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Abstract

This paper explores the problem of similarity criteria between non-
rigid shapes. Broadly speaking, such criteria are divided into intrinsic
and extrinsic, the first referring to the metric structure of the object
and the latter to how it is laid out in the Euclidean space. Both cri-
teria have their advantages and disadvantages: extrinsic similarity is
sensitive to nonrigid deformations, while intrinsic similarity is sensitive
to topological noise. In this paper, we approach the problem from the
perspective of metric geometry. We show that by unifying the extrin-
sic and intrinsic similarity criteria, it is possible to obtain a stronger
topology-invariant similarity, suitable for comparing deformed shapes
with different topology. We construct this new joint criterion as a
tradeoff between the extrinsic and intrinsic similarity and use it as a
set-valued distance. Numerical results demonstrate the efficiency of
our approach in cases where using either extrinsic or intrinsic criteria
alone would fail.

1 Introduction

In the childhood game Rock, Paper, Scissors, the players bend their fingers
in different ways to make the hand resemble one of three objects: a rock, a
sheet of paper and scissors. Looking at these shapes, we can recognize the
hand postures as the objects they intend to imitate. The rock is represented
by a closed fist, the paper by an open palm and the scissors by the extended
index and middle fingers (Figure 1). At the same time, we can say that all
these shapes are just different articulations of the same hand.
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Figure 1: Rock, Paper, and Scissors: this childhood game is based on the similarity
of the postures of the hand to different objects (blue arrows). Though being a valid
similarity criterion, in many other applications, we would rather be interested in
saying that the different postures are all similar, being nonrigid deformations of the
same object (red arrows).
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This example demonstrates the difficulty of defining the similarity of
nonrigid shapes. On one hand, instances of nonrigid objects can be con-
sidered as stand-alone rigid shapes. On the other hand, these shapes can
be regarded as nonrigid deformations of the same object. Using geomet-
ric terminology, the first similarity criterion is extrinsic, i.e., considers the
properties of the shape related to the particular way it is laid out. The
second criterion, looks at the intrinsic properties of the shape, invariant to
the object deformations.

Extrinsic similarity of shapes has been widely addressed in computer
vision, pattern recognition, and computational geometry literature [71, 18].
Most of the papers in these fields, either implicitly or explicitly, look at the
problem of shape similarity from the extrinsic point of view (see, for example,
[20, 47, 40]). A classical method for rigid object matching, introduced by
Chen and Medioni [22] and Besl and McKay [5], is the iterative closest point
(ICP) algorithm. ICP and its numerous flavors [80, 49, 56, 30] try to find a
rigid transformation between two shapes, minimizing an extrinsic distance
between them, usually a variant of the Hausdorff distance.

Another important class of extrinsic similarity methods is based on high-
order moments [72, 39, 33, 70], where the shape’s extrinsic geometry is
represented by a vector of coefficients obtained from the decomposition of
shape properties in some basis. Conceptually, one can think of such methods
as of a Fourier-like representation [77, 78], though other bases like wavelets
[60], spherical harmonics [74, 76, 44], and Zernike descriptors [58] have been
explored in the literature as well. Besides “global” methods, there exist other
families of extrinsic shape similarity methods based on histograms of local
shape properties like curvatures, distances, angles and areas [59, 69]. Such
local methods can be, to some extent, insensitive to shape deformations. For
a comprehensive survey of these approaches, the reader is referred to [71].

At the other end, methods for the computation of intrinsic similarity of
shapes started penetrating into the computer vision and pattern recogni-
tion communities relatively late. As a precursor, we consider the paper by
Schwartz et al. [68], in which a method for the representation of the intrinsic
geometry of the cortical surface of the brain using multidimensional scaling
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(MDS) was presented. MDS is a family of algorithms [6] commonly used in
dimensionality reduction and data analysis [64, 26, 73] and graph represen-
tation [53]. The idea of Schwartz et al. was extended by Elad and Kimmel
[29], who proposed a nonrigid shape recognition method based on Euclidean
embeddings. Elad and Kimmel mapped the metric structure of the surfaces
to a low-dimensional Euclidean space and compared the resulting images
(called canonical forms) in this space.1 Canonical forms were applied to
the problem of three-dimensional face recognition, where this method was
proved to be efficient in recognizing the identity of people while being insen-
sitive to their facial expressions [11]. Ling and Jacobs used this method for
recognition of articulated two-dimensional shapes [52]. Other applications
were in texture mapping and object morphing [81, 35, 15], mesh segmenta-
tion [43] and image matching [51].

One of the main disadvantages of the canonical forms is the fact that
they can represent the intrinsic geometry of the objects only approximately,
as it is generally impossible to isometrically embed a non-flat surface into a
low-dimensional (and in general, finite-dimensional) Euclidean space. It was
shown empirically in [75, 16] that using spaces with non-Euclidean geometry,
it is possible to obtain more accurate representations. Mémoli and Sapiro
[55] showed how the representation error can be theoretically avoided by
using to the Gromov-Hausdorff distance, introduced by Mikhail Gromov
in [34]. Theoretically, the computation of the discrete Gromov-Hausdorff
distance is an NP-hard problem. In order to overcome this difficulty, Mémoli
and Sapiro proposed an approximation, related to the Gromov-Hausdorff
distance by a probabilistic bound.

Using the fact that the Gromov-Hausdorff distance can be related to
the distortion of embedding one surface into another, we proposed in [13] a
relaxation of the discrete Gromov-Hausdorff distance, yielding a continuous

1The measurement of pairwise geodesic distances and the solution of the underlying

MDS problem are the two most computationally-intensive components of the canonical

forms method. The measurement of geodesic distance can be performed very efficiently

using the recently proposed parallel fast marching method [10]. The solution of an MDS

problem can be carried out efficiently using the multigrid framework [19] or the vector

extrapolation methods [63]. This allows for real-time applications like face recognition.
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optimization problem similar to MDS. This algorithm, named generalized
MDS (GMDS) [13, 12], can be thought of as a natural extension of previous
works on isometric embedding into non-Euclidean spaces. GMDS was used
for the comparison of two-dimensional [9] and three-dimensional [13] shapes,
face recognition [14], and in a particular setting of intrinsic self-similarity for
symmetry detection [61, 9]. It was also shown that GMDS can be used to find
deformation-invariant correspondence between non-rigid shapes in computer
graphics applications such as texture mapping and shape manipulation [15].
In these problems, GMDS is closely related to the method of Litke et al.
[54]

Another class of intrinsic similarity methods is based on the analysis of
spectral properties of the Laplace-Beltrami operator of the shape. Reuter et
al. used Laplace-Beltrami spectra (eigenvalues), referring to them as “shape
DNA”, for the characterization of surfaces [62]. Since the Laplace-Beltrami
operator is an intrinsic characteristic of the surface, it is insensitive to iso-
metric deformations [24, 57, 50]. It appears, however, that such criteria are
able to identify isospectral rather than isometric surfaces, and isospectral-
ity is a weaker property (two surfaces can be isospectral but not isometric
[42, 32, 4]). In [65], Rustamov introduced the global point signature (GPS)
embedding, based on eigenfunctions and eigenvalues of the Laplace-Beltrami
operator. Such a descriptor is exact and theoretically allows to represent
the shape up to isometric deformations. GPS embeddings are intimately
related to methods used in manifold learning and data analysis (see e.g.
[64, 79, 3, 26, 25]) and can be thought of as infinite-dimensional canonical
forms.

