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ABSTRACT

We discuss the synthesis between the 3D and the 2D data in
three-dimensional face recognition. We show how to com-
pensate for the illumination and facial expressions using the
3D facial geometry and present the approach of canonical
images, which allows to incorporate geometric information
into standard face recognition approaches.

1. INTRODUCTION

In face recognition, it is desired to be able to identify dif-
ferent instances of the same face, independent of external
factors (illumination conditions, head pose relative to the
camera, use of cosmetics, etc.) and internal factors (facial
expressions). The ultimate goal of face recognition is to
find some invariant representation of the face, which would
be insensitive to all these changes. Unfortunately, a 2D im-
age of the face can be significantly altered as the result of
these factors. Generative approaches achieved certain suc-
cess in coping with variations in illumination and changes
in the head pose [1], but are sensitive to facial expressions.

A relatively new trend in face recognition is an attempt
to use 3D imaging [2, 3, 4]. Besides a conventional face pic-
ture (reflectance image), three-dimensional data carry all the
information about the geometry of the face. In [5, 6], a new
approach able to cope with problems resulting from the non-
rigid nature of the human face was introduced. Assuming
that many of human facial expressions are near-isometric
transformations of the facial surface, using embedding into
low-dimensional Euclidean space the facial surface can be
converted into a representation, which is invariant under
such transformations. Such a representation facilitates the
recognition in the presence of facial expressions.

The focus of this paper is on the synthesis between the
3D and the 2D data in the framework of [6]. Besides making
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the facial surface geometry available, 3D imaging also ben-
efits from the ability to compensate for the illumination in
the reflectance images of the face, i.e. estimate the albedo of
the face. When the facial geometry together with the albedo
is embedded into a plane, a 2D illumination- expression-
and pose-invariant representation of the face is obtained.
Standard techniques can be then employed to carry out the
recognition.

2. IMAGE FORMATION

Let us assume for simplicity that the facial surface is repre-
sented by the graph of a functionz(x, y), has a Lambertian
reflectance with albedoρ(x, y) and is viewed orthographi-
cally (see Figure 1). We will denote byn(x, y) the inward
pointing unit normal vector, which can be expressed as

n(x, y) =
(zx(x, y), zy(x, y),−1)√

1 + ‖∇z(x, y)‖22
(1)

in terms of thex− andy− partial derivatives ofz. Also,
we will use the notationb(x, y) = ρ(x, y)n(x, y). We will
further assume thatb(x, y) is discretized on an evenN×M
grid and represented by a matrixB ∈ IRMN×3 containing
b(x, y) as rows.

When the surface is illuminated by a distant point light
source described by intensityα and unit direction vectorl,
a reflectance imager (with the same ordering of pixels as
B) is formed according to

r = max(Bs,0), (2)

wheres = αl. Zero values correspond to attached shad-
ows. Cast shadows that may appear since the object is non-
convex are ignored [1]. If the illumination is structured, the
source intensity is a function ofx, y, i.e. s(x, y) = α(x, y)l.
Under the assumption that the camera has a linear response,
the superposition principle holds: when the surface is illu-
minated by sourcess1, s2, the resulting reflectance image is
r = max(B(s1 + s2),0).



3. RECONSTRUCTION

At the first step a combined 2D-3D face recognition system
has to acquire the geometry of the face and its reflectance
characteristics. The presented algorithm will not require the
explicitly surface, but it will be rather sufficient to recon-
struct the normal fieldn(x, y). The latter will also suffice
to estimate the albedoρ(x, y) from the reflectance image.
We highlight here several range acquisition techniques and
discuss the issues of the normal field and albedo estimation.

3.1. Photometric stereo

WhenK ≥ 3 reflectance imagesr1, ..., rK resulting from
light sourcess1, ..., sK are available, it is possible to recon-
struct both the surface normals and the albedo, if rank(S) =
3 (whereS = (s1, ..., sK) ∈ IR3×K). We assume that
there is no ambient light; in practice, ambient light can be
compensated for by subtraction of the ”darkness” image (re-
flectance image formed by ambient illumination only). The
methods of shape reconstruction from illuminations at dif-
ferent directions are usually termed asphotometric stereo.

Let R = (r1, ..., rK) ∈ IRNM×K and assume for a mo-
ment that there are no attached shadows, i.e. the reflectance
images are given byX = BS. In this case, the matrixB can
be recovered by pseudoinversion ofS, i.e. B = RS†, re-
sulting from the solution of the problemminB ‖R−BS‖2F .
The unit normal vectors are obtained by normalizing the
rows of B. The albedo at each pixel, accordingly, is the
norm of the respective row ofB.

