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Abstract

We present an efficient computational framework for isometry-invariant comparison
of smooth surfaces. We formulate the Gromov-Hausdorff distance as a multidimensional
scaling (MDS)-like continuous optimization problem. In order to construct an efficient
optimization scheme, we develop a numerical tool for interpolating geodesic distances
on a sampled surface from precomputed geodesic distances between the samples. For
isometry-invariant comparison of surfaces in the case of partially missing data, we
present the partial embedding distance, which is computed using a similar scheme. The
main idea is finding a minimum-distortion mapping from one surface to another, while
considering only relevant geodesic distances. We discuss numerical implementation
issues and present experimental results that demonstrate its accuracy and efficiency.
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Table 1

Notation and symbols

R ; R+ Real numbers ; non-negative real numbers
Rm m-dimensional Euclidean space
RM×N Space of M ×N matrices
M Set of compact metric spaces
(S, dS) ; S Metric space S with metric dS arising from a Riemannian surface
s ; s a point on S; extrinsic coordinates of s
dS |S′ Restriction of dS to S ′
SN Finite sampling of S consisting of N points
DS Matrix of geodesic distances on SN

TS ; tk Triangulation of SN ; k-th triangle in TS
Sr ; Sr

N r-covering ; finite r-covering of S
BS(s0, r) Open ball of radius r in the metric space S around s0

diamS Diameter of metric space S
disψ Distortion of the mapping ψ
dZH Hausdorff metric in the metric space Z
dGH Gromov-Hausdorff metric between metric spaces
dP Permutation distance
dPE Partial embedding distance
ΠN ; π Permutations of the set {1, ...N} ; a permutation in ΠN

1N×N N ×N matrix of ones

1 Introduction

Many objects in nature can be described as non-rigid deformable (or bendable) surfaces.
Often, the metric and the topological properties of the surface are preserved during
bending. For example, most human organs bend without significantly stretching or tearing
their surface. Study of living organs done through medical imaging often puts forth the
challenge of comparing two deformable surfaces, which in turn requires identifying surface
properties invariant to deformations. This paper addresses the problem of bending-invariant
comparison between surfaces. More formally, we distinguish between the intrinsic and the
extrinsic geometry of a surface. Extrinsic properties describe the way a surface is immersed
into the ambient space. These properties are subject to changes while the surface bends.
Intrinsic properties, on the other hand, are associated with the internal metric structure
of the surface. Most natural deformations preserve, at least approximately, the intrinsic
properties. Such deformations are called isometries. Our goal is therefore to define an
efficiently-computable isometry-invariant measure of similarity between surfaces.

Going back to the human organs example, an interesting application for such measure
of similarity is expression-invariant three-dimensional face recognition. In [6], we showed
that facial expressions can be modeled as near-isometric deformations of the facial surface.
Thus, an isometry-invariant similarity measure between faces would be a good candidate
for face recognition insensitive to facial expressions.

1.1 Prior work

The case of Euclidean-isometry matching of surfaces was intensively explored. A classical
result for rigid surface matching is the iterative closest point (ICP) method [28], finding a
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Euclidean transformation between two discrete surfaces represented as point clouds.
A near-isometry-invariant comparison of surfaces based on Euclidean embeddings was

presented by Elad and Kimmel in [14] as a generalization of [24]. The main idea is to map
the intrinsic (metric) structure of the surfaces to a low-dimensional space and compare
the resulting images in this space. The numerical core of the Elad-Kimmel approach is
based on a multidimensional scaling (MDS) algorithm [3], whose numerical solutions can
be computed efficiently. It is also related to dimensionality reduction [23, 13, 26] and to
texture mapping [29, 18]. Similar problems are analyzed in graph theory in the context
of representation of discrete metric spaces [21]. Yet, when dealing with abstract metric
spaces like graphs, or even points clouds with local distances, smoothness of the underlying
geometry can not be assumed, and thus, embedding is a much harder problem.

One of the caveats of the Euclidean embedding approach is the fact that usually a
Riemannian surface cannot be perfectly represented in a finite-dimensional Euclidean space,
thus inevitably introducing a metric distortion. It was argued and proved empirically in
[5, 4] that using a two-dimensional or a three-dimensional sphere instead of the Euclidean
space results in smaller embedding error for certain types of objects and consequently the
recognition results get better. In [27], embedding into a space with hyperbolic geometry
was shown.