Though apparently completely different, from the viewpoint of metric
geometry both the intrinsic and extrinsic similarity criteria can be formal-
ized using the notion of isometry invariance. Regarding a shape as a metric
space, its extrinsic properties are described by using the Euclidean metric,
while intrinsic ones using the geodesic metric, which measures distances be-
tween points as the lengths of the shortest paths on the shape. Shape trans-
formations preserving the metric are called isometries; extrinsic isometries
are rigid motions and intrinsic isometries are inelastic deformations. Two
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shapes can be thus said to be similar if they are isometric. Depending on
whether we choose the Euclidean or the geodesic metric, we obtain the ex-
trinsic or the intrinsic similarity, respectively. This perspective is recurrent
in the present paper, allowing us to consider intrinsic and extrinsic similarity
using the same framework.

The choice of whether to use intrinsic or extrinsic similarity depends
significantly on the application. The drawback of extrinsic similarity is its
sensitivity to nonrigid deformations. Using our previous example, a gesture
of the human hand can be extrinsically more similar to a rock or scissors
rather than another hand. This makes extrinsic criteria usually unsuitable
for the analysis of nonrigid objects with significant deformations (see Fig-
ure 2, left and middle; see also Figure 4). On the other hand, extrinsic
similarity is insensitive to deformation changing the topology of the shape
(such as “gluing” the fingers of the hand in Figure 2, right; see also Fig-
ure 5). The intrinsic similarity criterion, in a sense, behaves as the opposite
of the extrinsic one: it is insensitive to inelastic deformations, but is sensitive
to topology changes (Figure 2, right). In practical situation, such changes
can arise due to acquisition imperfections (the so-called topological noise
often encountered in surfaces acquired using three-dimensional scanners, or
reconstructed from volumetric data) or partially missing data (“holes”) [8].

In the case shown in Figure 2, neither extrinsic nor intrinsic similarity
per se is good enough, as none of these criteria is capable of saying that
the three hand shapes are similar, which is the semantically desired result.
In this example, we can distinguish between two types of deformations:
geometric and topological. Geometric transformation change the coordinates
of the points of the shape, and include, for example, rigid motions (to which
the extrinsic similarity criterion is invariant) and inelastic deformations (to
which intrinsic similarity is invariant). Topological transformations, on the
other hand, change the “connectivity” of the shape. The extrinsic geometry
does not change significantly as a result of such transformations, yet, the
intrinsic one does: by modifying the connectivity, the paths between points
can change as well, which can significantly alter the geodesic metric.

The criterion we need in order to capture correctly the similarity of
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Figure 2: Illustration of the difference between intrinsic and extrinsic similarity.
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shapes in Figure 2 must be insensitive to both topological and geometric
deformations. We call such a criterion topology-invariant similarity. In [17],
we proposed an approach for computing topology-invariant similarity be-
tween nonrigid shapes by combining the advantages of intrinsic and extrinsic
similarity criteria, while avoiding their shortcomings. This paper presents
an extended discussion and experimental validation of this method. The
main idea can be visualized by looking at the example of fitting a rubber
glove onto a hand. The extent to which the rubber surface is stretched rep-
resents the intrinsic geometry distortion. The fit quality, or in other words,
how close the glove is to the hand surface, represents the extrinsic distance
between the two objects (Figure 3). A “virtual” glove fitting is performed
by moving the points of the glove with respect to the shape of the hand,
trying to simultaneously minimize the misfit (extrinsic dissimilarity) and
the stretching (intrinsic dissimilarity). Note that unlike real glove fitting,
topological changes like glued fingers do not pose an obstacle in our case:
the “virtual” glove can intersect the hand.

Finding an optimal tradeoff between the misfit and stretching can be
posed as a multicriterion optimization problem and related to the notion
of Pareto optimality. From this point of view, our approach is close in its
spirit to the method of [48, 9, 7] for partial shape matching, using a tradeoff
between the size of the parts cropped out of the shapes and the similarity
between them. In our case, the set of all Pareto optimal solutions can also be
represented as a set-valued similarity criterion, which contains much richer
information than each of the intrinsic and extrinsic criteria separately.

Our approach can also be thought of as a generalization or “hybridiza-
tion” of ICP and GMDS methods. ICP methods compute extrinsic similar-
ity of shapes by means of finding a rigid isometry minimizing the extrinsic
distance between them. Our method extends the class of transformations,
allows for nonrigid isometries and near-isometries, thus relating to the re-
cent works on nonrigid ICP [23, 36, 1]. Using GMDS, intrinsic similarity of
shapes is computed as the degree of distortion when trying to embed one
shape into another. This problem can be regarded as a particular case of
our approach in which we constraint the extrinsic distance between the two
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Figure 3: Fitting a glove onto one’s hand may be thought of as an optimal trade-
off between the stretching of the rubber surface (intrinsic dissimilarity), and the
“amount of air” left between the glove and the hand (extrinsic dissimilarity).
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surfaces to be zero.
The rest of this paper is organized as follows. In Section 2, we introduce

the mathematical background and formulate the shape similarity problem
from the perspective of metric geometry. We review standard approaches to
measuring intrinsic and extrinsic similarity. In Section 3, we define topology-
invariant similarity and present an approach for computing it using a joint
intrinsic-extrinsic criterion. We discuss this approach using the formalism
of Pareto optimality. In Section 4, we show the numerical framework for
computing the proposed distance. Section 5 is dedicated to experimental
results. In Section 6, we conclude the paper and discuss the relation of our
approach to recent results in computer graphics literature on nonrigid ICP
and “as isometric as possible” morphing.

2 Isometry-invariant similarity

We model a shape as a metric space (X, d), where X is a two-dimensional
smooth compact connected surface (possibly with boundary) embedded in
the three-dimensional Euclidean space E = R3, and d : X ×X → R+, is a
(semi) metric2 measuring the distance between each pair of points on X.
There exist two natural choices for the metric on X. The first one is the
restriction of the Euclidean metric denoted here by dE(x, x′) = ‖x − x′‖2,
measuring the distance between any x, x′ ∈ X along “straight lines” in E.
The second natural choice is the geodesic metric,

dX(x, x′) = min
γ∈Γ(x,x′)

L(γ), (1)

measuring the length of the shortest path on the surface connecting a pair
of points x and x′. In order to give a formal definition of the path length
L(γ), we express γ as the limit of piece-wise linear segments connecting the
points {x1, ..., xn} on X,

L(γ) = lim
n→∞

n−1∑

i=1

dE(xi, xi+1). (2)

2A semi-metric does not require the property d(x, x′) = 0 if and only if x = x′ to hold.
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The geodesic metric dX(x, x′) is given as the minimum over the set of all
admissible paths between x and x′, denoted by Γ(x, x′). A path is admissible
if the edges of all the infinitesimal segments xi, xi+1 are connected. We defer
a more precise definition to the next section. We broadly refer to properties
described in terms of dE as the extrinsic geometry of X, and to properties
associated with dX as the intrinsic geometry of X.

In order to determine whether two shapes X and Y are similar, we
compare them as metric spaces. From the point of view of metric geometry,
two metric spaces are equivalent if their corresponding metric structures
are equal. Such metric spaces are said to be isometric. More formally, a
bijective map f : (X, d) → (Y, δ) is called an isometry if

δ ◦ (f × f) = d. (3)

In other words, an isometry is a metric-preserving map between two metric
spaces, such that d(x1, x2) = δ(f(x1), f(x2)). We call such (X, d) and (Y, δ)
isometric and denote this property by (X, d) ∼ (Y, δ).

