‖
}

(1)
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to measure the distance between to subsets ofR3. Trying to minimizedH over all the
possible rigid motions, we obtain a criterion of rigid shape dissimilarity,

d(X,Y ) = min
R,t

dH(X, RY + t) (2)

X andY are congruent if and only ifd(X, Y ) = 0.
Definingy∗ : X → Y to be the function mapping a point inx on X to the closest

pointy∗(x) = arg miny∈Y ‖x−y‖2 onY , and, analogously,x∗(y) = arg minx∈X ‖x−
y‖2, to be the closest point onX, the Hausdorff distance can be rewritten as

dH(X,Y ) = max
{

max
x∈X

‖x− y∗(x)‖,max
y∈Y

‖y − x∗(y)‖
}

. (3)

Using this formulation, the distance in (2) can be computed using an iterative two-
stage process: first, find the correspondence betweenX andY . Second, the optimal
rigid motion parametersR, t are found to minimize the distance (3) between the closest
points onX andY . The process is repeated until convergence. This class of method
is commonly known asiterative closest point(ICP) algorithms [6,2]. The outcome of
these algorithms is two-fold: the correspondencesx∗(Y ) andy∗(X) and the dissimi-
larity d(X, Y ) between the shapesX andY . In practice, theL∞ distance (3) is usually
replaced by anL2 version,

dH(X, Y ) =
∫

X

‖x− y∗(x)‖2dx +
∫

Y

‖y − x∗(y)‖2dy, (4)

or its non-symmetric variant, involving only the first term.

2.1 Partially similar shapes

In some cases, it may happen that while the shapesX andY are dissimilar as whole,
their parts are similar. Using straightforwardly rigid matching methods will produce
meaningless results, failing to capture the partial similarity of shapes. In order to find
a partial matching betweenX andY , we need to determine similar partsX ′ ⊆ X and
Y ′ ⊆ Y . A common method used for this purpose is a modification of the ICP algorithm
with rejection or down-weighting of dissimilar point pairs. Using this approach, the
Hausdorff distance in the ICP algorithm is replaced for example by

dH(X,Y ) =
∫

X

‖x− y∗(x)‖2w(x)dx, (5)

wherew(x) is a weighting function rejecting points with bad correspondence. The
“quality” of correspondence can be determined by the distance betweenx andy∗(x)
or the mismatch between the normals toX andY at the pointsx andy∗(x), or a com-
bination of both. For example,w(x) can be defined as

w(x) =
{

1 : 〈nX(x), nY (y∗(x))〉 ≥ τn and ‖x− y∗(x)‖ ≤ τd

0 : else (6)
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Fig. 1. Matching between a centaur (left) and a man (three rightmost shapes) using ICP with
different degree of rejection of points, corresponding approximately to25%, 50%, and75% of
the shape area (left-to-right). Note that the obtained parts suffer from irregularity.

whereτn andτd are some fixed thresholds. Points for whichw = 0 will be rejected,
i.e., will not contribute todH(X, Y ). The matching parts are defined asX ′ = {x ∈ X :
w(x) = 1} andY ′ = y∗(X ′).

By changing the rejection thresholdsτn and τd, it is possible to control the size
(area) of the parts (Figure1). However, this control is indirect, as there is no explicit
relation between the surface-to-surface distance and the area of the parts – the size of
the parts is known onlypost factum. Another drawback of this method is evident from
Figure1: the matching parts are irregular and contain multiple disconnected compo-
nents and holes. The influence of the rejection thresholds on the part size and regularity
is indirect and depends on the specific shapes, and thus is not explicitly controllable.

3 Regularized partial matching of shapes

The main contribution of this paper is a framework for partial matching of shapes
with controllable size and regularity of parts. We call this approachregularized par-
tial matching. Given two partially similar shapesX andY , our goal is to select two
partsX ′ ⊆ X andY ′ ⊆ Y , such that they are as regular, similar and large as possible.
It is clear that the three criteria are conflicting. For example, increasing the size of the
parts makes them less similar, and in order to make the parts regular we may sacrifice
both size and similarity.

