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Abstract.
An expression-invariant 3D face recognition approach is presented. Our basic

assumption is that facial expressions can be modelled as isometries of the facial
surface. This allows to construct expression-invariant representations of faces using
the canonical forms approach. The result is an efficient and accurate face recognition
algorithm, robust to facial expressions that can distinguish between identical twins
(the first two authors). We demonstrate a prototype system based on the proposed
algorithm and compare its performance to classical face recognition methods.

The numerical methods employed by our approach do not require the facial
surface explicitly. The surface gradients field, or the surface metric, are sufficient for
constructing the expression-invariant representation of any given face. It allows us
to perform the 3D face recognition task while avoiding the surface reconstruction
stage.

Keywords: expression-invariant 3D face recognition, isometry invariant, facial ex-
pressions, multidimensional scaling.

1. Introduction

Automatic face recognition has been traditionally associated with the
fields of computer vision and pattern recognition. Face recognition is
considered a natural, non-intimidating, and widely accepted biometric
identification method (Ashbourn, 2002; Ortega-Garcia et al., 2004). As
such, it has the potential of becoming the leading biometric technology.
Unfortunately, it is also one of the most difficult pattern recognition
problems. So far, all existing solutions provide only partial, and usually
unsatisfactory, answers to the market needs.

In the context of face recognition, it is common to distinguish be-
tween the problem of authentication and that of recognition. In the
first case, the enrolled individual (probe) claims identity of a person
whose template is stored in the database (gallery). We refer to the data
used for a specific recognition task as a template. The face recognition
algorithm needs to compare a given face with a given template and
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verify their equivalence. Such a setup (one-to-one matching) can occur
when biometric technology is used to secure financial transactions, for
example, in an automatic teller machine (ATM). In this case, the user
is usually assumed to be collaborative.

The second case is more difficult. Recognition implies that the probe
subject should be compared with all the templates stored in the gallery
database. The face recognition algorithm should then match a given
face with one of the individuals in the database. Finding a terrorist in
a crowd (one-to-many matching) is one such application. Needless to
say, no collaboration can be assumed in this case. At current techno-
logical level, one-to-many face recognition with non-collaborative users
is practically unsolvable. That is, if one intentionally wishes not to be
recognized, he can always deceive any face recognition technology. In
the following, we will assume collaborative users.

Even collaborative users in a natural environment present high vari-
ability of their faces – due to natural factors beyond our control. The
greatest difficulty of face recognition, compared to other biometrics,
stems from the immense variability of the human face. The facial ap-
pearance depends heavily on environmental factors, for example, the
lighting conditions, background scene and head pose. It also depends
on facial hair, the use of cosmetics, jewelry and piercing. Last but not
least, plastic surgery or long-term processes like aging and weight gain
can have a significant influence on facial appearance.

Yet, much of the facial appearance variability is inherent to the face
itself. Even if we hypothetically assume that external factors do not
exist, for example, that the facial image is always acquired under the
same illumination, pose, and with the same haircut and make up, still,
the variability in a facial image due to facial expressions may be even
greater than a change in the person’s identity (see Figure 1).

 

     
     

 Figure 1. Face recognition with varying lighting, head pose, and facial
expression is a non-trivial task.
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1.1. Two-dimensional face recognition: Invariant versus
generative approaches

Trying to make face recognition algorithms insensitive to illumination,
head pose, and other factors mentioned above is one of the main ef-
forts of current research in the field. Broadly speaking, there are two
alternatives in approaching this problem. One is to find features that
are not affected by the viewing conditions; we call this the invariant
approach. Early face recognition algorithms advocated the invariant
approach by finding a set of fiducial points such as eyes, nose, mouth,
etc. and comparing their geometric relations (feature-based recognition)
(Bledsoe, 1966; Kanade, 1973; Goldstein et al., 1971) or comparing the
face to a whole facial template (template-based recognition) (Brunelli
and Poggio, 1993).

It appears, however, that very few reliable fiducial points can be ex-
tracted from a 2D facial image in the presence of pose, illumination, and
facial expression variability. As the result, feature-based algorithms are
forced to use a limited set of points, which provide low discrimination
ability between faces (Cox et al., 1996). Likewise, templates used in
template matching approaches change due to variation of pose or facial
expression (Brunelli and Poggio, 1993). Using elastic graph matching
(Wiskott, 1995; Wiskott et al., 1997) as an attempt to account for
the deformation of templates due to flexibility of the facial surface
has yielded limited success since the attributed graph is merely a flat
representation of a curved 3D object (Ortega-Garcia et al., 2004).

Appearance-based methods that treat facial images as vectors of a
multidimensional Euclidean space and use standard dimensionality re-
duction techniques to construct a representation of the face (eigenfaces
(Turk and Pentland, 1991) and similar approaches (Sirovich and Kirby,
1987; Hallinan, 1994; Pentland et al., 1994)), require accurate registra-
tion between facial images. The registration problem brings us back to
identifying reliably fiducial points on the facial image independently
of the viewing conditions and the internal variability due to facial
expressions. As a consequence, appearance-based methods perform well
only when the probe image is acquired in conditions similar to those of
the gallery image (Gheorghiades et al., 2001).

The second alternative is to generate synthetic images of the face
in new, unseen conditions. Generating facial images with new pose
and illumination requires some 3D facial surface as an intermediate
stage. It is possible to use a generic 3D head model (Huang et al.,
2002), or estimate a rough shape of the facial surface from a set of
observations (e.g. using photometric stereo (Georghiades et al., 1998;
Gheorghiades et al., 2001)) in order to synthesize new facial images and
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then apply standard face recognition methods like eigenfaces (Sirovich
and Kirby, 1987; Turk and Pentland, 1991) to the synthetic images.
Yet, facial expressions appear to be more problematic to synthesize.
Approaches modelling facial expressions as warping of the facial image
do not capture the true geometric changes of the facial surface, and
are therefore useful mainly for computer graphics applications. That
is, the results may look natural, but fail to represent the true nature
of the expression.

Figure 2 shows a simple visual experiment that demonstrates the
generative approach. We created synthetic faces of Osama Bin Laden
(Figure 2c) and George Bush (Figure 2d) in different poses by map-
ping the respective textures onto the facial surface of another subject
(Figure 2a,b). The resulting images are easily recognized as the world
number one terrorist and the forty third president of the United States,
though in both cases, the facial geometry belongs to a completely
different individual. This is explained by the property of the human
visual system, which uses mainly the 2D information of the face to
perform recognition.

 

(a) Surface

 

    
 

(c) Osama Bin Laden

 

(b) Texture

 

    

 
 
 
 
 
 

(d) George Bush

Figure 2. Simple texture mapping on the same facial surface can completely change
the appearance of the 2D facial image and make the same face look like George
Bush or Osama Bin Laden.

Simple texture mapping in our experiment allowed to create naturally-
looking faces, yet, the individuality of the subject concealed in the 3D
geometry of his face was completely lost. This reveals the intrinsic weak-
ness of all the 2D face recognition approaches: the face is a 3D object,
and using only its 2D projection can be misleading. Exaggerating this
example, if one had the ability to draw any face on his facial surface,
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he could make himself look essentially like any person and deceive
any 2D face recognition method. Practically, even with very modest
instruments, makeup specialists in the theater and movie industry can
change completely the facial appearance of actors.

1.2. Three-dimensional face recognition

Three-dimensional face recognition is a relatively recent trend that in
some sense breaks the long-term tradition of mimicking the human
visual recognition system, like the 2D methods attempt to do. As eval-
uations such as the Face Recognition Vendor Test (FRVT) demonstrate
in an unarguable manner that current state of the art in 2D face
recognition is insufficient for high-demanding biometric applications
(Phillips et al., 2003), trying to use 3D information has become an
emerging research direction in hope to make face recognition more
accurate and robust.

Three-dimensional facial geometry represents the internal anatomi-
cal structure of the face rather than its external appearance influenced
by environmental factors. As the result, unlike the 2D facial image, 3D
facial surface is insensitive to illumination, head pose (Bowyer et al.,
2004), and cosmetics (Mavridis et al., 2001). Moreover, 3D data can
be used to produce invariant measures out of the 2D data (for exam-
ple, given the facial surface, the albedo can be estimated from the 2D
reflectance under assumptions of Lambertian reflection).

However, while in 2D face recognition a conventional camera is used,
3D face recognition requires a more sophisticated sensor, capable of ac-
quiring depth information – usually referred to as depth or range camera
or 3D scanner. The 3D shape of the face is usually acquired together
with a 2D intensity image. This is one of the main disadvantages of
3D methods compared to 2D ones. Particularly, it prohibits the use
of legacy photo databases, like those maintained by police and special
agencies.

