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Abstract. Invariant image descriptors play an important role in many
computer vision and pattern recognition problems such as image search
and retrieval. A dominant paradigm today is that of “bags of features”,
a representation of images as distributions of primitive visual elements.
The main disadvantage of this approach is the loss of spatial relations
between features, which often carry important information about the
image. In this paper, we show how to construct spatially-sensitive im-
age descriptors in which both the features and their relation are affine-
invariant. Our construction is based on a vocabulary of pairs of features
coupled with a vocabulary of invariant spatial relations between the fea-
tures. Experimental results show the advantage of our approach in image
retrieval applications.

1 Introduction

Recent works [1–9] demonstrated that images can be efficiently represented and
compared using local features, capturing the most distinctive and dominant
structures in the image. The construction of a feature-based representation of an
image typically consists of feature detection and feature description, often com-
bined into a single algorithm. The main goal of a feature detector is to find stable
points or regions in an image that carry significant information on one hand and
can be repeatedly found under transformations. Transformations typically con-
sidered include scale [3, 4], rotation, and affine [7, 8] transformations. A feature
descriptor is constructed using local image information in the neighborhood of
the feature points (or regions).

One of the advantages of feature-based representations is that they allow to
think of images as a collection of primitive elements (visual words), and hence
appeal to the analogy of text search and use well-developed methods from that
community. Images can be represented as a collection of visual words indexed
in a “visual vocabulary” by vector quantization in the descriptor space [10, 11].
Counting the frequency of the visual word occurrence in the image, a repre-
sentation referred to as a bag of features (analogous to a bag of words used in
search engines) is constructed. Images containing similar visual information tend
to have similar features, and thus comparing bags of features allows to retrieve
similar images.
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Using invariant feature detectors and descriptors, invariance is built into bags
of features by construction. For example, given two images differing by an affine
transformation, their bag of features representations based on MSER descriptors
are (at least theoretically) equal. Yet, one of the main disadvantages of bags of
features is the fact that they consider only the statistics of visual words and lose
the spatial relations between them. This may often result in loss of discrimina-
tivity, as spatial configuration of features often carries important information
about the underlying image [12]. A similar problem is also encountered in text
search problems. For example, in a document about “matrix decomposition” the
word “matrix” is frequent. Yet, a document about the movie Matrix will also
contain this word, which will result in a similar word statistics and, consequently,
similar bags of features. In the most pathological case, a random permutation of
words in a text will produce identical bags of words. In order to overcome this
problem, text search engines commonly use vocabularies consisting not only of
single words but also of combinations of words or expressions.

This text analogy can be extended to images. Unlike text which is one-
dimensional, visual expressions are more complicated since the spatial relations
of objects in images are two-dimensional. A few recent papers tried to extend
bags of features taking into consideration spatial information about the features.
Marszalek and Schmid [13] used spatial weighting to reduce the influence of back-
ground clutter (a similar approach was proposed in [14]). Grauman and Darrell
[15] proposed comparing distributions of local features using earth mover’s dis-
tance (EMD) [16], which incorporates spatial distances. Nister and Stewenius
[17] used feature grouping to increase the discriminativity of image descriptors,
and also showed that such the advantage of such an approach over enlarging
the descriptor area is smaller sensitivity to occlusion. A similar approach for
feature grouping and geometry consistency verification has been more recently
proposed by Wu et al. [18]. Sivic et al. [19, 20] used feature configurations for
object retrieval. Chum and Matas [21] considered a special case when the fea-
ture appearance is ignored and only geometry of feature pairs is considered.
In [22], the spatial structure of features was captured using a multiscale bag
of features construction. The representation proposed in [23] used spatial rela-
tions between parts. In [24], in a different application of 3D shape description,
spatially-sensitive bags of features based on pairs of words were introduced.
Behmo et al. [25] proposed a commute graph representation partially preserv-
ing the spatial information. However, the commute graph based on Euclidean
distance relations is not invariant under affine transformations. Moreover, com-
mute graphs encode only translational relations between features, ignoring more
complicated relations such as scale and orientation of one feature with respect
to another.