More formally, we have a multicriterion optimization problem with three objectives:
dissimilaritydH(X ′, Y ′), partiality p(X ′)+p(Y ′) = area(X)−area(X ′)+area(Y )−
area(Y ′) andirregularity r(X ′) + r(Y ′), which we wish to simultaneously minimize
over all the possible parts,

min
X′⊆X,Y ′⊆Y

(d(X ′, Y ′), p(X ′) + p(Y ′), r(X ′) + r(Y ′)). (7)

The solution of the multicriterion optimization problem (7) is the set of parts(X∗, Y ∗)
achieving an optimal tradeoff between the criteria, in the sense that there exists no other
pair of parts(X ′, Y ′) with dH(X ′, Y ′) < d(X∗, Y ∗), p(X ′)+p(Y ′) < p(X∗)+p(Y ∗)
andr(X ′)+ r(Y ′) < r(X∗)+ r(Y ∗) holding simultaneously. Such a solution is called
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Pareto optimaland is not unique. One of the ways to solve the above problem is by
fixing some partialityp0 and minimizing

min
X′⊆X,Y ′⊆Y

d(X ′, Y ′) + µ(r(X ′) + r(Y ′)) s.t. p(X ′) + p(Y ′) ≤ p0, (8)

whereλ is a non-negative coefficient, determining the relative importance of the simi-
larity and regularity of the parts.

As the criterion of part irregularity, the simplest choice is the length of the part
boundary∂X ′,

r(X ′) =
∫

∂X′
d`. (9)

Using this definition, the minimization problem of the part irregularityr(X ′) subject
to fixed partialityp(X ′) = p0 can be regarded as anisoperimetric problem. In case
of two-dimensional shapes (subsets of the Euclidean plane) the minimum is achieved
by a circle, which in many applications is undoubtfully the most regular shape. Unfor-
tunately, there exists no known extension of this result to curved surfaces, on which,
in general, we may find two parts with the same area and boundary length having an
arbitrarily large number of disconnected components. In the case when the topologi-
cal regularity of the part is important,r(X ′) can be defined as thegenusof X ′, which
according to the Gauss-Bonnet theorem can be expressed as

r(X ′) = 1− 1
2

∫

X′
K(x)dx− 1

2

∫

∂X′
κg(x)d`, (10)

whereK andκg are the Gaussian and geodesic curvatures, respectively. Such a defin-
ition will penalize parts having holes or multiple disconnected components (and, thus,
larger genus), and provide the desired topological regularity. In general, different irreg-
ularity criteria can be defined to suit the specific application needs. In the sequel, we
will stick to the boundary length irregularity (9) for simplicity.

3.1 Fuzzy formulation

The solution of (8) involves minimization over the set of all pairs of parts ofX andY ,
which can be thought of as minimization over all pairs of binarymembership functions
u : X → {0, 1} andv : Y → {0, 1}, specifying for each point inX andY whether
it belongs to the part or not. Such a discrete minimization problem is clearly computa-
tionally intractable. As a remedy, we replace the binary membership functionsu andv
by afuzzyapproximationu : X → [0, 1] andv : Y → [0, 1], bringing the problem back
to a tractable continuous formulation. We will denote byX̃ = (X,u) andỸ = (Y, v)
the fuzzy partsof X andY , respectively. In this formulation, the dissimilarity between
two parts is given by

d(X̃, Ỹ ) = min
R,t

dH(X̃, RỸ + t), (11)

whereRỸ + t = (RY + t, v), and

dH(X̃, Ỹ ) =
∫

X

‖x− y∗(x)‖2u(x)dx +
∫

Y

‖y − x∗(y)‖2v(y)dy. (12)
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The sets of the closest pointsx∗(Y ) andy∗(X) are defined as before, and are functions
of X andY . Denoting byeX,Y (x) = ‖x − y∗(x)‖2 andeY,X(y) = ‖y − x∗(y)‖2 the
local measures of surface misalignment, we can formulate the dissimilarity as

d(X̃, Ỹ ) = min
R,t

∫

X

eX,RY +t(x)u(x)dx +
∫

Y

eRY +t,X(y)v(y)dy. (13)

Here, for the sake of simplicity, we will stick to these basic definitions of surface mis-
alignment. In practice, other measures involving, for example, the misalignment of the
normals ofX andY can be used as well.