In [17], Gromov introduced the Gromov-Hausdorff distance, which in a sense measures
the metric distortion between metric spaces. Such a distance is invariant to isometries.
In their recent fundamental paper [22], Mémoli and Sapiro adopted the Gromov-Hausdorff
distance to the problem of deformable shape recognition. They considered a discrete setting
in which surfaces are given as point clouds. In this case the computation of the Gromov-
Hausdorff distance requires evaluating all the permutations between the samples. Such a
combinatorial optimization problem appears to be computationally prohibitive. Mémoli
and Sapiro showed a theoretical probabilistic framework and a practical procedure, which
allowed them to formulate an approximation of the Gromov-Hausdorff distance between
two point clouds without computing all the permutations.

1.2 Main contribution

In many applications, like computer graphics, surfaces are represented as triangulated
meshes that capture the local smoothness properties of the underlying surface. One
contribution of our paper is the derivation of an MDS-like formulation for the Gromov-
Hausdorff distance between surfaces. This results in a continuous non-convex optimization
problem, that lends itself to a numerically exact computation of the Gromov-Hausdorff
distance between surfaces.

In many practical cases, where surfaces are given only partially, the Gromov-Hausdorff
distance cannot be used. For this purpose we introduced in [7] the partial embedding
distance that can handle isometry-invariant partial surface matching. The key idea is to
embed one surface into another and measure the minimal possible distortion of such a
mapping. A numerical procedure devised in [7] for this purpose is similar in its nature to
MDS and therefore has been named generalized MDS or GMDS. GMDS can be thought as
a natural extension of previous works on isometric embedding into non-Euclidean spaces
[27, 5, 4], as visualized in Figure 1. Here we provide the formal support for the framework
presented in [7] and show the relationship between our partial embedding distance and the
Gromov-Hausdorff distance.

Our paper comprises five sections. Section 2 provides the theoretical foundations of
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Fig. 1. Evolution of isometry-invariant object recognition based on isometric embedding,
exemplified on the problem of face recognition. Left to right: a facial surface; embedding into R3 [6];
embedding into S3 (shown is the maximum-variance projection onto R3) [5]; embedding part of the
face into another facial surface [7].

isometry-invariant surface matching. There, we define the Gromov-Hausdorff distance and
review previous attempts for its approximation. We also describe the partial embedding
distance and summarize its properties. In Section 3, we introduce an efficient algorithm for
our isometry invariant distance computation. We address the problem of geodesic distance
interpolation, a vital component of our numerical algorithm. We also discuss the question
of GMDS convergence and show a multiresolution optimization approach as a means to
overcome convergence to local minima. Section 4 presents an experimental validation of
the proposed framework. Finally, Section 5 concludes the paper. Proofs and technical
details can be found in the Appendices.

2 Theoretical background

The objects we deal with are surfaces. We use S to denote a surface, and assume it
to be modeled as a smooth connected complete Riemannian 2-manifold. We denote by
dS : S × S 7→ R+, the geodesic distance function induced by the Rimannian metric. For
simplicity, hereinafter we say “surface S”, implying the underlying metric space (S, dS).
We assume, without loss of generality, that S is immersed into R3 and denote the extrinsic
coordinates of a point s ∈ S by s = (s1, s2, s3).

In practice, we work with sampled surfaces represented by finite metric spaces. To this
end, we use the following definition, a subset Sr ⊂ S is called an r-covering of S (or an
r-net in S) if

S =
⋃

s∈Sr

BS(s, r).(1)

Here BS(s0, r) = {s ∈ S : dS(s, s0) < r} is an open ball of radius r around s in S. A finite
r-covering of S consisting of N points is denoted by Sr

N . The space
(Sr

N , dS |Sr
N

)
constitutes

a finite metric space, where the metric dS |Sr
N

is obtained by restricting the original metric
dS to the subset Sr

N . An arbitrary finite sampling of S consisting of N points (a point
cloud) is denoted by SN = {s1, ..., sN}. In order to make a distinction between the original
and the sampled surfaces, we refer to S as to a continuous surface and to SN as to a discrete
surface.
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A sampled surface can be represented as a cloud of points SN and an N × N
matrix DS = (dSN