This definition of equivalence obviously depends on the choice of the
metric. A bijection f : (X, dX) → (Y, dY ) satisfying dY ◦ (f × f) = dX is
called an intrinsic isometry. Saying that (X, dX) and (Y, dY ) are isomet-
ric is synonymous to X and Y being intrinsically equivalent. On the other
hand, if we consider the extrinsic geometry of the shapes (i.e., look at the
shapes endowed with the Euclidean rather than geodesic metric), we no-
tice that (X, dE) and (Y, dE) are subsets of the same metric space (E, dE).
As a result, an extrinsic isometry is a bijection between subsets of the Eu-
clidean space rather than between two different metric spaces. In Euclidean
geometry, the only possible isometries are rigid motions, which include ro-
tation, translation and reflection transformations; we denote the family of
such transformations by Iso(E). Thus, X and Y are extrinsically isometric
if there exists f ∈ Iso(E) such that dE = dE ◦ (f × f) on X ×X. This means
that two shapes are extrinsically isometric if one can be obtained by a rigid
transformation of the other, which is often expressed by saying that X and
Y are congruent.

To avoid confusion, in the following, we say that X and Y are isometric
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implying intrinsic isometry, and that X and Y are congruent when referring
to extrinsic isometry. The class of intrinsic isometries is usually richer than
that of congruences, since any congruence is by definition also an intrinsic
isometry. However, for some objects these two classes coincide, meaning
that they have no incongruent isometries. Such shapes are called rigid, and
their extrinsic geometry is completely defined by the intrinsic one.

2.1 Similarity

In practice, perfect equivalence rarely exists, and we are usually limited
to speaking about similarity of shapes rather than their equivalence in the
strict sense. In order to account for this, we need to relax the notion of
isometry. Two metric spaces (X, d) and (Y, δ) are said to be ε-isometric if
there exists an ε-surjective map f : (X, d) → (Y, δ) (i.e., δ(y, f(X)) ≤ ε for
all y ∈ Y ), which has the distortion

dis f = sup
x,x′∈X

∣∣d(x, x′)− δ(f(x), f(x′))
∣∣ ≤ ε. (4)

Such an f is called an ε-isometry. ε-isometries are quite different from
their true counterparts. Particularly, an isometry is always bi-Lipschitz
continuous [21], which is not necessarily true for an ε-isometry. If we further
relax the requirement of ε-surjectivity by demanding that f has only dis f ≤
ε, we refer to such f as an ε-isometric embedding.

A way to quantify the degree of shape dissimilarity is by defining a shape
distance dshape : S × S → R+ on the space of shapes S. Note that dshape is
a function of (X, d) and (Y, δ). In the following, we will write dshape(X, Y )
omitting explicit reference to the metrics for notation brevity. It is common
to require dshape to satisfy the following set of properties for any X, Y , and
Z in S and a constant c ≥ 1 independent of X, Y and Z:

(I1) Equivalence: dshape(X, Y ) = 0 if and only if (X, d) and (Y, δ) are
isometric.

(I2) Similarity: if dshape(X, Y ) ≤ ε, then (X, d) and (Y, δ) are cε-isometric;
and if (X, d) and (Y, δ) are ε-isometric, then dshape(X, Y ) ≤ cε.
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(I3) Symmetry: dshape(X, Y ) = dshape(Y, X).

(I4) Triangle inequality: dshape(X, Z) ≤ dshape(X, Y ) + dshape(Y, Z).

The first two properties guarantee that the shape distance dshape reflects
the degree of shape dissimilarity, i.e. dshape is small for similar (isometric)
shapes, and large for dissimilar ones. The third property is synonymous to
the reflexivity of the shape similarity relation, while the fourth reflects its
transitivity : if X is similar to Y and Y is similar to Z, then X and Z cannot
be too much dissimilar. Properties (I1), (I3), and (I4) can be expressed
equivalently by saying that dshape is a metric on the quotient space of S
under the isometric equivalence relation, denoted by S\ ∼. We refer to a
shape distance satisfying (I1)–(I4) as to isometry-invariant shape distance.
Note, however, that in the case of a partial shape similarity relation, metric
axioms are usually too restrictive [41, 8].

Since the definitions of equivalence and similarity depend on the choice
of the metrics on the shapes, our notion of isometry-invariant distance be-
tween shapes also depends on them. In the remainder of this section, we
will consider two particular cases of extrinsic and intrinsic shape distances,
defining, respectively, the extrinsic and intrinsic similarity.

2.2 Extrinsic distances

Extrinsic similarity is a simple case of the general problem of metric space
comparison, since two shapes with the Euclidean metric, (X, dE) and (Y, dE),
are a subset of the same metric space (E, dE). Consequently, we can use the
Hausdorff distance measuring the distance between two sets X and Y in E,

dEH(X,Y ) = max

{
sup
x∈X

dE(x, Y ), sup
y∈Y

dE(y, X)

}
, (5)

where dE(y,X) = infx∈X ‖y − x‖2 denotes the distance between the set X

and the point y. In practice, a non-symmetric version of dEH,

dENH(X,Y ) = sup
x∈X

dE(x, Y ), (6)
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is often preferred since it allows for partial comparison of surfaces. L2 ap-
proximations are also often preferred, as the original L∞ formulation is
sensitive to outliers.

Extrinsic equivalence of shapes implies that they are congruent, i.e., can
be brought into ideal correspondence by means of a rigid transformation. In
other words, there exists f ∈ Iso(E) such that dEH(f(X), Y ) = 0. We can use
the same idea in order to measure extrinsic similarity: find the minimum
possible value of the Hausdorff distance over all possible rigid motions,

dext(X, Y ) = inf
f∈Iso(E)

dEH(f(X), Y ) (7)

Since Iso(E) can be easily parametrized, the resulting extrinsic distance can
be computed as

dext(X, Y ) = inf
R,t

dEH(RX + t, Y ), (8)

where R denotes the rotation matrix and t is the translation vector.3 Practi-
cal methods to solve problem (7) are the ICP algorithms, which use an alter-
nating minimization scheme consisting of two stages. First, the closest-point
correspondence between X and Y is computed. Next, the rigid transforma-
tion is found between X and Y that minimizes the Hausdorff distance. The
process is repeated until convergence. Though theoretically a global min-
imum should be searched for, in practice, local optimization methods are
usually employed, and thus, ICP algorithms are often prone to convergence
to a suboptimal solution (local minimum).

The distance dext satisfies Properties (I1)–(I4), being a metric on the
space of shapes modulo Iso(E), and is a good way to measure extrinsic
similarity.

2.3 Intrinsic distances

Computation of intrinsic shape dissimilarity is a more complex task com-
pared to its extrinsic counterpart due to two main reasons. First, intrinsic
isometries usually constitute a significantly richer class of transformations

3Reflection is usually excluded as having no physical realization in E.
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Figure 4: The weakness of extrinsic similarity. Top row shown deformations of a
three-dimensional shape of the nonrigid human body. Weak deformations (left and
middle) can be compared using ICP algorithm, which finds a meaningful alignment
between the shapes (bottom row, left), despite topological noise (simulated here by
welding hand and leg at a point denoted by a red circle). However, in the case of
strong deformations (top row, right) ICP produces meaningless matching (bottom
row, right).
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than Euclidean congruences, and there often exists no simple parametriza-
tion comparable to the six degrees of freedom that are sufficient to represent
a rigid motion. Second, unlike in the rigid case where (X, dE) and (Y, dE) are
compared as subsets of a common metric space (E, dE), the comparison of
(X, dX) and (Y, dY ) does not allow using the Hausdorff distance, and hence
dext in (7) cannot be straightforwardly generalized to the intrinsic case.