Early papers on 3D face recognition revealed the potential hidden
in the 3D information rather than presented working algorithms or ex-
tensive tests. In one of the first papers on 3D face recognition, Cartoux
et al. (1989) approached the problem by finding the plane of bilateral
symmetry through the facial range image, and either matching the
extracted profile of the face, or using the symmetry plane to compensate
for the pose and then matching the whole surface. Similar approaches
based on profiles extracted from 3D face data were also described in
the follow-up papers by Nagamine et al. (1992), Beumier and Acheroy
(1988) and Gordon (1997).
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Achermann et al. (1997), Hesher et al. (2003), Mavridis et al. (2001),
Chang et al. (2003) Tsalakanidou et al. (2003) explored the extension of
conventional dimensionality reduction techniques, like Principal Com-
ponent Analysis (PCA), to range images or combination of intensity
and range images. Gordon (1992) proposed representing a facial surface
by a feature vector created from local information such as curvature
and metric. The author noted that the feature vector is similar for
different instances of the same face acquired in different conditions,
except “variation due to expression” (Gordon, 1992).

Lee and Milios (1990) and Tanaka et al. (1998) proposed performing
curvature-based segmentation of the range image into convex regions
and compute the Extended Gaussian Image (EGI) locally for each
region. A different local approach based on Gabor filters in 2D and
point signatures in 3D was presented by Wang et al. (2002).

Finally, many theoretical works including Medioni and Waupotitsch
(2003), Achermann and Bunke (2000), as well as some commercial
systems, use rigid surface matching in order to perform 3D face recog-
nition. However, facial expressions do change significantly the 3D facial
surface not less than they change the 2D intensity image, hence mod-
elling faces as rigid objects is invalid when considering facial expres-
sions.

We note that the topic of facial expressions in 3D face recognition is
very scarcely addressed in the literature, which makes difficult to draw
any conclusions about the robustness of available algorithms. Many of
the cited authors mention the problem of facial expressions, yet, none
of them has addressed it explicitly, nor any of the algorithms except in
Wang et al. (2002) was tested on a database with sufficiently large (if
any) variability of facial expressions.

1.3. The 3DFACE approach

Our approach, hereinafter referred to as 3DFACE, comes to address
explicitly the problem of facial expressions. It treats the facial surface
as a deformable object in the context of Riemannian geometry. Our
observations show that the deformations of the face resulting from facial
expressions can be modelled as isometries (Bronstein et al., 2003b),
such that the intrinsic geometric properties of the facial surface are
expression-invariant. Thus, finding an expression-invariant representa-
tion of the face is essentially equivalent to finding an isometry-invariant
representation of the facial surface.

A computationally-efficient invariant representation of isometric sur-
faces can be constructed by isometrically embedding the surface into
a low-dimensional space with convenient geometry. Planar embedding
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appeared to be useful in the analysis of cortical surfaces (Schwartz
et al., 1989), and in texture mapping (Zigelman et al., 2002; Grossman
et al., 2002). Embedding into higher dimensional Euclidean spaces, as
first presented by Elad and Kimmel (2001), was shown to be an efficient
way to perform matching of deformable objects. Isometric embedding
is the core of our 3D face recognition system. It consists of measuring
the geodesic distances between points on the facial surface and then
using multidimensional scaling to perform the embedding. This way,
the task of comparing deformable objects like faces is transformed into
a much simpler problem of rigid surface matching, at the expense of
loosing some accuracy, which appears to be insignificant in this case.

An important property of the numerical algorithms implemented in
the 3DFACE system is that we actually do not need the facial surface to
be given explicitly. All the stages of our recognition system, including
pre-processing and computation of geodesic distances can be carried
out given only the metric tensor of the surface. It allows us to use sim-
ple and cost-efficient 3D acquisition techniques like photometric stereo.
Avoiding explicit surface reconstruction also saves computational time
and reduces the numerical inaccuracies (Bronstein et al., 2004b).

The organization of this paper is the following: Next section starts
with modelling faces as Riemannian surfaces. Such a formulation serves
as a unifying framework for different procedures described later on. Fa-
cial expressions are modelled as isometries of the facial surface. A simple
experiment justifies this assumption. Section 3 introduces the concept
of multidimensional scaling and its application to isometric embedding.
Section 4 describes a prototype 3DFACE system and addresses some
implementation considerations. In Section 5 we show experimental re-
sults assessing the performance of our method and comparing it to
other 2D and 3D face recognition algorithms. Section 6 concludes the
paper.

2. The geometry of human faces

2.1. A brief introduction into Riemannian geometry

We model a human face as a two-dimensional smooth connected para-
metric manifold (surface), denoted by S and represented by a coordi-
nate chart from a compact subset Ω ⊂ IR2 to IR3

x(Ω) = (x1(ξ1, ξ2), x2(ξ1, ξ2), x3(ξ1, ξ2)). (1)

We assume that the functions x1, ..., x3 are Cr (with r sufficiently large),
and that the vectors ∂ix ≡ ∂

∂ξi x (i = 1, 2) are linearly independent.
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We will further assume that the surface can be represented as a graph
of a function, e.g. x3 = x3(x1, x2), such that x3 can be referred to
as the depth coordinate. Also, for convenience, in the following the
parameterization coordinates ξ = (ξ1, ξ2) will be identified with the
coordinates in the image acquired by the camera (see Section 4.1).
Similarly, we define the facial albedo as a scalar field ρ : Ω → IR+.

The derivatives ∂ix constitute a local non-orthogonal coordinate
system on S, and span an affine subspace of IR3 called the tangent
space and denoted by TxS for every x ∈ S. In order to consider the non-
Euclidean geometry of the manifold, we introduce a bilinear symmetric
non-degenerate form (tensor) g called the Riemannian metric or the
first fundamental form. It can be identified with an inner product on
TS. The Riemannian metric is an intrinsic characteristic of the mani-
fold and allows us to measure local distances on S independently of the
coordinates (Kreyszig, 1991). The pair (S, g) is called a Riemannian
manifold.

In coordinate notation, a distance element on the manifold can be
expressed via the metric tensor gij(x) as

ds2 = gijdξidξj , i, j = 1, 2; (2)

where repeating super- and subscripts are summed over according to
Einstein’s summation convention. The metric tensor gij at every point
of a parametric surface can be given explicitly by

gij = ∂ix · ∂jx, i, j = 1, 2. (3)

The unit normal to S at x is a vector orthogonal to the tangent
space TxS and can be written as a cross-product

N(x) =
∂1x× ∂2x

‖∂1x× ∂2x‖2
. (4)

Another characteristic of the surface called the second fundamental
form, is given in coordinate notation as

bij = −∂ix · ∂jN. (5)

Unlike the metric, the second fundamental form is prescribed by the
normal field N, that is, it has to do with the way the manifold is im-
mersed into the ambient space. This distinction plays a crucial role. The
metric is responsible for all properties of the manifold which are called
intrinsic. Propertied expressible in terms of the second fundamental
form are called extrinsic.

The maximum and the minimum eigenvalues λmax, λmin of the ten-
sor bj

i = bikg
kj are called the principal curvatures. The corresponding
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eigenvectors of (bij) are the principal curvature directions. The values

H =
1
2
trace(bj

i ) =
1
2
(λmax + λmin); (6)

K = det(bj
i ) = λmaxλmin, (7)

are called the mean curvature and the Gaussian curvature, respectively.
A classical result, known as Theorema Egregium (Gauss, 1827) claims
that K is an intrinsic property of the manifold.

Since our surface is connected and compact, the Riemannian metric
induces a distance metric. In order to define it, let x,y ∈ S be two
points on the surface and let c : [0, 1] → S be a smooth curve in
arclength parametrization connecting x and y on S. The length of c is
defined by

`[c] =
∫ 1

0

∥∥∥∥
dc(t)
dt

∥∥∥∥ dt. (8)

Then, the distance from x to y on S is given by

d(x,y) = inf
c

`[c]. (9)

The paths of minimum length, resulting from the extrema of the func-
tional `[c] are called minimal geodesics, and d(x,y) is called the geodesic
distance.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

t 

�  1 

�  2 
∂1x ∂2x 

x( � ) 

Ω 
x2 

x3 

x1 

Figure 3. Definition of a parametric manifold and the local coordinate system.