(si, sj)) of the corresponding geodesic distances. In addition, we
assume that a triangulation TS capturing the local geometry of the surface is given (here
TS = {(t11, t12, t13), ..., (tK,1, tK,2, tK,3)} is a list of K triangles, where each triangle is a
triplet of sample indices, tki ∈ {1, ..., N}). The resulting triangulated mesh can be thought
of as a polyhedral approximation of the smooth surface S.

Surface S is called bounded if diamS = sups,s′∈S dS(s, s′) is finite. S is said to be compact
if all its open covers have a finite subcover. If S is compact, it is necessarily bounded. This
will be our tacit assumption, as surfaces encountered in practical applications are compact.
We use M to denote the set of all such surfaces.

Given two surfaces S and Q in M, a transformation ϕ : S 7→ Q is said to have a
distortion or distort the metric by

disϕ ≡ sup
s,s′∈S

∣∣dS(s, s′)− dQ(ϕ(s), ϕ(s′))
∣∣ .(2)

If in addition for every q ∈ Q there exists s ∈ S such that dQ(q, ϕ(s)) ≤ ε (we call this
property ε-surjectivity), ϕ is called an ε-isometry and the spaces S and Q are termed as
ε-isometric. The image of S, ϕ(S) is called an ε-Hausdorff approximation of S in Q. A
transformation ϕ : S 7→ Q with disϕ = 0 is called an isometry, and S and Q admitting such
a transformation are called isometric. Unlike ε-isometries, an isometry is always bijective
and bi-Lipschitz continuous.

In this paper, we address the question of matching between two surfaces, insensitively
to their isometries. More formally, we study a distance function d : M ×M 7→ R+, which
assigns a non-negative number to every pair of surfaces, measuring the degree of their
similarity. The basic property we require is that for all isometries f of S and g of Q,
d (f (S) , g (Q)) = d (S,Q).

2.1 Gromov-Hausdorff distance

Mémoli and Sapiro in [22], introduced the Gromov-Hausdorff distance into the deformable
surface matching arena. Here we use this powerful theory and present numerical methods
for its consistent computation subject to the disclaimer that we can not guarantee to
completely avoid the intrinsic local minima of the associated measure. Our starting point
is the classical Hausdorff distance. Assume that the surfaces S and Q are subsets of some
larger metric space (Z, dZ). Then, the Hausdorff distance can be defined in the following
way

dZH(S,Q) ≡ max

{
sup
s∈S

dZ(s,Q), sup
q∈Q

dZ(q,S)

}
.(3)

Here for notation simplicity we use dZ(s,Q) = infq∈Q dZ(s, q), implying a point-to-set
distance. It can be shown that dZH is a metric on all the subsets of Z. Versions of the
Hausdorff distance are often used to measure similarity between rigid surfaces in R3, which
give birth to a family of algorithms known as iterative closest point or ICP [2, 28, 12]. Yet,
while being a good match for comparison of extrinsic geometries, the Hausdorff distance is
not isometry-invariant.

In order to overcome this problem, Mémoli and Sapiro [22] adopted an extension of the
Hausdorff distance introduced by Gromov [17]. The Gromov-Hausdorff distance is defined
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by

dGH(S,Q) ≡ inf
Z

ρ:S7→Z
σ:Q7→Z

dZH(ρ(S), σ(Q)),(4)

where ρ : S 7→ Z and σ : Q 7→ Z are isometric embeddings into the metric space Z.
The Gromov-Hausdorff distance is invariant to isometries and thus allows to compare
between two surfaces in a truly intrinsically-geometric way. In addition, dGH has several
nice properties, which we summarize here.

1. Metric properties: dGH is a finite metric on the space of compact surfaces M, in
which a point is defined as an equivalence class of a surface and its isometries
[16, 11]. In other words, dGH satisfies the following axioms: (i) dGH(S,Q) ≥ 0;
(ii) dGH(S,Q) = 0 if and only if S and Q are isometric; (iii) dGH(S,Q) = dGH(Q,S);
and (iv) dGH(R,Q) ≤ dGH(R,S) + dGH(S,Q), also known as the triangle inequality.