The main focus of this paper is the construction of affine-invariant feature-
based image descriptors that incorporate spatial relations between features. Our
construction is based on a vocabulary of pairs of features coupled with a vocabu-
lary of affine-invariant spatial relations. Such a construction is a meta-approach
which can augment existing feature description methods and can be considered as
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an extension of the classical bags of features. The rest of the paper is organized
as follows. In Section 2, we introduce notation and the notions of invariance
and covariance, using which we formally define feature detection, description,
and bags of features. Section 3 describes our construction of affine-invariant
spatially-sensitive bags of features. Section 4 demonstrates the performance of
our approach in an invariant image retrieval experiment. Finally, Section 5 con-
cludes the paper.

2 Background

Typically, in the computation of a bag of features representation of an image, first
a feature detector finds stable regions in the image. Next, each of the detected
features undergoes is transformed to an invariant canonical representation, from
which a visual descriptor is computed. Each such descriptor containing visual
information about the feature is quantized in a visual vocabulary, increasing the
count of the visual word corresponding to it. Finally, counts from all features
are collected into a single distribution, called a bag of features. In what follows,
we formalize each of these steps.

Feature detection. Let us be given an image I (for simplicity, grayscale).
We refer to a planar subset F as to a feature, and denote by FI = {F1, . . . , Fn}
a feature transform of I that produces a collection of features out of an image.
The feature transform is said to be covariant with a certain group of geometric
transformations if it commutes with action of the group, i.e., for every transfor-
mation T, FTI = TFI (we write TI(x) implying I(Tx)). In particular, we are
interested in the group of affine transformations of the plane. We will henceforth
assume that the feature transform is affine-covariant. A popular example of such
a feature transform is MSER [7], which will be adopted in this study.

Feature canonization. Once features are detected, they are often nor-
malized or canonized by means of a transformation into some common system
of coordinates [26]. We denote the inverse of such a canonizing transformation
associated with a feature F by AF , and refer to A−1

F F as to a canonical rep-
resentation of the feature. As before, this process is said to be affine-covariant
if it commutes with the action of the affine group. The canonical representa-
tion in that case is affine-invariant, i.e., A−1

F F = A−1
TF (TF ) for every affine

transformation T. A classical affine-covariant (up to reflection ambiguity) fea-
ture canonization is based on zeroing its first-order moments (centroid) and
diagonalizing the second-order moments [27].

Feature descriptors. The fact that a canonical representation of a feature
is invariant is frequently used to create invariant descriptors. We will denote
by vF a vector representing the visual properties of the image supported on F
and transformed by A−1

F into the canonical system of coordinates, referring to
it as to a visual descriptor of F . A straightforward descriptor can be obtained
by simply sampling the feature footprint in the canonical space and represent-
ing the obtained samples in a vector form [26]. However, because of using the
intensity values of the image directly, such a descriptor is sensitive to changes
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in illumination. While this is not an issue in some applications, many real ap-
plications require more sophisticated representations. For example, the SIFT
descriptor [3] computes a histogram of local oriented gradients (8 orientation
bins for each of the 4 × 4 location bins) around the interest point, resulting in
a 128-dimensional vector. SURF [9] descriptor is similar to SIFT yet more com-
pact, with 4-dimensional representation for each of the 4 × 4 spatial locations
(total of 64 dimensions).

Bags of features. Given an image, descriptors of its features are aggre-
gated into a single statistic that describes the entire image. For that purpose,
descriptors are vector-quantized in a visual vocabulary V = {v1, . . . ,vm} con-
taining m representative descriptors, which are usually found using clustering
algorithms. We denote by QV a quantization operator associated with the visual
vocabulary V that maps a descriptor into a distribution over V, represented as
an m-dimensional vector. The simplest hard quantization is given by

(QVv)i =
{

1 : d(v,vi) ≤ d(v,vj), j = 1, . . . ,m
0 : else, (1)

where d(v,v′) is the distance in the visual descriptor space, usually the Euclidean
distance ‖v − v′‖. Summing the distributions of all features,

BI =
∑

F∈FI

QVvF ,

yields an affine-invariant representation of the image called a bag of features,
which with proper normalization is a distribution of the image features over the
visual vocabulary. Bags of features are often L2-normalized and compared using
the standard Euclidean distance or correlation, which allows efficient indexing
and comparison using search trees or hash tables [11].