2.2. Facial expressions as isometric transformations

Let (S, g) and (Q, h) be Riemannian manifolds, and let f : (S, g) →
(Q, h) be a diffeomorphism. f is called an isometry if

f∗h = g, (10)

where ∗ denotes pullback (Gudmundsson, 2004). Riemannian manifolds
(S, g), (Q, h) related by an isometry are said to be isometric.
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From the point of view of intrinsic geometry, isometric manifolds are
indistinguishable. Particularly, in the same way as g induces a distance
metric dS on S, the tensor h induces a distance metric dQ on Q. This
essentially implies that f preserves the geodesic distance between every
pair of points, that is,

dS(x,y) = dQ(f(x), f(y)), ∀x,y ∈ S. (11)

In fact, in our case Equation (11) is an alternative definition of an isom-
etry. Furthermore, from Theorema Egregium it stems that isometric
surfaces have equal Gaussian curvature KS(x) = KQ(f(x)).

We apply this isometric model to faces. Facial expressions result
from the movement of mimic muscles (Ekman, 1973). We assume that
natural deformations of the facial surface can be modelled as isometries.
In other words, facial expressions give rise to nearly isometric surfaces.
This will allow us to construct an expression-invariant representation
of the face, based on its intrinsic geometric structure.

It must be understood, of course, that the isometric model is only an
approximation and models natural expressions excepting pathological
cases. One of such pathologies is the open mouth. The isometric model
tacitly assumes that the topology of the facial surface is preserved,
hence, facial expressions are not allowed to introduce arbitrary “holes”
in the facial surface. This assumption is valid for most regions of the
face except the mouth. Opening the mouth changes the topology of the
facial surface by virtually creating a “hole”. In (Bronstein et al., 2004c)
we extend the isometric model to topology-changing expressions. Here,
we assume that the mouth is closed in all facial expressions.

2.3. Discrete manifolds

In practice, we work with discrete representation of surfaces, obtained
by taking a finite number of samples on S and measuring the geodesic
distances between them. After sampling, the Riemannian surface be-
comes a finite metric space (X,D) with mutual distances described by
the matrix D with elements dij = d(xi, xj).

In (Sethian, 1996) an efficient numerical procedure called the Fast
Marching Method (FMM), capable of measuring the distances from one
source to N points on a plane in O(N) operations, was introduced (see
(Tsitsiklis, 1988) for a related result). The FMM is based on upwind
finite difference approximations for solving the eikonal equation, which
is a differential formulation of a wave propagation equation

‖∇ν(x)‖ = 1. (12)

Here ν : IR2 → IR+ is the distance map from the sources s1, ..., sK ,
such that ν(si) = 0 serve as boundary conditions. The distance map
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is constructed by starting from the source point and propagating out-
wards. The FMM was extended to triangulated manifolds (FMTD) by
Kimmel and Sethian (1998).

The classical FMM uses an orthogonal coordinate system (regular
grid). The numerical stencil for an update of a grid point consists of
vertices of a right triangle. In the case of triangulated manifolds, the
stencils used by the FMTD algorithm are not necessarily right trian-
gles. If a grid point is updated through an obtuse angle, a consistency
problem may arise. To cope with this problem, Kimmel and Sethian
proposed to split obtuse angles by unfolding triangles as a preprocessing
stage.

A variation of the FMM for parametric surfaces, presented by Spira
and Kimmel (2003), was adopted here. The main advantage of this
method is that the computations are performed on a uniform Cartesian
grid in the parametrization plane, and not on the manifold like in the
original version of Kimmel and Sethian (1998). The numerical stencil
is calculated directly from the local metric value, and therefore, no
unfolding is required (see details in (Spira and Kimmel, 2004)). In our
application, the advantage of using the PFMM is that the surface is not
needed explicitly in order to measure distances; and the metric given
on the parametrization plane is sufficient (Bronstein et al., 2004b).

2.4. Isometric model validation

Verifying quantitatively that facial expressions are indeed isometric
is possible by tracking a set of feature points on the facial manifold
and measuring how the distances between them change due to facial
expressions. In (Bronstein et al., 2004c) we presented an experimental
validation of the isometric model. We placed 133 markers on a face and
tracked how the distances between these points change due to facial ex-
pressions. Figure 4 shows the distribution of the absolute change of the
geodesic and the Euclidean distances. For more details, see (Bronstein
et al., 2004c).

We conclude from this experiment that the change of the geodesic
distances due to facial expressions is insignificant (which justifies our
model), and that it is more than twice smaller than the respective
change of the Euclidean ones. This implies that the isometric model
describes better the nature of facial expressions compared to the rigid
one. This observation will be reinforced in Section 5, where we compare
our approach to a method that treats facial surfaces as rigid objects.
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(a) Absolute error (mm)

Figure 4. Normalized histogram of the absolute error of the geodesic (solid) and the
Euclidean (dashed) distances.

3. Expression-invariant representation

A cornerstone problem in three-dimensional face recognition is the abil-
ity to identify facial expressions of a subject and distinguish them from
facial expressions of other subjects. Under our isometric model assump-
tion, this problem is reduced to finding similarity between isometric
surfaces.

Let (S, g) and (Q, h) be isometric Riemannian surfaces, represent-
ing different expressions of the same face and related by an isome-
try f . Since f is an isometry, it preserves the geodesic distances, i.e.
dS(x1,x2) = dQ(y1,y2) for every x1,x2 ∈ S and y1 = f(x1),y2 =
f(x2) ∈ Q. Therefore, the geodesic distances are suitable candidates
for an expression-invariant representation of the face.

However, the surfaces S and Q are sampled and in practice we
have finite metric spaces ({x1, ...,xNS},DS) and ({y1, ...,yNQ},DQ),
respectively. There is neither guarantee that S andQ are sampled at the
same points, nor even that the number of samples of the two surfaces
is the same. Moreover, even if the samples are the same, they can be
ordered arbitrarily, up to a permutation of rows and columns. This am-
biguity makes impractical the use of D as an invariant representation,
though we refer to the most recent attempt to directly compare the
distance matrices (Mémoli and Sapiro, 2001).
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3.1. Canonical forms

An alternative proposed by Elad and Kimmel (2001) is to avoid deal-
ing explicitly with the matrix of geodesic distances and represent the
Riemannian surface as a subset of some convenient m-dimensional man-
ifold Mm, such that the original intrinsic geometry is preserved. We
call such a procedure isometric embedding, and suchMm the embedding
space.

The embedding allows to get rid of the extrinsic geometry, which
no more exists in the new space. As a consequence, the resulting rep-
resentation will be identical for all isometries of the surface. Another
advantage is related to the fact that a general Riemannian metric is
usually inconvenient to work with. The embedding space, on the other
hand, can be chosen completely to our discretion. Simply saying, the
embedding replaces a complicate geometric structure by a convenient
one.

In our discrete setting, isometric embedding is a mapping

ϕ : ({x1, ...,xN} ⊂ S,D) → ({x′1, ...,x′N} ⊂ Mm,D′) , (13)

between two finite metric spaces, such that d′ij = dij for all i, j =
1, ..., N . The symmetric matrices D = (dij) ≡ (d(xi,xj)) and D′ =
(d′ij) ≡ (d′(x′i,x

′
j)) denote the mutual geodesic distances between the

points in the original and the embedding space, respectively. Following
Elad and Kimmel (2001, 2003), the image of {x1, ...,xN} under ϕ is
called the canonical form of (S, g).

Figure 5 shows isometries of a deformable surface (human hand)
and the corresponding canonical forms. In this example, once again,
we should emphasize that the original surface (Figure 5a) is a Rie-
mannian manifold immersed into IR3, on which the geodesic distances
are induced by the Riemannian metric, while the canonical form (Fig-
ure 5b) is a subset of IR3, on which the geodesic distances are replaced
by Euclidean ones. Thus, there is no distinction between intrinsic and
extrinsic geometry in the embedding space.

We should keep in mind that a canonical form is defined up to
an isometry group in Mm. In an Euclidean space, for example, the
ambiguity is up to a rotation, translation and reflection transformation.
Fortunately, these are the only degrees of freedom that canonical forms
possess (compared to the vast number of degrees of freedom of the
matrix D itself), and thus can be easily dealt with.
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(a) Original surfaces

 
 

(b) Canonical forms

Figure 5. Illustration of the embedding problem and the canonical forms. (a) Rie-
mannian surface (hand) undergoing isometric transformations. Solid line shows the
geodesic distance between two points on the surface, dotted line is the corresponding
Euclidean distance in the space where the surface “lives”. (b) After embedding, the
hand surfaces become submanifolds of a three-dimensional Euclidean space, and the
geodesic distances become Euclidean ones.

3.2. Embedding error

A question of cardinal importance is whether an isometric embedding
of a given surface into a given space exists. A particular setting of this
question first arose in the context of cartography: is it possible to map
the spherical surface of the Earth onto a plane without distorting the
distances between geographical objects? Theorema Egregium gives a
negative answer to this question: the plane has zero Gaussian curvature,
while the sphere has a positive one, and therefore, these surfaces are
not isometric (Figure 6). Moreover, it can be shown that such a simple
surface like the sphere is not isometrically embeddable into Euclidean
space of any finite dimension. For general, more complicated surfaces,
the existence of an isometric embedding is unfortunately a very rare
case (Linial et al., 1995).