2. Near-isometric similarity: (i) If dGH(S,Q) ≤ ε, then there exists a 2ε-Hausdorff
approximation of S in Q; (ii) if there exists an ε-Hausdorff approximation of S in Q,
then dGH(S,Q) ≤ 2ε. This property can be thought of as an extension of the second
metric axiom to ε-isometries (see [11] for details).

3. Sampling consistency: Given Sr an r-covering of S and Qr′ and r′-covering of
Q,

∣∣∣dGH(S,Q)− dGH(Sr,Qr′)
∣∣∣ ≤ r + r′. In other words, the Gromov-Hausdorff

distance between sampled versions of two surfaces is close to the Gromov-Hausdorff
distance between the original ones, and the discrepancy vanishes as the sample radius
decreases.

The main disadvantage of dGH (S,Q) according to definition (4) is its computational
intractability.

Fortunately, for bounded metric spaces, the Gromov-Hausdorff distance can be trans-
lated to comparison of distances within S and Q to each other, thus avoiding the cumber-
some construction of the metric space Z. Formally, the Gromov-Hausdorff distance can be
redefined as follows [19, 22]

dGH(S,Q) =
1
2

inf
ϕ:S7→Q
ψ:Q7→S

max {disφ, disψ, dis (ϕ,ψ)} ,(5)

where disϕ and disψ defined in (2) measure the metric distortion of the mappings ϕ and
ψ, respectively, and

dis (ϕ,ψ) ≡ sup
s∈S
q∈Q

|dS (s, ψ(q))− dQ(q, ϕ(s))|(6)

measures how far are ϕ and ψ from being one the inverse of the other. This reformulation, as
we will show, allows us an efficient computation of the Gromov-Hausdorff distance between
surfaces.
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2.2 Mémoli-Sapiro approximation of dGH

In [22], Mémoli and Sapiro considered the approximation of the Gromov-Hausdorff distance
between point clouds by dropping the term dis (ϕ,ψ) in the definition of dGH in (5) and
bounding its contribution probabilistically. Given two bounded surfaces S and Q, both
sampled at N points (SN and QN , respectively), they defined the permutation distance

dP(SN ,QN ) ≡ 1
2

min
π∈ΠN

max
1≤i,j≤N

∣∣dS(si, sj)− dQ(qπi , qπj )
∣∣ ,

where ΠN denotes all the permutations of {1, ...N}. dP is not the exact Gromov-
Hausdorff distance but a different measure of surface similarity related to dGH. Obviously,
dGH(SN ,QN ) ≤ dP(SN ,QN ), since dP can be considered a particular discrete case of dGH,
in which the correspondences between the two metric spaces are restricted only to the
bijective ones. The upper bound is much more complicated and is derived in a probabilistic
setting [22]. Based on these results, Mémoli and Sapiro described an algorithm for the
approximation of dGH. The key idea is to select subsamplings of the given point clouds,
the distance between which can be related to the Gromov-Hausdorff distance. Alternative,
more practical, estimation methods of the distance between point-clouds, motivated by the
Gromov-Hausdorff distance, were also presented in [22].

Mémoli and Sapiro also noted that restricting the Z space in definition (4) of dGH, the
metric actually boils down to the canonical form distance proposed in [14]. The canonical
form distance is computed by first finding the best representation of S and Q in Z (in the
sense of lowest metric distortion). Let ρ : S 7→ Z be the lowest distortion embedding of
S in Z; the image Scan = ρ(S) is referred to as the canonical form of S. Similarly, the
canonical form of Q is computed. Once Scan and Qcan are available, the canonical form
distance is computed according to

dCF(S,Q) = dZ(Scan,Qcan),(7)

where dZ is some distance between two sets in Z (e.g. the Hausdorff distance or its variant).
The typical choice of Z is R3.