To conclude our discussion on fuzzy approximation, we need to “fuzzify” the par-
tiality and the irregularity terms. The partiality of a fuzzy partX̃ straightforwardly
becomes

p(X̃) =
∫

X

(1− u(x))dx. (14)

The irregularity term is slightly more elaborate, since in the fuzzy part there is no more
boundary in the strict sense. However, adopting the Mumford-Shah spirit, we can re-
place integration along the boundary by integration of the band in which the member-
ship function changes from small to large values [13,5],

r(X̃) =
∫

X

h(u(x)) ‖∇Xu(x)‖ dx (15)

whereh(t) ≈ δ(t− 0.5) is an approximation of the Dirac delta function, and∇Xu(x)
is the intrinsic gradient ofu at the pointx. The quantity‖∇Xu(x)‖ can be thought of
as the length of the extrinsic gradient vector∇R3u projected on the tangent space ofX
at a pointx.

3.2 Alternating minimization algorithm

Substituting the fuzzy approximation of dissimilarity, partiality and regularity into the
minimization problem (8), we obtain

min
R,t,u,v

∫

X

(eX,RY +t(x)u(x) + µh(u(x)) ‖∇Xu(x)‖)dx +
∫

Y

(eRY +t,X(y)v(y) + µh(v(y)) ‖∇Y v(y)‖)dy

s.t.
∫

X

u(x)dx +
∫

Y

v(y)dy ≥ (1− p0)(area(X) + area(Y )). (16)

Here, for convenience, we normalized the partiality parameterp0 by the total area of
X andY . By fixing the membership functionsu andv, the minimization overR andt
becomes

min
R,t

∫

X

eX,RY +t(x)u(x)dx +
∫

Y

eRY +t,X(y)v(y)dy, (17)
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which can be solved using a weighted ICP algorithm. On the other hand, fixingR and
t yields the linearly constrained nonlinear minimization problem

min
u,v

∫

X

(eX,Y (x)u(x) + µh(u(x)) ‖∇Xu(x)‖)dx +
∫

Y

(eY,X(y)v(y) + µh(v(y)) ‖∇Y v(y)‖)dy

s.t.
∫

X

u(x)dx +
∫

Y

v(y)dy ≥ (1− p0)(area(X) + area(Y )). (18)

We can therefore solve (16) by alternatingly solving (17) and (18), which is expressed
in the following framework algorithm:

1. Weighted rigid alignment:Fix u andv, and computeR andt minimizing (17).
2. UpdateY = RY + t, and compute the misalignment fieldseX,Y andeY,X .
3. Optimal part selection:Fix eX,Y andeY,X , and findu andv minimizing (18).

In what follows, we are going to present a discretization and a numerical scheme for
this algorithm.

4 Numerical framework

We assume the shapeX to be given as a triangular mesh withN vertices{x1, ...,xN} ⊂
R3 represented as anN × 3 matrix X, andT faces, represented as aT × 3 matrix T
of vertex indices. For brevity, we will continue writingX referring to the mesh(X,T).
We denote byP be the sparseT ×N matrix, whose elementspij are set to1

3 if triangle
i shares the vertexxj , and0 otherwise. The matrixP can be thought of as a projection
operator, converting a function defined on the mesh vertices into a function defined on
the mesh faces. We denote bya′ the T × 1 vector, whose elements are areas of the
mesh triangles. TheN × 1 vector and bya = Pa′ discretizes the area elements at
each vertex on the meshX. The membership functionu is represented as theN × 1
vectoru = (u1, ..., uN )T. The shapeY is represented similarly as a meshY = (Y,S),
containingM vertices{y1, ...,yM} andS faces. We denote byY, S, Q, b, andv the
counterparts ofX, T, P, a, andu, respectively.