Hence, we must bear in mind that the embeddings we discuss are
near-isometric, and consequently, canonical forms only approximate
the intrinsic geometry of the original surface. It is therefore necessary
to define the measure of how the geodesic distances are distorted, that
is, the discrepancy between D and D′, called the embedding error. Here
we limit our attention mainly to the embedding error criterion

ε(X′;D,W) ≡
∑

i<j

wij(d′ij(X
′)− dij)2, (14)

referred to as the raw stress. Here X′ = (x′1, ...,x′N ) is a N ×m matrix
representing the parametric coordinates of the canonical form points
in Mm, and the symmetric N × N matrix of weights W = (wij)
determines the relative contribution of distances to the error criterion.

"IJCV - second review - 3".tex; 14/12/2004; 20:14; p.14



Three-Dimensional Face Recognition 15
 

 

(a) Upper hemisphere of the globe

 
 
 

 
 

(b) Planar map

Figure 6. The embedding problem arising in cartography: The upper hemisphere of
the Earth (a) and its planar map (b). The geodesic distances (an example is shown
as a white curve) are distorted by such a map.

If some of the distances are missing, the respective weights wij can be
set to zero.

A generic name for algorithms that compute the canonical form by
minimization of the stress with respect to X′ is multidimensional scaling
(MDS). These algorithms differ in the choice of the the embedding error
criterion and the optimization method used for its minimization (Borg
and Groenen, 1997).

3.3. The choice of the embedding space

Another important question is how to choose the embedding space.
First, the geometry of the embedding space is important. Popular
choices include spaces with flat (Schwartz et al., 1989; Elad and Kim-
mel, 2001; Grossman et al., 2002; Zigelman et al., 2002), spherical (Elad
and Kimmel, 2002; Bronstein et al., 2005b) or hyperbolic (Walter and
Ritter, 2002) geometry. This choice should be dictated by the conve-
nience of a specific space (namely, we want the geodesic distances in
S ′m to have a simple analytic form) and the resulting embedding error,
which, in turn, depends on the embedding error criterion.

Secondly, the dimension m of the embedding space must be chosen
in such a way that the codimension of ϕ(S) in Mm is at least 1 (as
opposed to dimensionality reduction applications where usually m ¿
dim(S)). The reason becomes clear if we think of our manifolds as
of function graphs, in our case – functions of two variables z(x, y).
Sampling z(x, y) produces a set of points, which when embedded into a
two-dimensional manifold, reflect the sampling pattern rather than the
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16 Michael M. Bronstein, Alexander M. Bronstein, Ron Kimmel

intrinsic geometry of the surface. On the other hand, when the surface is
embedded into IR3 (or a manifold of higher dimension), the samples will
lie on some two-dimensional submanifold of IR3 (the continuous limit of
the canonical form), and increasing the sampling density would result
in a better approximation of the continuous canonical form.

Embedding with codimension zero (e.g. embedding of a surface into
a plane or a two-dimensional sphere S2) is useful when the manifold
is endowed with some additional property, for example, texture. Such
embedding can be thought of as an intrinsic parametrization of the
manifold and has been explored in the context of medical visualization
(Schwartz et al., 1989), texture mapping (Zigelman et al., 2002) and
registration of facial images (Bronstein et al., 2004a; Bronstein et al.,
2005a).

3.4. Least-squares MDS

Minimization of ε(X′) can be performed by first-order, gradient descent-
type methods, in which the direction at each step is

X′(k+1) = −∇ε(X′(k)). (15)

The gradient of ε(Ξ′) with respect to Ξ′ is given by

∂

∂x′lk
ε(X′;D,W) = 2

∑

j 6=k

wkj

(d′kj − dkj)
dkj

(x′lk − x′lj ), (16)

and can be written as

∇ε(X′;D,W) = 2UX′ − 2B(X′;D,W)X′, (17)

where U is a matrix with elements

uij =

{
−wij if i 6= j∑N
j=1 wij if i = j

, (18)

and B is a matrix with elements

bij =





−wijdijd
′−1
ij (X′) if i 6= j and d′ij(X

′) 6= 0
0 if i 6= j and d′ij(X

′) = 0
−∑

j 6=i bij if i = j
. (19)

It was observed by Guttman (1968) that the first-order optimality
condition, ∇ε(X′) = 0, can be written as X′ = U†B(X′)X′, and that
the sequence

X′(k+1) = U†B(X′(k))X′(k), (20)
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converges to the local minimum of ε(X′) (here † denotes matrix pseudoin-
verse). The algorithm using this multiplicative update is called SMA-
COF (De Leeuw, 1977; De Leeuw and Stoop, 1984; Borg and Groe-
nen, 1997). It can be shown to be equivalent to weighted gradient
descent with constant step size X′(k+1) = −1

2U
†∇ε(X′(k)), and if a

non-weighted stress is used, it is essentially a gradient descent with
constant step size X′(k+1) = − 1

2N∇ε(X′(k)) (Bronstein, 2004).
SMACOF is widely used for large-scale MDS problems. Its disadvan-

tage is slow convergence in the proximity of the minimum, which is in-
herent to all first-order methods. Second order (Newton-type) methods
(Nash, 2000) are usually disadvantageous in large-scale MDS problems.
Recently, we showed that the multigrid framework can significantly
improve the convergence time of the SMACOF algorithm (Bronstein
et al., 2005c)

3.5. Classical scaling

As an alternative to raw stress minimization in Euclidean embedding,
it is worthwhile to mention an algebraic algorithm known as classical
scaling (Torgerson, 1952; Gower, 1966), based on theoretical results of
Eckart and Young (1936) and Young and Householder (1938). Classical
scaling works with squared geodesic distances, which can be expressed
as Hadamard (coordinate-wise) product ∆ = D ◦D, where ∆ = (d2

ij).
The matrix ∆ first undergoes double-centering

B∆ = −1
2
J∆J (21)

(here J = I − 1
N 11T and I is an N × N identity matrix). Then, the

eigendecomposition B∆ = VΛVT is computed, where V = (v1, ...,vN )
is the matrix of eigenvectors of B corresponding to the eigenvalues
λ1 ≥ λ2 ≥ ... ≥ λN .

Let us denote by Λm
+ the m×m matrix of first m positive eigenvalues,

by Vm
+ the N × m matrix of the corresponding eigenvectors, and by

Λm− the matrix of the remaining N−m eigenvalues. The canonical form
coordinates in the embedding space are given by

X′ = Vm
+ (Λm

+ )1/2. (22)

Classical scaling approximates the matrix B∆ by a matrix B∆′ =
X′X′T of rank m. It is one of the most efficient MDS algorithms. In
practical application, since we are usually interested in embedding into
IR3 or IR2, no full eigendecomposition of B∆ is needed – it is enough to
find only the first three or two eigenvectors. In addition, the matrix B∆

is symmetric. This allows us to use efficient algorithms such as Arnoldi
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18 Michael M. Bronstein, Alexander M. Bronstein, Ron Kimmel

(Arnoldi, 1951), Lanzcos or block-Lanzcos (Golub and van Loan, 1996;
Bai et al., 2000) iterations, which find a few largest eigenvectors of a
symmetric matrix (Golub and Saunders, 2004).

The major drawback of classical scaling is that the embedding error
criterion (referred to as strain) that such a procedure minimizes is much
less meaningful in our setting compared to the stress used in LS MDS
(Borg and Groenen, 1997).

3.6. Canonical form alignment

In order to resolve the Euclidean isometry ambiguity, the canonical
form has to be aligned. We perform the alignment by first setting
to zero the first-order moments (the center of gravity) µ100, µ010, µ001

of the canonical form (here µpqr =
∑N

i=1(x
′1
i )p(x′2i )q(x′3i )r denotes the

pqr-moment). This resolves the translation ambiguity. Next, the mixed
second-order moments µ110, µ011, µ101 are set to zero and the axes are
reordered according to the second order moments magnitude, where
the projection onto the first axis x′1 realizes the largest variance, and
onto the third axis x′3 the smallest variance. This resolves the rotation
ambiguity. Finally, reflections are applied to each axis xk such that

N∑

i=1

sign
(
x′ki

)
≥ 0, (23)

in order to resolve the reflection ambiguity.

3.7. Stability

An important property that makes the canonical forms practically
useful is that the embedding result X′ changes continuously with the
change of D. This guarantees that a small perturbation in the points of
the surface does not change significantly the canonical form. We show
here stability of canonical forms obtained by LS and classical MDS;
while the first (Theorem 1a) is straightforward, the second requires
more delicate analysis involving matrix perturbation theory.