2.3 Partial embedding distance

The main drawback of the Gromov-Hausdorff distance and its approximate version is the
fact that it compares two metric spaces as a whole, which is inappropriate for partial
matching. One of the most significant differences of partial matching compared to its “full”
counterpart is the lack of symmetry. We therefore address the problem of finding a match
between a model surface S and a probe Q, which is a deformed version of the model. In
practice, one is often required to find whether a patch Q′ ⊂ Q is similar to S.

In [7] we defined the non-symmetric partial embedding distance as

dPE(S,Q′) ≡ 1
2

inf
ψ:Q7→S

sup
(q,q′)∈P

∣∣dQ(q, q′)− dS(ψ(q), ψ(q′))
∣∣ ,(8)

where P = {(q, q′) : dQ′(q, q′) = dQ(q, q′)} ⊆ Q × Q. In other words, we define the
distortion only on pairs of points for which the metric on the patch Q′ is consistent
with that on Q. Such a restriction is necessary because the assumption dQ′ = dQ|Q′
(i.e. that dQ′(q, q′) = dQ(q, q′) for all q, q′ ∈ Q′) holds only in particular cases, e.g.
when Q′ is a convex subset of the surface Q. In general, minimal geodesics on Q that
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cross the boundary ∂Q′ change in Q′ and therefore, the geodesic distances between the
corresponding points in Q and Q′ may differ. Note that when P = Q × Q, we have
sup(q,q′)∈P |dQ(q, q′)− dS(ψ(q), ψ(q′))| = dis ψ and the partial embedding distance becomes

dPE(S,Q) =
1
2

inf
ψ:Q7→S

disψ.(9)

A comment about the potential usefulness of (9) for partial matching was made in [22].
The properties of dPE resemble those of dGH. We summarize them here; for proof, see

Appendix A.

1. Some metric properties: dPE satisfies some of the metric axioms: (i) dPE(S,Q) ≥ 0;
(ii) dPE(S,Q) = 0 if and only if Q is isometrically embeddable into S; (iii)
dPE(S,Q) ≤ dPE(S,R)+dPE(R,Q), which is a non-symmetric version of the triangle
inequality.

2. Near-isometric similarity: (i) If there exists an ε-Hausdorff approximation of S in Q,
then dPE(S,Q) ≤ 2ε. (ii) The converse appears to be true under some more restrictive
assumptions (the proof is to be published elsewhere).

3. Sampling consistency: Given Sr an r-covering of S and Qr′ an r′-covering of Q,
dPE(S,Q)− r′ ≤ dPE(Sr,Qr′) ≤ dPE(S,Q) + r.

4. Partial matching: Given Qr′ an r′-covering of Q, dPE(Qr′ ,Q) = 0.

First, we see that though not a metric in the strict sense, dPE satisfies some important
properties of a metric: isometry invariance and an asymmetric version of the triangle
inequality. Secondly, by virtue of Property 4 (unlike to the corresponding property
dGH(Q,Qr) ≤ r of the Gromov-Hausdorff distance, as mentioned above) dPE can be used
for partial matching. Thirdly, note that a particular case of Property 3 is dPE(S,Q)− r ≤
dPE(S,Qr) ≤ dPE(S,Q). When r is too large, the lower bound makes little sense, and
one can obtain dPE(S,Qr) ≈ 0 while dPE(S,Q) is large. This reveals a potential danger
in partial matching: when the patch Qr is too small, such a comparison is liable to be
meaningless, since a sufficiently small patch can be embedded with low metric distortion
into every surface.

3 Efficient computation of the partial embedding and the Gromov-
Hausdorff distances

We now address a practical question of efficiently computing the Gromov-Hausdorff and
the partial embedding distances between two polyhedral surfaces. For clarity, we start from
computation of the simpler dPE(S,Q), of which the computation of dGH(S,Q) will be a
straightforward generalization. As an input, let us be given

1. A discretization of the continuous surfaceQ, defined by the point cloudQr
M = {qi}M

i=1.

2. A polyhedral approximation of the continuous surface S defined by the point cloud
Sr

N = {si}N
i=1 and a triangulation TS = {(m11,m12,m13), ..., (mNT ,1,mNT ,2,mNT ,3)}.