Attached shadows are problematic in such a solution,
since at shadowed pixels the linear relationship betweenB
andR is no more true. Hence, shadowed pixels must be ex-
cluded from computation. Assume that in all the reflectance
images we are able to determine whether pixel(x, y) is
shadowed (e.g. by thresholding, see [1]), and find that in
L ≥ 3 imagesrm1 , ..., rmL

the pixel is not shadowed. Only
these images will be used for reconstruction at pixel(x, y),
i.e. b(x, y) = (rm1(x, y), ..., rmL

(x, y)) S̃† , whereS̃ =
(sm1 , ..., smL).

3.2. Spatially-multiplexed photometric stereo

Instead of acquiring a set ofK images, each illuminated
by a single distinct sourcesk, one can usemultiplexed illu-
mination, wherein each image is acquired under a superpo-
sition of illuminations emerging fromL light sources with
different weights:

rk = max(B(α1kl1 + ... + αLklL),0), (3)

whereαij is the known relative contribution of thei-th light
source to thej-th image. If the weights are selected in
such a way that the matrix(αij) is invertible, it is possi-
ble to compute (demultiplex) reflectance images resulting
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Fig. 1. Image acquisition in photometric stereo.

from each of the single distant sourcesl1, ..., lK . In [7] it
was shown that e.g. Hadamard matrices can be used for bi-
nary multiplexing. After demultiplexing, the normal field
and the albedo are reconstructed similarly to the standard
photometric stereo. However, multiplexed illumination is
advantageous, since it allows to achieve higher SNR [7].

3.3. Structured light

The facial surface can also be acquired using thestructured
or coded light techniques [8, 9], wherein the range sen-
sor, consisting of a camera and projector, projects a pat-
tern (or a set of patterns) onto the face and reconstructs the
depth of each pixel by means of triangulation. In this case,
the normal fieldn(x, y) can be estimated locally from the
depth data, whereas the illumination direction and intensity
s(x, y) are known at each pixel. Excepting the occluded
regions, the albedo can be reconstructed according to

ρ(x, y) =
r(x, y)

〈n(x, y), s(x, y)〉 . (4)

In occluded pixel, albedo can be interpolated from neigh-
bour non-occluded pixels.

4. BENDING-INVARIANT REPRESENTATION

Due to the non-rigid nature of the human face, it undergoes
deformations as the result of facial expressions. In [6], an
isometric model for facial expressions was used (see [15]
for an experimental proof of this model). Facial expres-
sions can be approximated by isometric transformation, i.e.
transformations do not stretch or tear the surface (or more
rigorously, preserve the surface metric). Hence, faces can be
thought of as an equivalence classes of surfaces obtained by
isometric transformations. A representation of these equiv-
alence classes, called thebending invariant canonical form,



was proposed in [5] in the context of deformable surface
matching method.

The key idea of bending invariant representation is the
notion ofembedding, i.e. mapping of the facial surface from
a space with a non-Euclidean metric to a low-dimensional
Euclidean space. This is accomplished by first comput-
ing the distances between the points of the surface, and
then finding a set of corresponding points in the embedding
space, such that the mutual distances between the new set
of points are as close as possible to the original ones. The
following briefly describes the algorithm.

4.1. Geodesic distance measurement

Our model of the face as a graph ofz(x, y), is in fact a
particular case of a parametric manifold, represented by a
mappingX : IR2 → IR3 from the parameterization plane
U = (u1, u2) = (x, y) to X(U) = (x, y, z(x, y)). The
derivatives ofX with respect toui are defined asXi =

∂
∂ui X and constitute a non-orthogonal coordinate system on
the manifold:

X1 = (1, 0, zx(x, y)), X2 = (0, 1, zy(x, y)). (5)

Themetric tensor

(gij) =
[

g11 g12

g21 g22

]
=

[
X1 ·X1 X1 ·X2

X2 ·X1 X2 ·X2

]
(6)

allows to express a distance element on the manifold as
ds =

√
gijuiuj (here we use Einstein summation conven-

tion), and consequently, to measure thegeodesic distance1

δ(x, y) between any pair of pointsx, y on the manifold.
When the parametric manifold is given in a discrete form,

the parametric version of the Fast Marching method (FMM)
[10] can be used in order to compute the geodesic distances
numerically. A remarkable property of parametric FMM
is that it does not use the manifold explicitly and requires
only the knowledge of the metric tensorgij . According to
(6), the metric tensor is completely defined by the surface
gradientszx(x, y), zy(x, y) or alternatively, by the surface
normalsn(x, y). This allows to bypass the surface recon-
struction [11] on the geodesic distance computation stage.