Theorem 1 (Canonical form stability). .
a. A small perturbation of the geodesic distances D results in a small
perturbation of the LS canonical form satisfying the stationary condi-
tion X′ = U†B(X′)X′.
b. Assume that the matrix B∆ has non-degenerate eigenvalues λ1 <
λ2 < ... < λN . Then, a small perturbation of the geodesic distances D
results in a small perturbation of the classical canonical form.
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(a) Original surface (b) 3D (c) 2D

Figure 7. Example of embedding into IR3 (b) and into IR2(c).

Remark 1. The assumption of non-degeneracy of the spectrum of B∆

is valid for curved surfaces such as the facial surface.

Proof: See Appendix.

3.8. Canonical forms of facial surfaces

By performing canonization of a facial surface, we create an expression-
invariant representation of the face, which can be treated as a rigid
object. We should keep in mind that the embedding error criterion
is global, that is, depends on all the geodesic distances. Hence, the
canonical form is influenced by all the samples of the surface. As an
implication, it is very important to always crop the same region of the
face (though the samples themselves should not necessarily coincide).
This is one of the key roles that an appropriate preprocessing plays.

When embedding is performed into IR3, the canonical form can be
plotted as a surface. Examples are shown in Figures 7b, 8. Figure 8
depicts canonical forms of a subject’s face with different facial expres-
sions. It demonstrates that although the facial surface deformations are
substantial, the deformations of the corresponding canonical forms are
much smaller.

Embedding of a facial surface into IR2 (Figure 7c) or S2 is a zero
codimension embedding – it produces an intrinsic parametrization of
the surface. Such embedding can be thought of as “warping” of the
facial texture, yielding a canonical texture (Bronstein et al., 2004a).
Canonization in some sense performs a geometry-based registration of
2D facial images. That is, in two canonical textures we are able to iden-
tify two pixels as belonging to the same point on the 3D facial surface,
no matter how the latter is deformed. As the result, 2D appearance-
based methods such as eigenfaces can be used to compare canonical
textures (Bronstein et al., 2004a).
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(a) (b) (c) (d) (e)

     
(f) (g) (h) (i) (j)

Figure 8. Examples of canonical forms (f)-(j) of faces with strong facial expressions
(a)-(e).

4. The 3DFACE system

In the Geometric Image Processing laboratory (Department of Com-
puter Science, Technion) we designed a prototype 3D face recognition
system based on the expression-invariant representation of facial sur-
faces. Current 3DFACE system prototype is shown in Figure 9. It
operates both in one-to-one and one-to-many modes. The 3DFACE
system runs on a dual AMD Opteron64 workstation under Microsoft
Windows XP. One of the CPUs is dedicated merely to processing and
computation of the canonical forms; another one handles the graphical
user interface (GUI) and the visualization.

Data processing in the 3DFACE system can be divided into several
stages (Figure 11). First, the subject’s face undergoes a 3D scan, pro-
ducing a cloud of points representing the facial surface. The surface is
then cropped, smoothed and subsampled. Next, a feature detector is
applied in order to find a few fiducial points. Next, a geodesic mask
is computed around these points. Finally, the facial surface undergoes
canonization using an MDS procedure.

In the following, we briefly overview all the processing stages and
the basic components of the 3DFACE system pipeline, omitting some
insignificant technological and implementation details.
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Figure 9. The 3DFACE prototype system and its main components: DLP projector
(a), digital camera (b), monitor (c), magnetic card reader (d), mounting (e) .

 

Figure 10. Screenshot from the GUI interface of the 3DFACE system (one-to-many
mode), showing successful recognition of one of the authors.
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CANONICAL FORM 

SCANNER  
RAW OUTPUT 

Figure 11. Scheme of the 3DFACE system pipeline.

4.1. 3D acquisition

A single camera, which can be described by a perspective projection,
maps the point x in the three-dimensional world coordinate system into
the point xc in the two-dimensional image plane coordinate system. All
the points lying on the ray ocxc (bold line in Figure 12) are projected
to xc. In passive stereo, a second camera is used, adding another non-
collinear view oc′xc′ , that can be used to resolve this ambiguity by
triangulation. The location of x is uniquely determined by the inter-
section point of the two rays oc − xc and oc′ − xc′). This procedure
requires to determine the corresponding xc′ for every xc (referred to as
the correspondence problem).

In active stereo, the second view effect is obtained by an “active”
projector rather than a second “passive” camera. A typical active stereo
setup is shown in Figure 12. The projector is also described by a
perspective projection, which maps x into xp in a one-dimensional
projector coordinate system. The projector casts a light code onto
the object, which allows us to determine xp corresponding to each
point xc in the camera image plane. World coordinates x are obtained
unambiguously from the intersection of the ray oc − xc and the plane
opxp, assuming that the latter are known (and in practice, obtained by
a calibration procedure).
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Figure 12. Active stereo principle.

Active stereo techniques differ mainly by the illumination patterns
used to encode the projection plane xp. Time- (Posdamer and Altschuler,
1982; Horn and Kiryati, 1999), gray level intensity- (Carrihill and Hum-
mel, 1985), color- (Tajima and Iwakawa, 1990), and space-multiplexed
(Hugli and Maitre, 1989; Vuylsteke and Oosterlinck, 1990) codes are
commonly used. A Grey time-multiplexed coding scheme was adopted
for facial surface acquisition in our system (Bronstein et al., 2003a). Po-
sitioning the camera and the projector in front of the subject, such that
occlusions are avoided, allows us to capture the whole facial surface.

Remark 2. Extreme rotations of the head may result in occlusions. In
current implementation, we use a single camera, that limits the head
poses to bounded deviations from the frontal position. This limitation is
merely technical - if insensitivity to larger angles is required, a multiple-
view acquisition [see e.g. (Hung et al., 1999)] can be used.

Under the assumption of a frontal view, we identify the image coor-
dinates with the parameterizations coordinates (ξ1, ξ2), which are now
partitioned into a uniform grid of N0 pixels. Then, for every pixel ξi

(i = 1, ..., N0) we have an estimate of x(ξi). In other words, the scanner
produces a sampled version {xi = x(ξi)}N0

i=1 of the facial surface. Note
that though the parameterizations plane is sampled on a regular grid of
pixels, the samples along x1 and x2 are neither necessarily regular nor
uniform. Specifically, in our implementation, the range data is stored in
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three double-precision matrices, each of size 320 × 240, corresponding
to the values of x1, x2 and x3 at each pixel. Thereby, the scanner output
is a cloud of N0 = 76.8× 103 points in 3D.

Reflectance image is also acquired. Assuming Lambertian reflectance,
it is possible to estimate the albedo in every pixel (Gheorghiades et al.,
2001).

4.2. Cropping

After 3D acquisition, the raw scanner data undergoes several preprocess-
ing stages. First, a preliminary cropping is performed, separating the
background from the facial region and removing problematic points
in which the reconstruction is inaccurate (the latter usually appear
as spikes). A histogram of the depth coordinates is used to roughly
separate the face from the background. The facial region is defined
by a binary 320×240 mask image, whose computation involves several
thresholds: for example, pixels with a high value of the discrete gradient
norm ‖∇x3‖ =

√
(∂1x3)2 + (∂2x3)2 are removed as potential spikes.

Morphological operations are then applied to the mask in order to
remove non-connected regions and isolate the facial region (which will
be denoted by Ωc) as a single object. Holes inside the facial contour are
closed by interpolation.

4.3. Smoothing

The next stage is facial surface smoothing, for which a variant of the
Beltrami flow is employed. This type of nonlinear filter was proven to
be a powerful method in color image processing (Sochen et al., 1998;
Kimmel, 2003). Our smoothing procedure resembles the anisotropic
diffusion in (Tasdizen et al., 2002; Fleishman et al., 2003); it does not
require the surface to be given explicitly.1

Roughly speaking, the key idea of such smoothing is the minimiza-
tion of the surface area, which is expressed by the so-called Polyakov
functional

F [(S, g)] =
∫

Ωc

d2ξ
√

ggij∂ix
i∂jx

jδij . (24)

The Polyakov functional can be considered as a generalization of the L2

norm to curved spaces. Using the Euler-Lagrange lemma, the minimum

1 When the facial manifold is not given explicitly, and all we have is its gradients
on a uniform grid (x1, x2, x3) = (ξ1, ξ2, x3(ξ1, ξ2)), it is possible to smooth the
gradient field instead of the surface, thus bypassing the surface reconstruction stage.
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(a) Before smoothing
 

(b) After smoothing

Figure 13. Pre-processing of the 3D scanner data: (a) raw scanner data after
cropping (b) Beltrami smoothing result. Surfaces are rendered using Phong shading.

of F can be achieved by gradient descent of the form

∂tx
i =

1√
g

δF

δxi
; i = 1, ..., 3, (25)

which can be written as ∂tx = ∆gx using the Laplace-Beltrami opera-
tor. t is a time parameter, and the flow can be thought of as evolving the
surface in time. Since we assume the surface to be given as a graph of
the function x3(x1, x2), filtering just the depth coordinate x3 according
to (25) gives rise to the following PDE

∂tx
3 =

1√
g
∂i(
√

ggij∂jx
3). (26)

Smoothing is performed by a numerical solution of (26) for a time
proportional to the noise variance. The processing is limited to the
facial contour Ωc; Neumann boundary conditions∇x3|∂Ωc = 0 are used.