In our notation, the polyhedron Sr
N consists of NT triangular faces, where the t-th

face is described by the vertices smt1 , smt2 , smt3 .
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3. Two distance matrices DS = (dS(si, sj)) and DQ = (dQ(qi, qj)), representing the
geodesic distances between the samples of S and Q, respectively. In practice, only an
approximation of these distances can be computed numerically, e.g. using the Fast
Marching method [25].

Using the triangulated surface Sr
N as a polyhedral r-approximation of S, we parame-

terize the points on S in local barycentric coordinates derived from the triangulation. Let
s be a point on Sr

N belonging to some triangle t ∈ {1, ..., NT }; the Euclidean coordinates s
of s can be represented as a convex combination of the triangle vertices smt1 , smt2 , smt3 ,

s =
3∑

i=1

smtiui.(10)

Hence, every point on Sr
N can be identified with a vector of barycentric coordinates

(t,u) = (t, u1, u2, u3), where ui ≥ 0, u1 + u2 + u3 = 1. We will freely switch between
s and its barycentric representation.

The partial embedding distance between Sr
N and Qr

M can be formulated as the following
constrained minimization problem

min
s′i,ε≥0

ε s.t.
∣∣∣dS(s′i, s

′
j)− dQ(qi, qj)

∣∣∣ ≤ ε(11)

where (i, j) ∈ P ⊆ {1, ...,M} × {1, ..., M} (for the time being we assume P to be given; a
way to find it is shown in Section 3.4). Once the minimal ε is found, our approximation to
the partial embedding distance is d̂PE(Sr

N ,Qr
M ) = ε/2.

Note that we use the images s′i = ψ(qi) (in their barycentric coordinates) directly
as the optimization variables, which frees us from the need to optimize over all possible
permutations of si and qj . In fact, the problem above is a modest-sized constrained
minimization problem with M +1 variables and at most 1

2M(M−1) inequality constraints.
Also note that the points si are given, and so are the distances dQ(qi, qj), which are
the elements of the matrix DQ. On the other hand, the distances dS(s′i, s

′
j) have to

be approximated numerically (see Section 3.3); in the meantime, we assume them to be
computable exactly. The reason is that the images s′i do not necessarily coincide with the
vertices of Sr

N , respectively, and can fall inside any triangle on the latter polyhedron.
Theoretically, our computation is accurate up to the sampling radius, i.e.

|d̂PE(Sr
N ,Qr

M ) − dPE(S,Q)| ≤ 2r. If in addition we take into account that the distances
dS and dQ are computed with accuracy δ, we have |d̂PE(Sr

N ,Qr
M )− dPE(S,Q)| ≤ 2(r + δ).

In practice, a finer grid is used to approximate the distances, therefore, δ ¿ r. Sampling
the surfaces sufficiently densely (r sufficiently small), we can compute dPE with any desired
accuracy. In other words, our approach is numerically consistent.1

The problem (11) can be viewed as a minimization of maximum distortion, or a min-
max (`∞-norm) problem. Practical considerations may favor the choice of norms other
than `∞. In order to handle them numerically, we abandon the constrained minimization
formulation with the artificial variable ε, and minimize

F (s′1, ..., s
′
M ) =

∑

i,j

wijη
(
dS(s′i, s

′
j)− dQ(qi, qj)

)
(12)

1Note that since our optimization problem is non-convex, no practical optimization algorithm guarantees
convergence to the global minimum. Yet, in Section 3.2 we show that, in practice, local convergence can be
avoided using multi-resolution methods.
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with respect to s′i, where wij = 1 for (i, j) ∈ P and zero otherwise are weights representing
the set of “consistent pairs” P , and η(x) is some non-linear function (e.g., the choices
η(x) = x2 and η(x) = |x| yield the `2 and the `1 norms, respectively). Note the resemblance
of F to the stress function used in the MDS problems.

Though the properties of argmins′i
F are dramatically different from those of dPE, it is a

good measure of surface similarity with most of the important properties of the true partial
embedding distance, yet less susceptible to noise and numerical errors. We will henceforth
denote the `p version of dPE as dp

PE.
The Gromov-Hausdorff distance is computed essentially in the same way as d̂PE, by

solving

min
s′i,q

′
k,ε≥0

ε s.t.