In [29], Elad and Kimmel reduced the problem of intrinsic shape similar-
ity to the more tractable problem of extrinsic similarity, by first computing
an extrinsic representation of the intrinsic geometry of the shapes in some
common metric space (Q, dQ). Such a representation, dubbed as the canon-
ical form, is constructed by minimum-distortion embedding, attempting to
find two maps ϕ : (X, dX) → (Q, dQ) and ψ : (Y, dY ) → (Q, dQ) with min-
imum distortions dis ϕ and dis ψ. The embedding, in a sense, allows to
“undo” all the isometric deformations of the shapes (though, some degree of
ambiguity stemming from isometries in Q still remains). Once the canonical
forms ϕ(X) and ψ(Y ) are computed, they are compared extrinsically using,
for example, ICP. In other words, the intrinsic distance between two shapes
X and Y is computed as the extrinsic distance between their canonical
forms,

dint(X, Y ) = dext(ϕ(X), ψ(Y )). (9)

If the Euclidean space (Em, dEm) is used as the embedding space, the
minimum distortion embedding of (X, dX) can be found by solving a multi-
dimensional scaling (MDS) problem. Given the shape X sampled at points
X̂ = {x1, ..., xN} and the N × N matrix of distances DX̂ = (dX(xi, xj)),
MDS algorithms try to find a configuration of points in Rm such that the
Euclidean distances between these points are as close as possible in some
sense to the elements of DX̂ . Typically, the L2 distortion criterion is used, in
which case the MDS problem is referred to as least-squares MDS (LSMDS).
The canonical form is given by

Z = argmin
Z∈RN×m

∑

i>j

|‖xi − xj‖2 − dX(xi, xj)|2, (10)

where Z is an N × m matrix representing the coordinates of the points
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in Em. There exist numerically simple and efficient algorithms for solving
problem (10) [6, 19].

The choice of Q has an important influence on the computation of canon-
ical forms. Though the Euclidean space is the simplest and most convenient
metric space for this purpose, other choices are possible as well [28, 75, 16].
There are a few criteria for choosing the embedding space. First, it is de-
sired that Q is homogeneous and its isometry group is simple, in order to
reduce the number of degrees of freedom in the definition of the canonical
forms. Secondly, an analytic expression for dQ allows using MDS algorithms
[6]. Finally, it appears that for some classes of shapes, certain embedding
spaces are generally more suitable (see, for example, experimental results in
[16]).

However, achieving a true isometric embedding (i.e., the minimum in
problem (10) equal to zero) is usually impossible [53] with a metric space Q
satisfying the above criteria. Hence, the canonical forms are only an approx-
imate representation of the intrinsic geometry of the shapes. The problem of
inaccuracy introduced by the embedding into Q can be resolved if we do not
assume a given embedding space, but instead, include Q as a variable into
the optimization problem. We can always find a sufficiently complicated
metric space into which both X and Y can be embedded isometrically, and
compare the images using the Hausdorff distance,

dGH((X, dX), (Y, dY )) = inf
Q

ϕ:X→Q
ψ:Y→Q

dQH(ϕ(X), ψ(Y )), (11)

(here ϕ and ψ are assumed to be isometric embeddings). The resulting
distance is referred to as Gromov-Hausdorff distance [34]. In the following,
we use a brief notation dGH(X, Y ) when the implied metrics are clear.

While the computation of dGH as defined in (11) is hardly tractable
due to the minimization over all embedding spaces Q, it appears that for
compact surfaces, the Gromov-Hausdorff distance can be expressed in terms
of the distortion obtained by embedding one surface into the other,

dGH(X, Y ) =
1
2

inf
ϕ:X→Y

ψ:X→Y

max{disϕ,disψ, dis (ϕ,ψ)}, (12)
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where,

dis (ϕ,ψ) = sup
x∈X,y∈Y

|dX(x, ψ(y))− dY (y, ϕ(x))|. (13)

The computation of the distortions is performed using the generalized multi-
dimensional scaling [13, 12], a procedure similar in its spirit to MDS, but not
limited to spaces with analytically expressed geodesic distances. Using the
Gromov-Hausdorff distance, the intrinsic shape distance can be computed
as

dint(X, Y ) = dGH((X, dX), (Y, dY )). (14)

2.4 A unified view of extrinsic and intrinsic similarity

It is worthwhile to note that the Gromov-Hausdorff distance is a generic
isometry-invariant shape distance satisfying properties (I1)–(I4) with c = 2.
Particularly, this implies that if dGH((X, d), (Y, δ)) ≤ ε, then (X, d) and
(Y, δ) are 2ε-isometric and conversely, if (X, d) and (Y, δ) are ε-isometric,
then dGH((X, d), (Y, δ)) ≤ 2ε [21, 12]. One can think of the Gromov-
Hausdorff distance as a general framework for isometry-invariant shape com-
parison, unifying both extrinsic and intrinsic similarity. Selecting d and δ as
the geodesic metrics (dX and dY , respectively), we obtain the intrinsic shape
distance dint. Considering the shapes with the Euclidean metric dE yields
an equivalent (but not equal) way to express the extrinsic shape distance as

dext(X, Y ) = dGH((X, dE), (Y, dE)), (15)

instead of the definition we have seen before. In this case, we interpret
isometry as congruence, while in the former case, it implies the existence of
a geodesic distance-preserving deformation of X into Y .

3 Topology-invariant similarity

Let us now return to our example of glove fitting. Assume that Y is the hand
surface, and X is the glove we wish to fit. A perfect fit is achieved when
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Figure 5: The weakness of intrinsic similarity. Shown are deformations of a three-
dimensional nonrigid human body shape (top row) and the corresponding canonical
forms (bottom row) computed using classical MDS. The canonical forms appear to
be insensitive to near-isometric deformations of the shape (left and middle columns).
However, topological noise (simulated here by welding the hands to the legs at
points indicated by red circles) results in a completely different canonical form.
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X and Y are equivalent. Since both the glove and the hand are nonrigid
shapes, we understand equivalence in the intrinsic sense, i.e., as the existence
of an isometry between (X, dX) and (Y, dY ). An alternative way to express
this fact is by saying that there exists an isometric deformation f of X, such
that f(X) = Y . In other words, we may say that the glove X perfectly fits
the hand Y if there exists Z intrinsically equivalent to X and extrinsically
equivalent to Y .

Let us now assume that the hand is given in a posture where the fingers
are glued, while the fingers of the glove are disconnected. Such a topologi-
cal difference would make distinct the intrinsic geometries of the hand and
the glove, preventing X and Y from being intrinsically equivalent (for an
illustration, see Figure 5). However, our alternative definition of equivalence
would still hold, as we can still find Z intrinsically equivalent to X, which
will fit Y extrinsically (though, unlike the previous case, Z and Y are no
longer intrinsically equivalent).

This example visualizes the limitations of the notion of intrinsic equiv-
alence of shapes, and brings forth the need to construct a more general
notion of equivalence, insensitive to topological changes. Such a construc-
tion requires several additions to our mathematical machinery. We define
a topology T of X as a family of subsets of X (i.e., T is a subset of the
power set 2X) closed under finite intersection and union of arbitrarily many
elements of T . By definition, both the empty set and X itself are members
of T . Conventionally, a subset of X is called open if it belongs to T , and
closed if its complement belongs to T . From now on, when speaking about
a shape X, we will actually imply the triplet (X, T, d), and omitting T will
imply that the topology is induced by the metric. For example, for the
choice d = dE, the topology of the Euclidean space E is assumed. Topology
defines properties of the shape which are “coarser” than metric geometry,
such as connectivity of points.