4.4. Feature detection

Next, the feature detection stage is performed. We are interested in
invariant features that do not change under facial expressions; specif-
ically, we detect the nose tip, the nose apex (the top part of the nose
bridge bone) and the eye corners. In order to ensure invariance to head
rotations, we use a geometric curvature-based feature detector.
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(a) Mean curvature
 

(b) Gaussian curvature
 

(c) Candidate points

Figure 14. Geometric feature detection example: mean curvature (a) and Gaussian
curvature (b) images computed on the mean-curvature smoothed surface and shown
mapped onto the original surface; candidate nose (red), apex (green) and eyes (blue)
points.

Figure 14a,b depicts the mean and the Gaussian curvatures of a
facial surface. The fiducial points can be very clearly classified according
to these two curvatures. Our feature detector first locates the points
corresponding to local extrema of K and H. Then, candidate points
are specified; e.g. the candidate nose locations are points for which
both K and H obtain a local maximum (Figure 14c). Next, we use a
set of geometric relations (e.g. that the nose apex is located between
the two eyes, above the nose tip, and within certain distance intervals)
to choose the best set of candidate points. The failure rate of such a
feature detector is below 1%.

4.5. Geodesic mask

At the last preprocessing stage, the facial contour is extracted by using
the geodesic mask. The key idea is locating invariant “source” points
on the face and measuring an equidistant (in sense of the geodesic
distances) contour around it. The geodesic mask is defined as the in-
terior of this contour; all points outside the contour are removed. This
allows us to crop the facial surface in a geometrically-consistent manner,
insensitively to facial expressions. Geodesic mask plays a crucial role
for a good performance of canonical form-based face recognition.

The geodesic mask is computed as a contour around two source
points: the nose tip and the nose apex (Figure 15). The radius of
the geodesic mask is set empirically; typical values vary between 80
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(a)
 

(b)
 

(c)
 

(d)
 

(e)

Figure 15. Geodesic mask computation (a) and examples of the geodesic mask
insensitivity to facial expressions (b)-(e).

and 100 mm. Fast Marching is used to compute the geodesic contours.
After cropping, the resulting surface contains about 2500 - 3000 points;
this corresponds to approximately 35% of the initial number of surface
points.

4.6. Canonization and surface matching

After going through all the preprocessing stages, the smoothed, resized,
and cropped facial surface undergoes canonization. In current 3DFACE
system prototype, we use embedding into IR3 by means of a few (about
40) iterations of the SMACOF algorithm minimizing a non-weighted
version of the raw stress. As the initialization, we use the original points
coordinates. The resulting canonical form then undergoes alignment
according to Section 3.6.

The final stage of the 3DFACE algorithm is canonical form match-
ing. Since the isometric embedding compensates for the isometric sur-
face transformations, standard rigid matching (see e.g. (Gruen and
Akca, 2004)) can be used for comparing the canonical forms. The
standard choice in surface matching is the iterative closest point (ICP)
method and its variants (Besl and McKay, 1992; Zhang, 1994), yet, it
is disadvantageous from the point of view of computational complexity.

We use a simple and efficient surface matching method based on
high-order moments (Tal et al., 2001). The main idea is to represent
the surface by its moments µpqr up to some degree P ≤ p + q + r,
and compare the moments as vectors in an Euclidean space. Given two
facial surface S1 and S2 with their corresponding canonical forms X′

1

and X′
2, we can define the moments-based distance between them faces

as

dmom(S1,S2) =
∑

p+q+r≤P

(
µpqr(X′

1)− µpqr(X′
2)

)2
. (27)
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In practice, the vectors of moments are those stored in the gallery
database and compared to those computed at each enrollment.

4.7. Fusion of 3D and 2D information

In (Bronstein et al., 2003b; Bronstein et al., 2004a) we proposed to
treat canonical forms as images, by performing zero-codimension em-
bedding into a plane.2 After alignment, both the canonical form and
the flattened albedo are interpolated onto a Cartesian grid, producing
two images. These images can be compared using standard techniques,
such as applying eigendecomposition like in the eigenfaces algorithm.
We called the obtained representation eigenforms.

The use of eigenforms has several advantages: First, image compar-
ison is simpler than surface comparison, and second, the 2D texture
information can be incorporated in a natural way. Here, however, we
focus on the 3D geometry, and in the following experiments present
recognition results based only on the surface geometry, ignoring the
texture.

5. Results

Our experiments were performed on a data set containing 220 faces of
30 subjects - 3 artificial (mannequins) and 27 human. Most of the faces
appeared in a large number of instances with different facial expres-
sions. Facial expressions were classified into 10 groups (smile, anger,
etc.) and into 4 strengths (neutral, weak, medium, strong). Neutral ex-
pressions are the natural postures of the face, while strong expressions
are extreme postures. Small head rotations (up to about 10 degrees)
were allowed. Since the data was acquired in a course of several months,
variations in illumination conditions, facial hair, etc. present. Subjects
Alex (blue) and Michael (red) are identical twins, having visually great
similarity (see Figure 16).

5.1. Experiment I - Sensitivity to facial expressions

The goal of the first experiment was to demonstrate the difference
between using original (rigid) facial surfaces and their canonical forms
for face recognition under strong facial expressions. Surface matching
based on moments of degree up to P = 5 (i.e. vectors of dimensionality
52), according to (27), was used. In Experiment I, we used a subset

2 More recently, we studied zero-codimension embedding into S2 (Bronstein et al.,
2005a).
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containing 10 human and 3 artificial subjects. Each face appeared in a
number of instances (a total of 204 instances), including neutral, weak,
medium and strong facial expressions (Figure 16).

Figure 17 visualizes the dissimilarities between faces using classical
scaling. Each face on this plot is represented by a point in IR2. Note
that it is merely a 2D representation of data originally lying in IR52

(it captures about 88% of the high-dimensional information). The first
row depicts the dissimilarities between faces with neutral expressions
only. The faces of different subjects (marked with different colors)
form tight clusters and are easily distinguishable. Canonical surface
matching (left) and rigid surface matching (right) methods produce
approximately the same results.

This idealistic picture breaks down when we allow for facial expres-
sions (Figure 17, second row). The clusters corresponding to canonical
surface matching are much tighter; moreover, we observe that using
original surface matching some clusters (red and blue, dark and light
magenta, light blue, yellow and green) overlap, which means that a face
recognition algorithm based on rigid surface matching would confuse
between these subjects.

Table I shows the values of the ratio of the maximum inter-cluster
to minimum intra-cluster dissimilarity

ςk =
maxi,j∈Ck

dmom
ij

mini/∈Ck,j∈Ck
dmom

ij

, (28)

and the ratio of root mean squared (RMS) inter-cluster and intra-
cluster dissimilarities

σk =

√√√√
2

|Ck|2−|Ck|
∑

i,j∈Ck, i>j(dmom
ij )2

1
|Ck|(|C|−|Ck|)

∑
i/∈Ck,j∈Ck

(dmom
ij )2

, (29)

(Ck denotes indexes of k-th subject’s faces, C =
⋃

k Ck and dmom
ij de-

notes the moment-based distance between faces i and j) for rigid and
canonical surface matching. These criteria are convenient being scale-
invariant; they measure the tightness of each cluster and its relative
distance from other clusters. Ideally, σk and ςk should tend to zero.

Table I shows the separation quality criterion ςk for rigid and canoni-
cal surface matching. When only neutral expressions are used, canonical
form matching slightly outperforms rigid surface matching on most
subjects. The explanation to the fact that canonical forms are better
even in case when no large expression variability is present, is that
“neutral expression” as a fixed, definite expression, does not exist, and
even when the face of the subject seems expressionless, its possible
deformations are still sufficiently significant. When allowing for facial
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Figure 16. The face database used in Experiment I, containing 10 human and 3
artificial subjects, 8 different expressions and 3 expression strengths.

expressions, our approach outperforms facial surface matching by up
to 358% in sense of σk and up to 305% in sense of ςk.