4.1 Weighted rigid alignment

The solution of (17) in Step 1 of our framework algorithm is carried out using a sym-
metric weighted ICP algorithm. We fixu andv, and iterate the following steps until
convergence:

1. Compute the closest points

x∗i = arg min
x∈{x1,...,xN}

‖yi − x‖; y∗i = arg min
y∈{y1,...,yM}

‖xi − y‖, (19)

and construct the3×M matrixX∗ and the3×N matrixY∗, whose rows are the
x∗i , and they∗i , respectively.
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2. Compute the weighted centroids of the matrices(X,X∗) and(Y∗,Y),

x =
N∑

i=1

uixi +
M∑

i=1

vix∗i , y =
N∑

i=1

uiy∗i +
M∑

i=1

viyi, (20)

and construct the centered matricesX = (x1−x, ...,xM −x,x∗1−x, ...,x∗N −x)
andY = (y∗1 − y, ...,y∗M − y,y1 − y, ...,yN − y).

3. Compute the weighted covariance matrixH = XWY
T

, whereW = diag(u,v)
is an (N + M) × (N + M) diagonal matrix with the elements ofu andv on
the diagonal. Compute the singular value decompositionH = UΛVT, and set
R = UVT, andt = x−Ry.

4. Replace the columnsyi of Y with their transformed versionsRyi + t.

As a stopping condition, a norm of the change ofY, e.g.
∑ ‖yi −Ryi − t‖2 ≤ τ can

be used for some small thresholdτ . Once the ICP algorithm is terminated, we compute
the local surface misalignment as

eX,Y = (‖x1 − y∗1‖2, ..., ‖xN − y∗N‖2)T,

eY,X = (‖y1 − x∗1‖2, ..., ‖yM − x∗M‖2)T. (21)

Note that like in the classical ICP, wheneX,Y (x) = ‖x − y∗(x)‖2 andeY,X(y) =
‖y−x∗(y)‖2 are used, the best alignment betweenX̃ andỸ for a given correspondence
is given analytically using the SVD of the covariance matrixH.

4.2 Optimal part selection

The solution of (18) in Step 3 of our framework algorithm consists of finding the best
partsu andv given fixedeX,Y andeY,X . We discretize the dissimilarity termd(X̃, Ỹ )
asd(u,v) = eT

X,Y Au + eT
Y,XBv, whereA = diag(a) andB = diag(b) are, respec-

tively, theN ×N andM ×M diagonal matrices with the elements ofa andb on the
diagonal. ArrangingeX,Y andeY,X into an(M + N) × 1 vectoreT = (eT

X,Y , eT
Y,X),

andu andv into the vectorwT = (uT,vT), we can writed(w) = eTCw, where
C = diag(a,b) is the(M + N)× (M + N) diagonal matrix, containing the elements
of a andb on the diagonal.

In order to discretize the irregularity termr(X̃), we first need to approximate the
norm of the intrinsic gradient∇Xu on the meshX. Assuming a first-order approxi-
mation ofu, the gradient∇Xu is constant one each face of the mesh. Given a trian-
gle i formed by the verticesxti,1 ,xti,2 ,xti,3 , the gradient norm can be expressed as

gi =
√

δT(XT
i Xi)−1δ, whereXi = (xti,2 −xti,1 ,xti,3 −xti,1) is a3× 2 matrix with

the local system of coordinates of trianglet, andδ = (uti,2 − uti,1 , uti,3 − uti,1) is the
vector of the membership function differences. Arranging thegi’s as the elements of the
T × 1 vectorgX(u), we can express the irregularity term asr(u) = h(u)TAPgX(u),
whereh(u)T = (h(u1), ..., h(uN )) is the non-linearityh applied element-wise to the
vectoru. The second irregularity termr(v) is discretized in a similar way, yielding
r(v) = h(v)TBQgY (v). Since the gradientsgX(u) andgY (v) are intrinsic, they are
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invariant to rigid motion ofX andY and depend only onu andv. In terms of the
combined vectorw, the regularityr(X̃) + r(Ỹ ) can be written as

r(w) = (h(u)T, h(v)T)
(

AP
BQ

)(
gX(u)
gY (v)

)
= h(w)TDg(w), (22)

whereD = Cdiag(P,Q) andg(w)T = (gX(u)T,gY (v)T).
The partiality termp(X̃) is discretized as the inner productp(u) = aT(1 − u),

where1 is an N × 1 vector of ones. The second partiality term is discretized in a
similar manner asp(v) = bT(1−v). Using these expressions, the inequality constraint
in minimization problem (17) can be rewritten as the linear constraintaTu + bTv ≥
(1 − p0)α, whereα = aT1 + bT1 is the sum of the areas of the meshesX andY .
Using the combined vectorw, we can writecTw ≥ (1− p0)α with cT = (aT,bT).