Our glove fitting example suggests that there may exist two shapes
(X, T, dX) and (X,T ′, d′X) with identical realization X in the Euclidean
space, yet different topology and intrinsic geometry. This is possible due to
the fact that our definition of the geodesic metric in (1) was based on the
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length of the shortest admissible path γ ∈ Γ(x, x′) connecting two points x

and x′ on X.
However, the definition of the set of all admissible paths connecting x

and x′ is itself a function of the topology, as it depends on the connectivity.
For example, in case of a hand with glued fingers, there exists a path between
two finger tips crossing the fingers. When the fingers are disconnected, the
shortest path between the finger tips goes along the fingers, since the path
directly connecting the finger tips is no longer admissible (for a more formal
discussion, the reader is referred to Chapter 2 in [21]).

Two topological spaces (X,T ) and (Y, T ′) are said to be homeomorphic
or topologically equivalent if there exists a continuous bijection g : (X,T ) →
(Y, T ′), whose inverse is also continuous (the continuity of g and g−1 is
understood in the sense of T and T ′, respectively). Since isometries are also
homeomorphisms, it follows straightforwardly that both T and d remain
invariant under an isometry.

In order to distinguish between purely geometric and purely topological
deformations of a shape, we will say that a map f : (X, T, d) → (Y, T ′, δ)
is a topological deformation if it leaves X unchanged (i.e., X = Y )4. Using
this notion, we can finally define two shapes (X, TX , dX) and (Y, TY , dY )
to be equivalent in the sense of topology-invariant similarity if there exists
a topological deformation g : (X, TX , dX) → (X,T ′X , d′X), and an isometry
f : (X, T ′X , d′X) → (Z, T ′X , d′X) such that Y = Z = (f ◦ g)(X). Note that
though we gave a simple example of topological deformations that change
point-wise connectivity, other, more generic deformations (such as opening
holes) are also possible.

Such a definition of topology-invariant equivalence is more general than
extrinsic or intrinsic similarity we had before. In our example, a glove
(Y, TY , dY ) shown in Figure 2 (left) and a hand with glued fingers (X,TX , dX)
shown in Figure 2 (right) are extrinsically dissimilar since X and Y are in-
congruent. On the other hand, (X,TX , dX) and (Y, TY , dY ) are intrinsically
dissimilar since (X,TX) and (Y, TY ) are not topologically equivalent and as
a result, (X, dX) and (Y, dY ) are not isometric. Yet, using the above crite-

4Or more generally, X and Y are congruent.
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rion, there is a topology-invariant equivalence between shapes (X,TX , dX)
and (Y, TY , dY ): we can first “unglue” the fingers of the hand by means of
a topological deformation g : (X,TX , dX) → (X, T ′X , d′X), and then bend
the hand by means of an isometry f : (X,T ′X , d′X) → (Z, TZ , dZ), such that
Z = Y , T ′X is equivalent to TZ , and d′X is equivalent to dZ .

In order to relax this notion of equivalence into a topology-invariant sim-
ilarity relation, a slightly more complicated construction is required. We will
say that (X, TX , dX) and (Y, TY , dY ) are (εint, εext)-similar if there exists a
topological deformation g : (X, TX , dX) → (X, T ′X , d′X), and an εint-isometry
f : (X, T ′X , d′X) → (Z, T ′X , d′X) such that dEH((f ◦ g)(X), Y ) ≤ εext.

In many practical situations, an asymmetric definition of topology-invariant
similarity is sufficient. In such cases, we distinguish between a probe X that
is fit to a model Y . We say that (X, TX , dX) and (Y, TY , dY ) are (εint, εext)-
similar if there exists an εint-isometry f : (X, T ′X , d′X) → (Z, T ′X , d′X) such
that dEH((f ◦ g)(X), Y ) ≤ εext. In what follows, we will limit our attention
to the latter definition of similarity, and will construct a distance based on
a combination of extrinsic and intrinsic distances to reflect it.

3.1 Topology-invariant distance

Another way to express our notion of topology-invariant similarity is by
saying that the probe X admits a topology-preserving deformation Z such
that dint(X, Z) ≤ εint, and dext(Z, Y ) ≤ εext. Since it is usually impossible
to say which of the two criteria is more important, we judge the similar-
ity as a tradeoff between them. Such a joint intrinsic-extrinsic similar-
ity between two shapes can be quantitatively represented by the extent to
which we have to modify the extrinsic geometry in order to make the two
shapes intrinsically similar, or alternatively, the extent to which we have
to modify the intrinsic geometry in order to make the two shapes extrinsi-
cally similar. This, in turn, can be formulated as a multicriterion optimiza-
tion problem, in which we bring to minimum the vector objective function
Φ(Z) = (dint(Z, X), dext(Z, Y )) with respect to Z.

Unlike optimization with a scalar objective, we cannot define unambigu-
ously the minimum of Φ, since there does not exist a total order relation
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between the criteria – we cannot say, for example, whether it is better to
have Φ = (0.5, 1) or Φ = (1, 0.5). At the same time, we have no doubt that
Φ = (0.5, 0.5) is better than Φ = (1, 1), since both criteria have smaller val-
ues. This allows us to define a minimizer of our vector objective Φ as a Z∗,
such that there is no other Z for which Φ(Z) is better that Φ(Z∗) (which
can be expressed as a vector inequality Φ(Z∗) > Φ(Z)). Such an Z∗ is called
non-inferior or Pareto optimal. Pareto optimum is not unique; we denote
by Ω∗ the set of all Z∗ that satisfy the above relation. The corresponding
values of Φ(Ω∗) are referred to as a Pareto frontier and can be visualized as
a planar curve (Figure 6).

In [8], Bruckstein and the authors proposed considering the entire Pareto
frontier as a criterion of similarity, of which we can think as a generalized,
set-valued distance.5 In our case, this distance measures the tradeoff be-
tween the intrinsic and extrinsic similarity, which we denote by dP(X, Y ) =
Φ(Ω∗) and refer to as the Pareto distance. The Pareto distance quanti-
fies the degree of asymmetric topology-invariant dissimilarity; particularly,
(0, 0) ∈ dP(X,Y ) if and only if X and Y are equivalent in the sense that X

has an isometry congruent to Y . The Pareto distance also generalizes the
similarity criteria based on purely extrinsic or intrinsic geometry. Asserting
dint(X,Z) = 0, the other criterion dext(Z, Y ) in dP(X, Y ) will measure how
close a perfectly isometric deformation of X can bring X to Y . Since in
practice we work with meshes which are known to be almost always rigid,
the only possible deformations are congruences of X. This means that with
dint(X,Z) fixed to zero, dP(X, Y ) is equivalent to ICP. On the other hand,
if we require dext(Y,Z) = 0, the probe is forced to be attached to the model
surface, which boils down to a GMDS problem, where we are trying to find a
deformation of X minimizing dint(Z, Y ). We conclude that the two extreme
cases of dP(X,Y ) are (0, dext(X,Y )) and (dint(X, Y ), 0). Other points on
the Pareto frontier represent different tradeoffs between the extrinsic and

5Set-valued distances arise from similarity relations based on more than one criterion

such as in the case of partial similarity, which can be regarded as the tradeoff between

similarity and significance of the parts. We believe that it is more natural to use set-valued

distances for such relations, rather than trying to fit them into the Procrustean bed of

scalar-valued similarity.
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Figure 6: Visualization of the concept of set-valued distance. Different points
on the Pareto frontier represent different tradeoffs between intrinsic and extrinsic
similarity.

the intrinsic criteria, as depicted in Figure 6.
In general, by saying that dP(X, Y ) ≤ (εint, εext) (the vector inequality

implies that the point (εint, εext) is above or on the Pareto frontier), we mean
that there exists a deformation Z of X distorting its intrinsic geometry by
less than εint, while making its extrinsic geometry less than εext-dissimilar
from that of Y . Saying that dP(X, Y ) < dP(X,Y ′), implies that bringing
X to a certain proximity of Y requires a smaller intrinsic distortion than
bringing X to the same proximity of Y ′. Using our glove fitting example,
we would say that the glove X fits the hand Y better than the hand Y ′.
Geometrically, this fact is manifested by the curve dP(X, Y ) being entirely
below dP(X, Y ′).
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3.2 Joint intrinsic and extrinsic similarity

The set-valued distance dP may be inconvenient to use since only a partial
order relation exists between the Pareto frontiers – given two set-valued dis-
tances, we cannot in general say which of them is “smaller”, unless one curve
is entirely above or below the other. In order to compare shape distances,
we have to convert them into a single scalar value.