5.2. Experiment II - comparison of algorithms

The goal of Experiment II was to perform benchmark of the 3DFACE
method and compare it to other face recognition algorithms. For this
purpose, we simulated biometric identification setup, in which the face
of an enrolled subject (probe) was compared to a set of templates
stored in the gallery. The probe database contained 30 subjects with
different facial expressions. The number of templates in the gallery was
65 (several templates for each subject were used). Only neutral expres-
sions were used as templates. Three algorithms were tested: canonical
form matching, facial surface matching and 2D image-based eigen-
faces. Eigenfaces were trained by 35 facial images that did not appear
as templates; 23 eigenfaces were used for the recognition (the first
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Table I. Description of the facial expressions in data set used in experiment I (N - neutral,
W - weak, M - medium, S - strong) and the inter-cluster to intra-cluster dissimilarity ratios
σk and ςk using rigid and canonical surface matching. Shown separately for neutral and all
expressions. Worse results are emphasized in boldface. Asterisk denotes artificial subjects.
Double asterisk denotes identical twins.

Neutral expressions All expressions

Subject Color N W M S σcan
k σrig

k ςcan
k ςrig

k σcan
k σrig

k ςcan
k ςrig

k

Michael∗∗ red 6 5 6 - 0.48 0.51 2.60 3.71 0.49 0.52 2.60 3.71

Alex∗∗ blue 3 1 3 1 0.18 0.20 0.53 0.88 0.47 0.64 1.34 2.24

Eyal green 4 1 7 9 0.20 0.22 0.28 0.22 0.46 0.72 1.34 2.45

Noam yellow 3 - - 7 0.29 0.33 0.92 0.52 0.47 0.70 1.52 1.67

Moran magenta 4 - 4 10 0.32 0.52 0.51 1.25 0.42 0.80 1.42 2.97

Ian orange 5 - 16 7 0.16 0.21 0.31 0.38 0.19 0.42 0.72 1.19

Ori cyan 8 - 11 10 0.11 0.18 0.32 0.54 0.38 0.60 1.84 2.53

Eric d. green 5 3 - 3 0.22 0.28 0.60 0.77 0.44 1.08 1.09 3.94

Susy d. magenta 6 - 9 8 0.29 0.32 0.58 0.91 0.35 0.49 1.56 2.45

David l. blue 5 2 6 5 0.26 0.26 1.11 0.72 0.34 1.55 1.95 7.87

Eve∗ black 6 - - - 0.02 0.02 0.05 0.03 0.04 0.04 0.05 0.03

Benito∗ grey 7 - - - 0.14 0.14 0.34 0.44 0.24 0.24 0.34 0.44

Liu∗ l. grey 8 - - - 0.11 0.12 0.36 0.39 0.20 0.20 0.36 0.39

two eigenfaces were excluded in order to decrease the influence of
illumination (Gheorghiades et al., 2001)).

Figure 18b shows the Receiver Operation Characteristic (ROC) curves
of three algorithms compared in this experiment. The curve represents
the tradeoff between the false acceptance and false rejection rate (FAR
and FRR, respectively), as function of a global threshold determining
whether the enrolled subject is accepted or rejected. Our algorithm
significantly outperforms both the straightforward 3D face recognition
(rigid facial surface matching) and the classical 2D algorithm (eigen-
faces). For comparison, we should note that a typical performance of a
commercial 2D face recognition system tested on a database of about
200 faces without significant expression variability shows equal error
rate (EER, a point corresponding to equal FAR and FRR) of at least 6%
(Mansfield et al., 2001). The performance of our algorithm (even in the
very challenging situation when extreme facial expressions are allowed
for) approaches the EER typical for fingerprint recognition (∼ 2%), a
biometric technology that is traditionally believed to be more accurate
than face recognition (Ortega-Garcia et al., 2004).
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RIGID SURFACE MATCHING CANONICAL FORM MATCHING 

  
  

  
 

 �  NEUTRAL � SMILE � SADNESS � ANGER � SURPRISE � STRESS 
� THINKING � DISGUST � GRIN � CHEWING � INFLATE � DEFLATE 

 
 
 
 

Figure 17. Low-dimensional visualization of dissimilarities between faces using rigid
surface matching (left) and canonical form matching (right). First row: neutral
expressions only. Second row: all expressions. Colors represent different subject.
Symbols represent different facial expression. Symbol size represents the strength of
the facial expression.

Figure 18a shows the Cumulative Match Characteristic (CMC) on
the full database with facial expressions using the above algorithms.
This curve represents the recognition error as a function of the recogni-
tion rank (the number of closest matches, at least one of which should
be correct). Our approach results in zero rank-1 recognition error.

Figure 19 (first row) shows an example of rank-1 recognition on the
full database (220 instances with facial expressions). The first column
depicts a probe subject with extreme facial expression; columns two
through four depict the rank-1 matches among the 65 gallery tem-
plates using eigenfaces, rigid surface matching, and canonical form
matching. These results are typical for the described algorithms. The
eigenfaces algorithm, being image-based, finds the subject Ori 188
more similar to the reference subject Moran 129 since they have the
same facial expression (strong smile), though these are different sub-
jects. Facial surface matching is confused by 3D features (outstanding
inflated cheeks) that appear on the face of the probe subject Moran 129
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Figure 18. CMC (a) and ROC (b) curves of face recognition based on surface
matching (dashed), canonical surface matching (solid) and eigenfaces (dotted). Star
denotes equal error rate.

due to the facial expression. These features are similar to the natural
facial features (fat cheeks) of subject Susy 276 who has fat cheeks.
Finally, canonical surface matching finds a correct match (Moran 114),
since isometric embedding compensates for the distortion of the face of
subject Moran 129 caused by his smile.

5.3. Experiment III - twins test

In Experiment III, we performed one of the most challenging tests for
a face recognition algorithm – an attempt to tell identical twins apart.
The full database containing all facial expressions (total of 220 faces;
17 faces of Michael and 8 of Alex) was used. Recognition was per-
formed between two identical twins, with all the other subjects acting
as impostors. The matching was performed to templates with neutral
expressions (6 for Michael, 3 for Alex).

The eigenfaces algorithm resulted in 29.41% incorrect matches when
enrolling Michael and 25% when enrolling Alex. Rigid surface match-
ing resulted in 17.64% and 0% wrong matches, respectively. Canonical
form matching resulted in 0% recognition error for both twins (see
example in Figure 19, second row).
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ENROLLED   CANONICAL FORM  SURFACE  EIGENFACES 

  

  

  

 

  

 

  
MORAN 129   MORAN 114  SUSY 276  ORI 188 

  

  

  

 

  

 

  
MICHAEL 17   MICHAEL 2  ALEX 39  ALEX 40 

 
 Figure 19. Example of recognition using different algorithms. First column shows

the reference subject; second through fourth columns depict the closest (rank 1)
matches found by the canonical form matching, facial surface matching and eigen-
faces, respectively. Note that only the match using canonical form matching is
correct. Numbers represent the subject’s index in the database. First row exemplifies
Experiment II. Second row exemplifies recognition of identical twins in Experiment
III. Wrong matches are emphasized.

6. Conclusions

We presented a geometric framework for three-dimensional face recog-
nition, that naturally incorporates the non-rigidness of the facial sur-
faces and allows to cope with facial expressions. Our isometric model
reduces the problem of comparing faces in the presence of facial expres-
sions to the problem of isometric surface matching. We use the isometric
embedding as a method to construct isometry-invariant representation
of facial surfaces, which gives an expression-invariant representation
of the face. An implementation of our 3DFACE algorithm shows high
recognition accuracy, significantly outperforming standard 2D and 3D
approaches, and working favorably even in the presence of very strong
facial expressions.

The main advantage of the 3DFACE algorithm is definitely when
a large variability of facial expressions is present. The significance of
it is first of all in commercial applications, which can never assume
collaborative users, and especially in cases when the face recognition
is assumed to work in a natural environment. Ideally, the user will
be unaware of being scanned and recognized, which implies that the
variability of his facial expressions can be significant.

Yet, the results presented in Section 5 suggest that canonical forms
are useful not only when extreme facial expressions are present, but
also in cases where the faces seem to be completely expressionless.
The explanation, as we see it, is the fact that an absolute “neutral
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expression” does not exist, such that even when apparently without
expressions, the use of canonical forms can still be beneficial.