3 Spatially-sensitive image descriptors

A major disadvantage of bags of features is the fact that they discard information
about the spatial relations between features in an image. We are interested in
spatially-sensitive bags of features that encode spatial information in an invariant
manner. As already mentioned in the introduction, spatial information in the
form of expressions is useful in disambiguating different uses of a word in text
search. A 2D analogy of two text documents containing the same words up to
some permutation is a scene depicting different arrangements or motion of the
same objects: a change in the relative positions of the objects creates different
spatial configuration of the corresponding features in the image. Yet, in images,
the spatial relations can also change as a result of a difference in the view point
(usually approximated by an affine transformation). If in the former case the
difference in spatial relations is desired since it allows us to discriminate between
different visual content, in the latter case, the difference is undesired since it
would deem distinct a pair of visually similar images.
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Visual expressions. A straightforward generalization of the notion of com-
binations of words and expressions to images can be obtained by considering pairs
of features. For this purpose, we define a visual vocabulary on the space of pairs
of visual descriptors as the product V ×V, and use the quantization operator
Q2

V = QV ×QV assigning to a pair of descriptors a distribution over V ×V.
(Q2

V(v,v′))ij can be interpreted as the joint probability of the pair (v,v′) being
represented by the expression (vi,vj).

Same way as expressions in text are pairs of adjacent words, visual expressions
are pairs of spatially-close visual words. The notion of proximity can be expressed
using the idea of canonical neighborhoods: fixing a disk M of radius r > 0
centered at the origin of the canonical system of coordinates, we define NF =
AF M to be a canonical neighborhood of a feature F . Such a neighborhood is
affine-covariant, i.e., NTF = TNF for every affine transformation T. The notion
of a canonical neighborhood induces a division of pairs of features into near and
far. We define a bag of pairs of features simply as the distribution of near pairs
of features,

B2
I =

∑

F∈FI

∑

F ′∈NF

Q2
V(vF ,vF ′).

Bags of pairs of features are affine-invariant by their construction, provided that
the feature transform and the canonization are affine-covariant.

Spatial relations. Canonical neighborhoods express binary affine-invariant
proximity between features, which is a simple form of spatial relations. A more
general class of spatial relations can be obtained by considering the relation be-
tween the canonical transformations of pairs of features. Specifically, we consider
the canonical relation

SF,F ′ = A−1
F ′ AF .

It is easy to show that SF,F ′ is affine-invariant, i.e., STF,TF ′ = SF,F ′ for every
affine transformation T. This spatial relation can be thought of as the transfor-
mation from F ′ to F expressed in the canonical system of coordinates. It should
not be confused with the transformation from the system of coordinates of F ′

to the system of coordinates of F , which is achieved by AF A−1
F ′ .

It is worthwhile noting that symmetric features result in ambiguous spatial
relations. The problem can be resolved by projecting the relation onto the sub-
group of the affine group modulo the ambiguity group. When the ambiguity
group is finite (e.g. reflection), the spatial relation can be defined as a set [28].