Intuitively, the “speed of decay” of the Pareto frontier indicates how
similar two shape are (the faster, the more similar). There are multiple ways
to represent this information as a single number. First, one can measure the
area under the Pareto frontier. Smaller area corresponds to higher similarity.
Second, it is possible to select a single point on the Pareto frontier by fixing
a pre-set value of one of the dissimilarities. For example, if we know that
the shapes are inelastic to a certain degree, i.e. they can stretch or shrink
by no more than ε, we will fix the intrinsic dissimilarity dint = ε and will use
the value extrinsic dissimilarity at this point as the shape distance. A third
alternative is to require that both dissimilarities are equal and compute the
point at which dint = dext. This way, we obtain a shape distance similar in its
spirit to the equal error rate (EER) used in receiver operating characteristic
analysis.

A more generic approach to converting a set-valued distance into a scalar-
valued one comes from the multicriterion optimization theory [66]. Among
all the Pareto optima, we cannot prefer any since they are non-comparable:
we cannot say which Pareto optimum is better. However, ideally we want to
bring both of our criteria to zero, that is, achieve the “utopia point” (0, 0).
We can choose a single point on the Pareto frontier the closest to the utopia
point, in the sense of some distance.

Using this idea, we define the joint distance as

djoint(X, Y ) = inf
(εint,εext)∈dP(X,Y )

‖(εint, εext)‖R2
+
, (16)

where ‖·‖R2
+

is some norm on R2
+. In the following, we will consider a family

of norms ‖(εint, εext)‖λ = εint + λεext, for λ > 0. The joint distance in this
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case can be written as

djoint(X, Y ) = min
Z

dint(X, Z) + λdext(Z, Y ). (17)

Different selections of the multiplier λ attribute importance either to dint or
dext, and give us different points on the Pareto frontier.

3.3 Simplification

The intrinsic distance term dint(X, Z) can be simplified by observing that
the deformation Z = f(X) gives a one-to-one correspondence between X

and Z. We can therefore fix ϕ and ψ in the Gromov-Hausdorff distance to
f and f−1, respectively, obtaining the following intrinsic distance,

dint(X,Z) = dis f = sup
x,x′∈X

|dX(x, x′)− dZ(f(x), f(x′))|. (18)

Note that the correspondence between the surfaces is now fixed and does
not participate anymore in the minimization. dint(X, Z) defined this way
measures the distortion in the intrinsic geometry of X introduced by the
extrinsic deformation f . The main difficulty in its computation stems from
the fact the the geodesic metric dZ has to be re-computed every time the de-
formation changes. We will defer the discussion of this issue to the following
section.

A simplification of the extrinsic distance term dext(Z, Y ) in djoint(X, Y )
is possible due to the fact that the deformation Z of X already accounts
for all possible congruences. Consequently, there is no need to minimize
over Iso(E) when computing dext(Z, Y ) – we can simply use dEH(Y,Z) or
dENH(Y, Z) instead. Like in ICP, the main computational challenge is the
need to re-compute the set of closest points every time the deformation
changes.

4 Numerical framework

For practical computations, we work with discretized shapes. The surface
X is sampled at N points X̂ = {x1, ..., xN} ⊆ X, constituting an r-covering,
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i.e., X =
⋃N

n=1 BX(xn, r) (here, BX(x, r) is a metric ball of radius r around
x). The extrinsic coordinates of X̂ can be represented as an N×3 matrix X,
each row of which corresponds to xi ∈ E. The discrete shape is represented
as a triangular mesh; each triangle is a triplet of indices of vertices belonging
to it. The maximum length of an edge is r. Vertices connected by an edge
(or in other words, belonging to the same triangle) are said to be adjacent ;
we describe the adjacency by the set E of all adjacent pairs of vertices in
X̂. The geodesic distances on X̂ are approximated using the fast marching
method [46] or the Dijkstra’s algorithm, forming an N ×N matrix DX̂ .

Assuming the deformed surface Ẑ = f(X̂) maintains the connectivity of
X̂, we can formulate the following minimization problem with respect to the
N × 3 matrix Z of the extrinsic coordinates of Ẑ:

djoint(X̂, Ŷ ) = min
X

1
N2

N∑

i,j=1

(dX̂(xi, xj)− dij(Z))2 +
λ

N

N∑

i=1

d2(zi, Ŷ )

(19)

where dij(Z) = dẐ(zi, zj) denote the geodesic distances on Ẑ, and d(zi, Ŷ )
denotes the Euclidean distance from the point zi to the discretized surface
Ŷ . The first term of the above cost function is the discretization of dint,
whereas the second term is the discretization of dext. In the sequel, we show
how to efficiently compute these two terms and their derivatives with respect
to Z, required for the minimization of (19).

4.1 Intrinsic distance computation

The main challenge in the computation of the intrinsic distance term dint

is the need to evaluate the geodesic distances on Ẑ and their derivatives
with respect to the extrinsic geometry of Ẑ changing at each iteration of
the minimization algorithm. The simplest remedy would be to modify the
intrinsic term by restricting i and j to the neighboring points only,

dint ≈ 1
|E|

∑

(i,j)∈E

(
dX̂(xi, xj)− dẐ(zi, zj)

)2
. (20)

This way, we use only the local distances on Ẑ, which can be approximated as
the Euclidean distances dẐ(zi, zj) = ‖zi−zj‖. However, such a modification
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makes dint significantly less sensitive to large deformations of X̂. Indeed,
many deformations change the local distance only slightly, while introducing
large distortion to larger distances.

In order to penalize for such deformations of X̂, we need to approximate
the full matrix of geodesic distances on Ẑ. We first define the matrix D(Z)
of local distances, whose elements are, as before,

dij(Z) =

{
‖zi − zj‖ : (i, j) ∈ E

0 : (i, j) /∈ E.
(21)

Using the Dijkstra algorithm,6 we compute the set of shortest paths between
all pairs of points (i, j). For example, let Pij = {(i, i1), (i1, i2), ..., (in−1, in), (in, j)} ⊂
E be the shortest path between the points i and j. Its length is given by
L(Pij) = di,i1 + di1,i2 + ... + din,j , which is a linear combination of the el-
ements of D(Z). We can therefore “complete” the missing entries in the
matrix D(Z) by defining the matrix of global distances

D̂(Z) = I(Z)D(Z), (22)

where I is a sparse fourth order tensor, with the elements Iijkl = 1 if the
edge (k, l) is contained in the shortest path Pij , and 0 otherwise. Note that
I depends on the connectivity E, which is assumed to be fixed, and the
matrix of local distances D, which, in turn, depends on Z.