Plugging the discretized dissimilarity, partiality and irregularity terms into problem
(18), we obtain the

min
w

eTCw + µ h(w)TDg(w) s.t.
{

cTw ≥ (1− p0)α
0 ≤ w ≤ 1 (23)

Since the objective function has a well-structured sparse Hessian, the use of second-
order minimization algorithms is appealing. In our implementation, the problem is
solved using a reduced Newton descent algorithm [14], where the projection enforces
the bound constraints0 ≤ w ≤ 1. The inequality constraintcTw ≥ (1− p0)α is intro-
duced by adding an augmented Lagrangian term to the objective function. The reduced
Newton system is solved using the modified Cholesky factorization, guaranteeing a de-
scent direction at each iteration. Since part regularization has a low-pass filtering effect,
the solution of (18) at low mesh resolution usually provides a sufficiently good initial-
ization for the following resolution levels. Our practice shows that about four resolution
levels improve convergence by about one order of magnitude.

The solution of the regularized matching problem yields the vectorw, representing
the fuzzy part membership functions, and the transformationR, t bringing those parts
into best alignment. Since generallyw will contain a continuous range of values from0
to 1, the final step of the algorithm requires to “defuzzify” the fuzzy parts, i.e. convertu
andv into binary membership functions. This is done by finding a thresholdτ satisfying

τ = arg min
τ

τ s.t. cTχ(w ≥ τ) ≥ (1− p0)α, (24)

whereχ(w ≥ τ) = (χ1, ..., χM+N )T is the indicator vector with the elementsχi = 1
for wi ≥ τ , andχi = 0 otherwise. The crisp parts are then given byu = χ(u ≥ τ) and
v = χ(v ≥ τ).

5 Results

In order to visualize the advantage of the proposed regularized matching framework,
we compared it to unregularized matching performed by means of ICP with rejection
of points based on distance and angle between corresponding normal vectors. Figures2
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Fig. 2. Best partial matching of four rigid objects without regularization. Partialityp0 is set to
0.4, 0.4, 0.65 and0.65 (left-to-right). Two topmost rows present the best matching parts; bottom
row shows their alignment. Highlighted are the matching parts.

and3 show partial matching of four different rigid shapes with and without regulariza-
tion, respectively. The use of regularization produces meaningful parts, unlike the un-
regularized case, where the parts contain many spurious disconnected components and
holes. By changing the parametersp0 andµ, we can control the size and the regularity
of the selected parts. Figure4 shows the optimal part for different values of partiality
p0 and regularization parameterµ. Fixing p0 and increasingµ gradually decreases the
boundary length of the part, making it more regular.

6 Conclusions

In this paper, we considered the Paretian approach for partial matching of shapes pro-
posed in [4] and based on a multicriterion problem of simultaneous maximization of
similarity and size of the parts. We extended this approach, proposing a different de-
finition of part significance, taking into account the regularity of parts besides their
size. We showed an efficient computation scheme based on fuzzy approximation, which
allowed formulating the regularization in the spirit of the Mumford-Shah functional
[13]. Though down-weighting of outliers is common in data fitting (including ICP
algorithms), we believe that our paper proposes for the first time a rigorous method
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Fig. 3. Best partial matching of four rigid objects from Figure2 with regularization.

for selecting the weights optimally, in a controllable manner, and driven by the shape
geometry, rather than resorting to heuristics. In our future studies, we intend to explore
other definitions of topological and geometric regularity, and extensions of the proposed
framework to nonrigid shapes.
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