Spatially-sensitive bags of features. Being an invariant quantity, the
canonical spatial relation can be used to augment the information contained in
visual descriptors in a bag of pairs of features. For that purpose, we construct a
vocabulary of spatial relations, S = {S1, . . . ,Sn}. A quantization operator QS

associated with the spatial vocabulary can be constructed by plugging an ap-
propriate metric into (1). The easiest way of defining a distance on the space of
transformations is the Frobenius norm on transformations represented in homo-
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geneous coordinates,

d2(S,S′) = ‖S− S′‖2F = tr((S− S′)T(S− S′)),

which is equivalent to considering the 3 × 3 transformation matrices as vectors
in R9 using the standard Euclidean distance. A somewhat better approach is to
use the intrinsic (geodesic) distance on the Lie group of matrices,

d2(S,S′) = ‖ log(S−1S′)‖2F,

where log X =
∑∞

i=0
(−1)i+1

i (X− I)i is the matrix logarithm.
The disadvantage of the intrinsic distance is the non-linearity introduced by

the logarithm. However, using the Baker-Campbell-Hausdorff exponential iden-
tity for non-commutative Lie groups yields the following first-order approxima-
tion,

d(S,S′) = ‖ log(S−1S′)‖F =
∥∥log

(
exp(− log S) exp(log S′)

)∥∥
F

=
∥∥log

(
exp(log S′)− exp(log S) +O(‖ log S′ log S‖2))∥∥

F

≈ ‖ log S′ − log S‖F.

Practically, using this approximation, spatial relations can be thought of as nine-
dimensional vector whose elements are the entries of the logarithm matrix log S,
and the distance between them is the standard Euclidean distance on R9. A
more general distance between spatial relations can be obtained by projecting
S and S′ onto subgroups of the affine group, measuring the distances between
projections, and then combining them into a single distance.

Coupling the spatial vocabulary S with the visual vocabulary V×V of pairs
of features, we define the spatially-sensitive bag of features

B3
I =

∑

F∈FI

∑

F ′∈NF

Q2
V(vF ,vF ′) ·QS(SF,F ′),

which, with proper normalization, is a distribution over V×V× S that can be
represented as a three-dimensional matrix of size m×m× n. Spatially-sensitive
bags of features are again affine-invariant by construction.

While the clear advantage of spatially-sensitive bags of features is their higher
discriminativity, the resulting representation size may be significantly higher.
Additional potential drawback is that repeatability of pairs of features can be
lower compared to single features. Due to the above considerations, the best
application for the presented approach is a scenario in which the two images to
be compared have a large overlap in the visual content. An example of such an
application is image and video copy detection, in which one tries to recognize an
image or video frame that has undergone some processing or tampering. Another
example is video alignment, in which one tries to find a correspondence between
two video sequences based on their visual content. Subsequent frames in video
may differ as a result from motion, which result in different spatial configurations
of the depicted object. Distinguishing between such frames using bags of features
would be very challenging or even impossible (see e.g. Figure 2).
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Fig. 1. Examples of five layouts of a Shakespearean sonnet from the Text dataset. The
last layout is a random permutation of letters.

Fig. 2. Examples of three images from the same scene in the Opera dataset. Each
scene contains visually similar objects appearing in different spatial configurations.
Such images are almost indistinguishable by means of bags of features, yet, result in
different spatially-sensitive descriptors.

4 Results

We assessed the proposed methods in three image retrieval experiment, using
Text, Opera, and Still life datasets described in the following.3 The first two
experiments were with synthetic transformations, the third experiment was with
real photographed data. The datasets were created to contain objects in different
geometric configurations. In all the experiments, MSER was used as the feature
detector, followed by the moment-based canonization. Feature descriptors were
created by sampling the unit square in the canonical space on a 12 × 12 grid.
Three methods were compared: simple bags of features (BoF), bags of pairs of
features (P-BoF), and spatially-sensitive bags of features (SS-BoF). All bags of
features were computed from the same sets of feature descriptors and canonical
transformations using the same visual vocabularies.