Besides being insensitive to expressions, canonical forms conceal
some other favorable properties. First, the obtained representation is
irreversible. Therefore, given the canonical form it is impossible (or at
least very hard) to find the underlying original facial surface. Thus, the
canonical form in some sense “hides” the actual identity of the subject
stored in the gallery. This is significant in commercial systems where the
security of the biometric data is an important issue. Secondly, canonical
forms provide an intrinsic parametrization of the facial surface, which
leads to an easy registration of the facial images, and consequently,
to an easy fusion of 2D and 3D information. Thirdly, embedding has a
“regularization” effect on the facial surface: small local artifacts lead to
fluctuation of all geodesic distances. The fluctuations in the canonical
forms are no more local, but rather “spread” among all points of the
canonical form. As a consequence, the canonical forms are less sensitive
for example to acquisition and processing artifacts than the original
surfaces.
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Appendix

Proof of Theorem 1 (Stability of LS canonical forms) .
a. For simplicity of the proof, let us assume wij = 1, such that U† =
1
N J. Consider the stationary condition

X′ = U†B(X′;D)X′ =
1
N

B(X′;D)X′. (30)

We will write (30) as a nonlinear homogeneous equation in X′ and D:

A(X′;D) = 0. (31)

Now assume that D undergoes a perturbation, such that D̃ = D+ δD,
and max |δdij | < ε. The new canonical form will be denoted by X̃′ =
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X′ + δX′. The stationary condition with X̃′ and D̃ becomes

A(X′ + δX′;D + δD) = 0, (32)

and by the Taylor expansion, neglecting O(ε2) terms and plugging in
equation (31), we have

A(X′ + δX′;D + δD) = A(X′;D) +∇X′A(X′;D)δX′ +∇DA(X′;D)δD(33)
= ∇X′A(X′;D)δX′ +∇DA(X′;D)δD = 0,

where ∇X′A(X′;D) and ∇DA(X′;D) are four-dimensional tensors de-
noting the derivatives of A with respect to X′ and D, respectively.

Let us now write A(X′;D) in coordinate notation:

aj
i = (A(X′;D))j

i =
1
N

∑

k

bikx
′j
k − x′ji . (34)

Plugging in bii = −∑
j 6=i bij according to the definition of B, we obtain

aj
i =

1
N

∑

k

bik(x
′j
k − x′ji )− x′ji . (35)

Differentiating with respect to D and using (19) yields

∂aj
i

∂di′j′
=

1
N

∑

k

(x′jk − x′ji )
∂bik

∂di′j′
(36)

= − 1
N

∑

k 6=i

(x′jk − x′ji )
δii′δkj′

‖x′i − x′k‖
=

{ − 1
N (x′jj′ − x′ji ) δii′

‖x′i−x′
j′‖

if k 6= j′

0 otherwise
.

The derivatives can be bounded by
∣∣∣∣∣

∂aj
i

∂di′j′

∣∣∣∣∣ ≤
1
N

max
k 6=l,q

(
|x′qk − x′ql |
‖x′k − x′l‖2

)
=

1
N

max
k 6=l

(
‖x′k − x′l‖∞
‖x′k − x′l‖2

)
≡ M1,(37)

and from the regular sampling assumption, it follows that 0 < M1 < ∞.
Differentiating with respect to X′ yields

∂aj
i

∂x′j
′

i′
=

1
N

∑

k

(
(x′jk − x′ji )

∂bik

∂x′j
′

i′
+ bik

∂

∂x′j
′

i′
(x′jk − x′ji )

)
− ∂x′ji

∂x′j
′

i′
(38)

= − 1
N

∑

k 6=i

(x′jk − x′ji )δii′dik
(x′j

′
k − x′j

′
i )

‖x′k − x′i‖3
− 1

N

∑

k

bikδii′δjj′ +
1
N

bii′δjj′ − δjj′δii′ .

The derivatives can be bounded by
∣∣∣∣∣
∂aj

i

∂x′j
′

i′

∣∣∣∣∣ ≤ max
k 6=l

‖x′k − x′l‖−1 max
k 6=l

dkl + 2 max
kl

|bkl|+ 1 (39)

≤ max
k 6=l

d′kl

dkl
+ 2 max

kl
|bkl|+ 1 ≡ M2, (40)
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and since all the quantities are bounded, we have M2 < ∞.
Rewriting (34) in coordinate notation and plugging in the bounds

we obtain

0 = aj
i =

N∑

i′=1

m∑

j′=1

∂aj
i

∂x′j
′

i′
δx′j

′
i′ +

N∑

i′=1

N∑

j′=1

∂aj
i

∂di′j′
δdi′j′ (41)

≤
N∑

i′=1

m∑

j′=1

M1δx
′j′
i′ +

N∑

i′=1

N∑

j′=1

M2δdi′j′ ,

which leads to a bound on the canonical form perturbation

max
i′j′

|δx′j′i′ | ≤
N∑

i′=1

m∑

j′=1

|δx′j′i′ | ≤
M2

M1

N∑

i′=1

N∑

j′=1

|δdi′j′ | < M2

M1
N2ε (42)

b. Without loss of generality, we assume that the perturbed point is x1,
so that d(x1, x̃1) < ε. Let us denote the perturbed geodesic distances
by d̃ij . By the triangle inequality,

d̃1j ≤ d(x1, x̃1) + d(x1,xj) ≤ dij + ε,

whereas, d̃ij for i > 1 remains unchanged.
The perturbed geodesic distances matrix D̃ can be written as D̃ =

D + δD, where

δD =




0 ε2 ... εn

ε2
...

εN


 ,

and εi ≤ ε. The perturbed matrix of squared geodesic distances ∆̃ is
given by

∆̃ = ∆ + δ∆ = (D + δD) ◦ (D + δD) = ∆ + 2D ◦ δD + δD ◦ δD.

Neglecting the second-order term δD ◦ δD, we obtain δ∆ = 2D ◦ δD.
The spectral norm of the perturbation of ∆ is
∥∥∥
∣∣∣∆̃

∣∣∣
∥∥∥
2

= ‖|2D ◦ δD|‖2 ≤ 2max dij ‖|δD|‖2

= 2 max dij max
√

λδDT δD
i = 2max dij

√√√√
N∑

i=2

ε2i < 2
√

Nεmax dij .
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The perturbed double-centered matrix B̃∆ is given by

B̃∆ = B∆ + δB∆ = −1
2
J(∆ + δ∆)J = B∆ − 1

2
Jδ∆J.

Since ‖|J|‖2 = 1, it follows that

‖|δB∆|‖2 ≤ 1
2
‖|δ∆|‖2 <

√
Nε max dij .

Eigendecomposition of the perturbed double-centered matrix yields
B̃∆ = ṼΛ̃ṼT , such that the perturbed canonical form is

X̃′ = Ṽm
+ (Λ̃m

+ )1/2. (43)

A known result from non-degenerate perturbation theory (Stewart
and Sun, 1990) states that

∣∣∣λi − λ̃i

∣∣∣ ≤ ‖|δB∆|‖2 <
√

Nεmax dij ,

1
2

sin 2θ (vi, ṽi) ≤ ‖|δB∆|‖2

gap(B∆)
<

max dij

gap(B∆)

√
Nε,

where θ (vi, ṽi) is the acute angle between the vectors vi and ṽi, and

gap(B∆) = min
i6=j

|λi − λj |, (44)

is the spectral gap of the matrix B∆. The gap(B∆) is non-zero, since
we assume that B∆ has non-degenerate eigenvalues. Under a small
perturbation, the order of the eigenvalues is preserved, i.e. λ̃1 ≤ λ̃2 ≤
... ≤ λ̃N ; from Taylor expansion

λ̃
1/2
i − λ

1/2
i ≈ (λ̃i − λi)

2λi
,

and 1
2 sin 2θ (vi, ṽi) ≈ θ (vi, ṽi). Since vi and ṽi have unit length, it

follows that

‖vi − ṽi‖2 ≈ sin θ (vi, ṽi) ≈ θ (vi, ṽi) <
max dij

gap(B∆)

√
Nε

Using the triangle inequality and the above relations, the perturba-
tion of the canonical form can be bounded by
∥∥x′i − x̃′i

∥∥
2 =

∥∥∥λ
1/2
i vi − λ̃

1/2
i ṽi

∥∥∥
2
≤ λ

1/2
i ‖vi − ṽi‖2 +

∣∣∣λ1/2
i − λ̃

1/2
i

∣∣∣ ‖ṽi‖2

≤ λ
1/2
i ‖vi − ṽi‖2 +

‖|δB∆|‖2

2λ
1/2
i

<

(
λ

1/2
i

gap(B∆)
+

1

2λ
1/2
i

)√
Nεmax dij .
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Remark 3. For convenience, we defined our bounds in terms of spec-
tral matrix norms. Bounds on other norms can be obtained by using
appropriate norm inequalities.
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