4.2. Embedding

The output of FMM is aMN ×MN matrix ∆ of squared
mutual geodesic distancesδ2(x, y) between every pair of
points on the surface2. The matrix∆ is invariant under iso-
metric surface deformations, but is not a unique represen-
tation of isometric surfaces, since it depends on arbitrary

1The length of the shortest path on the manifold connecting the points.
2In practical implementation, the surface is cropped and subsampled

prior to the FMM application to reduce the computational effort. For clarity
of presentation, the preprocessing stage is ignored here.

ordering and the selection of the surface points. Treating
the squared mutual distances as a particular case of dis-
similarities, we apply a multidimensional scaling (MDS)
technique in order to embed the surface points with their
geodesic distances in a low-dimensional Euclidean space
IRm [12, 13, 5].

In [6] a particular MDS algorithm, theclassical scaling,
was used. The embedding into IRm is performed in two
stages. Firstly, the matrix∆ undergoes double-centering:

B = −1
2
J∆J (7)

(hereJ = I − 1
nU ; I is an × n identity matrix, andU is

a matrix of ones). Secondly, eigenvectorsei, corresponding
to m largest eigenvalues ofB, are used as the embedding
coordinates

xj
i = ej

i ; i = 1, ..., MN ; j = 1, ...,m . (8)

wherexj
i denotes thej-th coordinate of the vectorxi. As al-

ternatives to the classical scaling, iterative algorithms, such
as LS MDS can be used [12].

The set of pointsxi obtained by the MDS is referred
to as the bending-invariant canonical form of the surface;
whenm = 3, it can be plotted as a surface. Standard align-
ment and rigid surface matching methods can be used in
order to compare between two deformable surfaces, using
their bending-invariant representations instead of the sur-
faces themselves [5, 6].

4.3. Canonical images

Of special interest in the context of this paper is the case of
m = 2, i.e. when the embedding is performed into a plane.
In this case, embedding can be thought of as warping of the
manifold parameterization planeU ; a transformation map-
ping the coordinate system(x, y) to (x′, y′). Such warping
compensates for isometric transformations of the surface on
which the albedo is drawn. Plotting the albedoα in the new
coordinates, we obtain thecanonical image(Figure 2).

The canonical image is invariant under isometric facial
expressions, illumination, and head orientations (ignoring
occlusions) and to some extent serves as a registration (align-
ment) method between two faces. As the next stage, stan-
dard linear methods (e.g. eigenfaces) can be applied in the
canonical images space in order to perform recognition.

5. RESULTS

In this section we exemplify the canonical image computa-
tion. Eight photometric images from Yale Database B [14]
with illumination angle of up to20◦ were used for surface
and albedo reconstruction. The images were cropped and
subsampled to50% of the original size. Embedding was



carried out using classical scaling. The result is presented
in Figures 2–3. Due to space limitations we do not present
here results of face recognition; extensive testing of our ap-
proach appears in [15].

Fig. 2. Examples of images used for albedo reconstruction.

Fig. 3. Estimated albedo rendered on the reconstructed facial
surface (left) and the illumination-compensated canonical image
(right) obtained by embedding into the plane.

6. CONCLUSIONS

In this paper, we considered the problem of fusing the 2D
and the 3D data in three-dimensional face recognition. As
the working framework, we focused on the geometric face
recognition approach proposed in [6]. The availability of
the facial geometry, combined with known illumination di-
rection allows to extract the albedo of the face, which is in-
variant to illumination. We highlighted how to estimate the
albedo from photometric stereo and structured light. The
albedo image can be then ”flattened” using the MDS pro-
cedure applied to the matrix of geodesic distances on the
face measured using the Fast Marching method. The re-
sulting canonical image incorporates the geometric invari-
ants of the face (the geodesic distances), which appear to be
nearly-invariant to facial expression. Hence, apart from be-
ing illumination-invariant, the canonical image is also nearly-
invariant to facial expressions. For recognition purposes,
these invariant representations can be compared using the
classical techniques such as eigendecomposition.
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