∣∣∣dQ(q′i, q
′
j)− dS(si, sj)

∣∣∣ ≤ ε

|dS(s′k, s
′
l)− dQ(qk, ql)| ≤ ε

|dS(si, s
′
k)− dQ(qk, q

′
i)| ≤ ε

(13)

where j > i, l > k. Here two additional terms standing for dis ϕ and dis(ϕ,ψ) are added.
As in the case of d̂PE, it might be advantageous to replace the `∞ norm with some more
robust non-linearity, yielding the stress

F =
N∑

i,j=1

η
(
dQ(q′i, q

′
j)− dS(si, sj)

)
+

M∑

k,l=1

η
(
dS(s′k, s

′
l)− dQ(qk, ql)

)

+
∑

i,j

η
(
dS(si, s

′
k)− dQ(qk, q

′
i)

)
.(14)

3.1 Iterative minimization algorithm

We now present a practical numerical algorithm for computation of d̂PE. For clarity, we
will henceforth consider only the unconstrained minimization of (12); in order to handle the
constrained problem (13), it is first converted to an unconstrained one using the penalty-
barrier method [1], which is then solved in an essentially similar way. The same technique
can be used to compute the Gromov-Hausdorff distance.

Our goal is to bring F (s′1, ..., s
′
M ) to a (possibly local) minimum over s′i = (ti,ui)

by starting with some initial guess s
′(0)
i = (t(0)

i ,u(0)
i ) of the points and proceeding by

iteratively updating their locations producing a decreasing sequence of function values. Let
s
′(k)
i = (t(k)

i ,u(k)
i ) be the optimization variables at kth iteration and let there be a set of

directions d(k)
i such that displacement of u(k)

i along them by some step size α(k) decreases
the value of F (for convenience, we omit the iteration index k wherever possible). The
simplest way to select the directions is di = −∇uiF , which yields a family of algorithms
usually termed as gradient or steepest descent. There exist a variety of more efficient
strategies to select di, including conjugate gradients and quasi-Newton methods just to
name a few [1].

The step size α has to be chosen to guarantee a sufficient decrease of F . When
constant step is used, there is generally a tradeoff between too small steps, which result
in slow convergence and too large steps, which are liable to increase the value of F . To
provide guaranteed decrease of F , we adaptively select the step size at every iteration using
the Armijo rule, which first sets α = α0 and then successively reduces it by some factor



11

 
 
 
 
 

 

u 

�����´d u´ 

u 

�´d u´ 

u 

u´ 

(�-�´)d´ 

A 

B 

C 

D 

A 

B 

C 

D 

A 

B 

C 

D 

t 

t´ 

d´ 

Fig. 2. Displacement of the point u in the triangle t = ABC along the direction d. From
left to right: the point is displaced along d until the triangle edge BC is reached; the adjacent
triangle t′ = BCD is rotated about BC and the direction vector d is transformed to the barycentric
coordinates of t′, d′; the final point u′ is distant α from u along a poly-linear path.

β ∈ (0, 1) until

F (s′1, ..., s
′
M )− F (s′′1, ..., s

′′
M ) ≥ −σα

∑

i

dT
i ∇uiF (s′1, ..., s

′
M ),(15)

where σ ∈ (0, 1) and s′′i represent the points s′i displaced by α along di. In our
implementation, we used σ = 0.3, β = 0.5. The initial value α0 is first selected to be
large, and gradually refined at each iteration. A similar rule can be applied when the
update is performed for a single point per iteration, yielding a block-coordinate descent
algorithm.

Note that unlike common optimization problems, here in order to displace s′i one cannot
simply add αdi to ui, since the latter might leave the triangle ti, thus invalidating the
barycentric representation. Instead, the displacement is performed by following a poly-
linear path starting at ui, propagating along a straight line in the direction di until the
first intersection with the triangle boundary, then proceeding along a line inside the triangle
adjacent to the intersected edge, and so on until the total length of the path is α (see
Figure 2).