Synthetic data. The first two experiments were performed on two datasets.
The first was the Text dataset consisting of 29 distinct fragments from Shake-

3 All the data and code for reproducing the experiments will be published online.
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Fig. 3. Examples of three viewpoints (left, middle, right) and two configurations (first
and second rows) of objects in the Still life dataset. Images in the same layout were
taken by multiple cameras from different positions.

spearian sonnets. Each fragment was rendered as a black-and-white image using
the same font in several spatial layouts containing the same letters organized
differently in space. One of such extreme layouts included a random permuta-
tion of the letters. This resulted in a total of 91 images, a few examples of which
are depicted in Fig. 1. Black-and-white text images are an almost ideal setting
for the MSER descriptor, which manifested nearly perfect affine-invariance. This
allowed to study in an isolated manner the contribution of spatial relations to
bag of feature discriminativity.

The Opera dataset was composed of 28 scenes from different opera record-
ings. From each scene, several frames were selected in such a way to include
approximately the same objects in different spatial configurations, resulting in
a total of 83 images (Fig. 2). The challenge of this data was to be able to dis-
tinguish between different spatial configurations of the objects. Such a problem
arises, for example, in video alignment where subsequent frames are often very
similar visually but have slightly different spatial layouts.

To each image in both data sets, 21 synthetic transformation were applied.
The transformations were divided into five classes: in-plane rotation, mixed in-
plane and out-of-plane rotation, uniform scaling, non-uniform scaling, and null
(no transformation). Each transformation except the null appeared in three in-
creasing strengths (marked 1− 5).

For the Text data, the vocabularies were trained on examples of other text,
not used in the tests. Same visual vocabulary of size 128 were used in all the
algorithms; spatial vocabulary of size 24 was used in SS-BoFs. For the Opera
data, the vocabularies were trained on web images. Visual vocabulary was of
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Strength
Method Transformation 1 ≤2 ≤3 ≤4 ≤5

In-plane rotation 41.57 35.33 31.98 30.86 30.39
Mixed rotation 26.28 35.23 32.68 28.56 24.25

BoF Nonuniform scale 58.13 59.70 59.25 60.11 58.63
Uniform scale 55.30 48.64 46.79 45.77 44.57
All 45.32 44.73 42.68 41.33 39.46

In-plane rotation 60.51 49.36 43.45 40.90 39.94
Mixed rotation 30.08 48.86 42.97 36.05 30.33

P-BoF Nonuniform scale 81.90 82.90 83.13 83.26 81.31
Uniform scale 78.91 72.56 73.06 69.82 67.73
All 62.85 63.42 60.65 57.51 54.83

In-plane rotation 100.00 100.00 99.45 99.08 99.12
Mixed rotation 97.99 98.99 98.14 85.96 70.48

SS-BoF Nonuniform scale 100.00 100.00 100.00 100.00 100.00
Uniform scale 100.00 100.00 100.00 100.00 100.00
All 99.50 99.75 99.40 96.26 92.40

Table 1. Retrieval performance (mAP in %) of different methods on the Text dataset,
broken down according to transformation classes and strengths (1–5).

size 128, and spatial vocabulary was of size 24. In all experiments, the size of
the canonical neighborhood was set to r = 15.

We performed a leave-one-out retrieval experiment on both datasets. Eu-
clidean distance between different image descriptors (BoF, P-BoF, and SS-BoF)
was used to rank the results. Retrieval performance was evaluated on subsets of
the distance matrix using precision/recall characteristic. Precision at k, P (k), is
defined as the percentage of relevant images in the first k top-ranked retrieved
images. Relevant images were the same configuration of objects regardless of
transformation. Average precision (AP) is defined as mAP = 1

R

∑
k P (k) ·rel(k),

where rel(k) ∈ {0, 1} is the relevance of a given rank and R is the total number
of relevant images. Mean average precision (mAP), the average of AP over all
queries, was used as a single measure of retrieval performance. Ideal retrieval
results in all first matches relevant (mAP=100%).

Tables 1 and 2 shows the retrieval performance using different image repre-
sentations on Text and Opera datasets, respectively. The performance is broken
down according to transformation classes and strengths. The use of spatially-
sensitive bags of features increases the performance from 39.46% mAP to 92.4%
(134% improvement) on the Text data and from 83.9% to 91.35% (8% improve-
ment) on the Opera data.