It is straightforward to verify that the entries of D̂(Z) and D(Z) coincide
for all (i, j) ∈ E. The global distance matrix D̂(Z) constitutes an approx-
imation of the geodesic distances on the surface Ẑ, d̂ij ≈ dẐ(zi, zj), while
having a simple linear form in terms of the local distances. A consistent and
more accurate estimate of dẐ can be produced by replacing the Dijkstra
algorithm with fast marching and allowing the shortest paths to pass on
the faces of the mesh representing Ẑ. However, such an approach results in
more elaborate expressions and will not be discussed here.

6Dijkstra’s algorithm (unlike e.g. Fast Marching) is known to produce a triangulation-

dependent approximation of the geodesic distances due to the so-called metrication error.

However, since in our case we are comparing the shape to a deformed version of itself, the

triangulation remains the same and thus triangulation-independence is not required.
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In order to compute the derivative of D̂(Z) with respect to Z, we assume
that a small perturbation dZ of Z does not change the connectivity of the
points on Ẑ, and as a result, the trajectory of the shortest paths between
the points on Ẑ remains constant (though their length may change). Thus,
we may write

D̂(Z + dZ) = I(Z + dZ)D(Z + dZ) = I(Z)D(Z + dZ), (23)

and compute the derivative of D̂(Z) as the derivative of the linear form
I(Z)D(Z). If I(Z) 6= I(Z + dZ), the assumption does not hold, and the
derivative of D̂ usually does not exist. Yet, the derivative of I(Z)D(Z)
belongs to the sub-gradient set of D̂ at the point Z. This is sufficient for
many minimization algorithms to work correctly.

The intrinsic distance term can be readily written in terms of D̂ as the
Frobenius norm

dint(Z) =
1

N2
‖D̂(Z)−DX̂‖2

F

=
1

N2
trace((D̂(Z)−DX̂)T(D̂(Z)−DX̂)). (24)

Its derivative with respect to Z is given by

∂dint(Z)
∂Z

=
2

N2
(D̂(Z)−DX̂)T

∂D̂(Z)
∂Z

, (25)

where

∂d̂ij(Z)
∂Z

=
∑

k,l

Iijkl
∂dkl(Z)

∂Z
, (26)

and the elements of ∂dkl(Z)
∂Z are given by

∂dkl

∂zm
n

=
1

dkl





zm
k − zm

l : n = k

zm
l − zm

k : n = l

0 : n 6= k, l

(27)

for m = 1, 2, 3.
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4.2 Extrinsic distance computation

The computation of the extrinsic distance is similar to the one used in ICP
algorithms, where the main difficulty arises from the need to re-compute the
closest points each time the extrinsic geometry of Ẑ changes. The extrinsic
distance term can be written as

dext(Z) =
1
N

trace ((Z−Y∗(Z))(Z−Y∗(Z))T) (28)

where Y∗(Z) denotes the N × 3 matrix, whose i-th row y∗i is the closest
point on Y corresponding to zi. The closest points y∗i are computed as a
weighted average of the points on Y , which are the closest to zi. The weights
are selected in inverse proportion to the distance from zi.

In ICP algorithms, it is common to assume that Y∗(Z + dZ) ≈ Y∗(Z).
By fixing Y∗, dext(Z) becomes a simple quadratic function, and its derivative
can be written as

∂dext(Z)
∂Z

=
2
N

(Z−Y∗(Z))T. (29)

4.3 Iterative minimization algorithm

For Z′ in the neighborhood of some Z, the cost function that needs to be
minimized can be approximated as

σ(Z′) ≈ 1
N2

trace (D̂(Z′)TD̂(Z′)− 2DT
X̂
D̂(Z′) + DT

X̂
DX̂)

+
λ

N
trace (Z′Z′T − 2Y∗(Z)Z′T + Y∗T(Z)Y∗(Z)), (30)

where D̂(Z′) = I(Z)D(Z′). Like in ICP, after finding a new Z′ which
decreases σ(Z′), the closest points Y∗ and the operator I are updated. The
iterative minimization algorithm can be summarized as follows:

30



Compute the closest points Y∗(Z).1

Compute the shortest paths between all pairs of points on Ẑ and2

assemble I.
Find Z′ sufficiently decreasing σ(Z′) in (30).3

If the change ‖Z− Z′‖ is small, stop. Else, set Z = Z′ and go to4

Step 1.

The update of Z in Step 3 can be safeguarded by evaluating the true cost
function (with I(Z′) and Y∗(Z′) instead of I(Z) and Y∗(Z)). In our imple-
mentation, no safeguard was used, and the minimization in Step 3 was done
using conjugate gradients.

The initialization of the algorithm can be done in several ways, the sim-
plest of which is Z = X. This choice works well when the extrinsic dissimi-
larity between X and Y is not too large; for large dext(X, Y ), the algorithm
will suffer from poor convergence similarly to most ICP methods. Another
choice is to initialize Z by the corresponding points on Ŷ resulting from the
solution of the GMDS problem. This choice is suitable for objects having
sufficiently similar intrinsic geometries, making the intrinsic correspondence
computed by GMDS meaningful. A more robust initialization scheme can
be constructed based on branch-and-bound global optimization proposed in
[30] for the initialization of ICP algorithms, and adopted in [61, 9] for the
initialization of GMDS. This family of approaches consists of computing lo-
cal descriptors (in our case, reflecting intrinsic geometric properties) for a
set of prominent feature points on both shapes, followed by finding the best
correspondence between the two sets of features. The branch-and-bound
technique is used for fast pruning of the search space, guaranteeing global
optimality of the found solution on one hand, while maintaining reasonably
low complexity on the other.

As both in ICP and GMDS, a multi-resolution scheme can improve sig-
nificantly the convergence speed of our minimization algorithm. In a multi-
resolution approach, an initial solution is found by first computing djoint

between coarse versions of X and Y , and subsequently interpolating it to
higher resolution levels. This allows to practically eliminate many spurious
local minima.
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5 Results

In order to assess the proposed approach, three experiments were performed.
In the first experiment, we show the computation of the set-valued Pareto
distance between different nonrigid shapes. In the second experiment, we
evaluate the discriminative power of the joint similarity criterion and com-
pare its performance to extrinsic and intrinsic similarity criteria. In the
third experiment, we compare joint similarity with state-of-the-art shape
matching methods.

The shapes in our experiments were taken from the nonrigid objects
database available online at tosca.cs.technion.ac.il. The joint similar-
ity computation was implemented in MATLAB. The Dijkstra algorithm was
written in C. No code optimization was performed.

5.1 Pareto distance

In the first experiment, we compared three different objects: a man, a woman
and a gorilla. As a model, we used the shape of aiming man (shown in red
in Figure 8), sampled at 1000 points. Three probes were compared to the
model: a near-isometric deformation of the man shape (a man with open
hands), a woman and a gorilla. Each probe was represented by 100 points.
Subsampling was performed using the farthest point sampling method [38,
37, 31]. The Pareto frontier was obtained by computing the joint distance
for thirteen different values of λ. The computation of each point on the
Pareto frontier took several minutes.

Figure 7 shows the Pareto distances between the model shape and the
probe objects. The Pareto frontiers clearly indicate that the man shape is
more similar to its deformed version than to a woman and even less to the
gorilla.

Figure 8 shows the matching obtained as a result of computation of the
joint distance. Small values of λ give larger weight to intrinsic similarity,
which results in the probe (depicted in blue) remaining almost rigid. In-
creasing λ, more weight is given to the extrinsic similarity, which results
in the probe bent to better fit the model. Thus, “traversing” the solutions
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Figure 7: Pareto distances between a man shape and its deformed version (green
curve), man and woman (red curve) man and gorilla (blue curve).

on the Pareto frontier, one can obtain a continuous morphing between the
probe and the model. Note that unlike many morphing methods used in
computer graphics which assume compatible meshing of the source and the
target shapes, here the two shapes have arbitrary number of samples, and
arbitrary triangulations.

5.2 Comparison of dH, dGH and djoint

In the second experiment, we compared different distances on a data set of
six shape classes. Each object appeared in a variety of instances, obtained
by near-isometric deformations. In addition, for each of the deformations, a
version with different topology was created by welding the shapes at a set of
points (marked by red circles in Figure 9). In total, the data set contained
the following shapes: 5 cats, 9 dogs, 13 gorillas, 7 lions, 13 males and 13
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Figure 8: Matching a man shape to different shapes (another version of the man,
a woman and a gorilla) produced by joint similarity using different values of λ.
Gradually increasing the value of λ results in a morphing effect.
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females (total of 60 shapes; 27 of them with welding).
We compared three shape distances: the Gromov-Hausdorff distance dGH

(representing intrinsic dissimilarity), extrinsic dissimilarity computed using
an ICP algorithm, and the proposed joint distance djoint. For the approx-
imation of the Gromov-Hausdorff distance, we used GMDS. The distance
was computed using 100 points on the embedded shape and 1000 points
on the shape into which embedding was performed. For the ICP method,
meshes with 1000 sampled were used. For the computation of the joint dis-
tance, the model and the probe were represented by 1000 and 100 points,
respectively. The typical computation time of the extrinsic, intrinsic and
joint similarity between a pair of shapes was a few seconds, 30 - 60 seconds,
and a few minutes, respectively.

The recognition accuracy was assessed both qualitatively and quantita-
tively. The first assessment consisted of presenting the shapes as points in
the Euclidean space, with the Euclidean distance representing the distances
between the shapes (Figures 10–13). Such plots are straightforwardly ob-
tained using MDS and allow to visually represent the similarity relations
between the shapes.

The second, quantitative assessment consisted of computing the receiver
operating characteristic (ROC) curves for each similarity criterion, repre-
senting a tradeoff between the false acceptance rate (FAR) and the false
rejection rate (FRR). Each ROC curve was computed as follows: the matrix
of distances between different shapes was thresholded by a value ranging
from zero to the maximum distance value. Shapes with distances falling be-
low the threshold were regarded similar (i.e., instances of the same object);
those with distances above the threshold were regarded dissimilar (different
objects). The FAR was computed as the percentage of dissimilar shapes
wrongfully identified as similar. The FRR was computed as the percentage
of similar shapes wrongfully identified as dissimilar. For small values of the
threshold, the FAR is small (two shapes must have a very small distance
in order to be considered similar), while the FAR is large. For large val-
ues of the threshold, the FAR is large and the FRR is small. Ideally, both
should be as small as possible, meaning that the recognition is accurate. A
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single number capturing the recognition error was computed as the point at
which the values of FAR and FRR coincide (referred to as equal error rate
or EER).

Figure 10 visualizes the Gromov-Hausdorff distance between the shapes
in the absence of topological noise (using a subset of the database of 33
shapes without welding). The Gromov-Hausdorff distance appears insen-
sitive to deformations, which is seen as tight clusters in the figure, and
allows to distinguish between different objects almost perfectly (with EER
of 1.14%, see Figure 14). This idealistic picture changes dramatically when
shapes with topological noise are added. Figure 11 shows that shapes with
welded points (represented as hollow circles in the figure) are significantly
different from the original ones. This is confirmed by a significant drop in
the recognition rate (EER of 7.68%).

Figure 12 visualizes the ICP distance between the shapes. While the
extrinsic distance is insensitive to topological noise (which is clearly seen
from the hollow circles, representing shapes with welding, coinciding with
points, representing shapes without welding), it is sensitive to nonrigid de-
formations. Overall, the recognition rate is poor (EER of 10.34%).

Finally, Figure 13 visualizes the joint distance. The joint similarity crite-
rion combines the advantages of the two distances, and is insensitive to both
isometries and topological changes. It significantly outperforms the extrinsic
and intrinsic distances used separately, achieving an EER of 1.61%.

5.3 Comparison to other methods

In the third experiment, we compared the joint similarity criterion with two
state-of-the-art methods: shape DNA [62, 50, 65] and D2 shape distribu-
tion [59]. The shape DNA method is based on comparison of the Laplace-
Beltrami spectrum of the shapes. The discrete Laplace-Beltrami operator
was computed on shapes subsampled at 500 points. We used the approx-
imation described in [65]. Twenty largest eigenvalues were used as shape
descriptors. The descriptors were compared using Euclidean norm. In the
D2 shape distribution method, the shape is described by a histogram of
Euclidean distances between uniform samples. We used uniform subsam-
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Figure 9: The set of objects used in the second experiment. Topological noise was
modeled by welding the meshes at points indicated by red circles.
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Figure 10: Visualization of the intrinsic similarity (Gromov-Hausdorff distance)
between nonrigid shapes. No topological noise is present.
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Figure 11: Visualization of the intrinsic similarity (Gromov-Hausdorff distance)
between nonrigid shapes. Shapes with different topology created by welding are
marked by hollow circles.
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Figure 12: Visualization of the extrinsic similarity (computed using ICP) between
nonrigid shapes. Shapes with different topology created by welding are marked by
hollow circles.

40



Figure 13: Visualization of the joint intrinsic-extrinsic similarity computed using
the proposed method. Shapes with different topology created by welding are marked
by hollow circles.
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Figure 14: ROC curves describing the recognition power of intrinsic, extrinsic and
joint similarities in the second experiment.
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pling based on farthest point sampling. We used histograms with 125 bins.
Comparison of histograms was performed using the Earth Moving distance
(EMD).

Figure 15 shows the performance of these method on the same database
used in the second experiment. The EER of the shape DNA and the shape
distribution methods is 8.02% and 11.8%, respectively. One can see that the
proposed joint similarity significantly outperforms the the shape descriptor
methods achieving the EER of 1.61%.

The disadvantage of our method is the computational complexity and
comparison efficiency: each comparison requires solving a complicated opti-
mization problem (in current implementation, each comparison takes a few
minutes). For comparison, the computation of the Laplace-Beltrami spec-
trum took 4.6 sec in our implementation and the comparison of two spectra
using the Euclidean norm was negligible. The computation of the D2 shape
distribution took 4.2 sec and the computation of the EMD between two
distribution was below one second.

6 Conclusions

We presented a new approach for the computation of nonrigid shape simi-
larity as a tradeoff between extrinsic and intrinsic similarity criteria. Our
approach can be illustratively presented as deforming one shape in order to
make it the most similar to another from an extrinsic point of view, while
trying to preserve as much as possible its intrinsic geometry. The joint in-
trinsic and extrinsic similarity appears to be advantageous over traditional
purely extrinsic or intrinsic similarity criteria. While extrinsic similarity is
sensitive to strong nonrigid deformations and intrinsic similarity is sensi-
tive to topology changes, our joint similarity criterion allows to gracefully
handle both geometric and topological deformations. Experimental results
prove that it can be used in situations where intrinsic and extrinsic similar-
ities fail.

The numerical framework presented in this paper extends beyond shape
similarity problems. As a byproduct of our similarity computation, we ob-
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Figure 15: ROC curves describing the recognition power of joint similarity, shape
DNA and D2 shape distribution methods in the third experiment.
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tain nonrigid alignment or correspondence of two shapes. This potentially
allows to employ the proposed framework for morphing problems in com-
puter graphics in a way similar to [27, 45]. Additional potential applications
are inverse problems arising in shape reconstruction [2, 67]. Our intrinsic
and extrinsic distances can be used as priors for regularization of such prob-
lems.
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