Real data. In the third experiment, we used the Still life dataset containing
191 images of objects laid out in 9 different configurations (scenes) and captured
from multiple views with very wide baseline by cameras with different focus and
resolution (12–36 views for each scene). Some of the views differed dramatically,
including occlusions, scene clutter, as shown in Figure 3. Moreover, most of the
scenes included a sub-set of the same objects. The challenge in this experiment
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Fig. 4. Performance of different methods on the Still life dataset. Four red solid curves
correspond to SS-BoF with spatial vocabulary of different size (displayed on the curve).

was to group images into scenes based on their visual similarity. Same vocab-
ularies as in the Opera test were used. We performed a leave-one-out retrieval
experiment. Successful match was from the same object configuration (e.g., in
Figure 3, when querying the top left image, correct matches are top middle and
right, incorrect matches are all images in the second row).

Figure 4 shows the retrieval accuracy of different methods as a function of
visual and spatial vocabulary size. BoF achieves the best retrieval performance
(42.1% mAP) with a vocabulary of size 128. With the same vocabulary, P-BoF
achieves 44.7% mAP. The best result for SS-BoF is 51.0% (21% improvement)
when using a spatial vocabulary of size 24. Consistent and nearly constant im-
provement is exhibited for all the range of the tested visual vocabulary sizes.

We observe that while consistent improvement is achieved on all datasets,
spatially-sensitive bags of features perform the best on the Text data. We at-
tribute this in part to the relatively primitive feature canonization method used
in our experiments, which was based only on the feature shape and not on the
feature intensity content. This might introduce noise into the computed canoni-
cal transformation and therefore degrade the performance of canonical neighbors
and spatial vocabulary. In future studies, we intend to use a SIFT-like feature
canonization based on the dominant intensity direction, which is likely to im-
prove the stability of the canonical transformations.

5 Conclusions and future directions

We presented a construction of a feature-based image representation that gener-
alizes the bag of features approach by taking into consideration spatial relations
between features. Central to our construction is a vocabulary of pairs of affine-
invariant features coupled with a vocabulary of affine-invariant spatial relations.
The presented approach is a meta-algorithm, since it augments the standard bag
of features approach and is not limited to a specific choice of a feature trans-
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Strength
Method Transformation 1 ≤2 ≤3 ≤4 ≤5

In-plane rotation 92.95 88.36 84.62 80.63 77.59
Mixed rotation 68.39 64.98 69.86 70.25 70.07

SS-BoF Nonuniform scale 95.50 96.01 95.90 95.22 94.47
Uniform scale 96.73 95.16 94.78 94.31 93.47
All 88.39 86.13 86.29 85.10 83.90

In-plane rotation 93.55 88.19 85.82 84.17 81.49
Mixed rotation 75.42 72.84 75.47 75.21 74.75

SS-BoF Nonuniform scale 95.31 96.01 95.53 95.13 94.52
Uniform scale 96.18 94.76 93.86 93.62 93.09
All 90.11 87.95 87.67 87.03 85.96

In-plane rotation 95.11 92.73 91.27 89.91 88.52
Mixed rotation 82.68 81.42 83.65 83.95 84.23

SS-BoF Nonuniform scale 97.32 97.32 97.64 97.36 96.47
Uniform scale 98.80 98.11 97.28 96.66 96.20
All 93.48 92.40 92.46 91.97 91.35

Table 2. Retrieval performance (mAP in %) of different methods on the Opera dataset,
broken down according to transformation classes and strengths (1–5).

form. In future studies, we intend to test it on other descriptors such as SIFT,
and extend the idea of spatial relations to epipolar relations between features
in calibrated images. We also intend to extend the proposed approach to video,
creating affine-invariant vocabularies for motion.

Experimental results show improved performance of image retrieval on syn-
thetic and real data. We plan to evaluate our approach in a large-scale image
retrieval experiment. Our approach is especially suitable for problems in which
the compared images have large overlap in visual content, such as copy detection
and video alignment, an application that will be studied in future works.
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