The computation is carried out by the following algorithm, which accepts an initial
point s = (t,u), a direction d and a step size α and returns the displaced point s′ = (t′,u′):

1. Compute u′ = u + αd. If u′ is inside the triangle t, return s′ = (t,u′) and stop.

2. Find α′ < α, for which u′ = u + α′d lies on the boundary of t.

3. Otherwise, if there is no triangle adjacent to the edge on which u′ lies, we can proceed
no more, since the shape boundary is reached. Return s′ = (t,u′) and stop.

4. Otherwise, let t′ be a triangle sharing the edge on which u′ lies. Transform u′ and d
to the barycentric coordinates of t′, replace α with α − α′ and (t,u) ← (t′,u′), and
go to Step 1.

The transformation of u′ from barycentric coordinates in t to those in t′ carried out in
Step 4 is trivial, since u′ is located on the edge shared by the two triangles and thus has
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the same barycentric representation in t′ up to vertex numbering. In order to transform
d, we rotate the triangle t′ about the edge shared with t so that both triangles lie in the
same plane, and find such d′ in the coordinate system of t′, which defines the same planar
direction as d in t.

Since at each iteration the Armijo rule produces a decreasing sequence of step sizes, it
is sufficient to compute the displacement of s

′(k)
i by α0di and cache the entire path; this

allows to save path computations for subsequent smaller steps.

3.2 Multi-resolution minimization

GMDS, similarly to MDS algorithms in general [3], is liable to local convergence, since
the objective function involved in the computation of d̂GH and d̂PE is non-convex. Here
we propose multiresolution optimization schemes as a practical remedy for this problem,
in light of the results obtained in [9, 10] for traditional MDS. An additional advantage of
multiresolution optimization is a significant speedup of convergence.

The key idea of a multiresolution optimization scheme is to work with a hierarchy
of problems, starting from a coarse version of the problem containing a small number of
variables (points). The coarse level solution is interpolated to the next resolution level,
and is used as an initialization for the optimization at that level. The process is repeated
until the finest level solution is obtained. Such a multiresolution scheme can be thought
of as a smart way of initializing the optimization problem. Small local minima tend to
disappear at coarse resolution levels, thus reducing the risk of local convergence which is
more probably when working at a single resolution.

The main components of the a multiresolution scheme are the hierarchy of data
which defines optimization problems at different resolution levels and the interpolation
procedure, which allows to pass from coarse level to a finer one. Formally, let us denote
by QM1 ⊂ QM2 ⊂ ... ⊂ QML

= QM an L-level hierarchy of data. The points on the
(l − 1)st resolution level are obtained by removing part of the points on the lth level. The
corresponding distance matrices D1, ...,DL = DQ are created as sub-matrices of DQ.

One possibility to construct such a hierarchy is the farthest point sampling (FPS)
strategy [15]. As the coarsest resolution level QM1 , we select M1 points. In practical
problems, a few landmark points can be selected on the surface (e.g. in the face recognition
problem, it is usually easy to roughly locate points such as the nose and the eyes); otherwise,
these points can be chosen randomly. At the next resolution level, we add points in the
following manner: qM1+1 is selected as the most distant point from QM1 , and so on,
qM1+k = argmaxqi∈QM

dQM
(qi, {q1, ..., qM1+k−1}). Taking the first Ml points from the

sequence produced in this manner, we obtain QMl
(see example in Figure 3).

Let us assume that at the lth resolution level, QMl
= {q1, ..., qMl

} were embedded into
Sr

N using the iterative minimization algorithm outlined in Section 3.1. As the result, the
set of images ψ(QMl

) = {s′1, ..., s′Ml
} on the polyhedron Sr

N was obtained. At the next
resolution level, we have to embed a larger set QMl+1

into Sr
N , solving the minimization

problem for ψ(QMl+1
) = {s′1, ..., s′Ml+1

}. The initialization for the first Ml points is readily
available from the solution at the previous level. The initial locations for the remaining
points s′i for i = Ml + 1, ..., Ml+1 have to be interpolated.

It is reasonable to initialize s′i with such a point on Sr
N that the geodesic distances

from it to the points s′1, ..., s
′
Ml

are as close as possible to the geodesic distances from qi to
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Fig. 3. Example of data hierarchy construction for multiresolution optimization. Left: three
resolution levels constructed using the farthest point sampling algorithm. Right: Geodesic distances
from the coarsest grid points.

q1, ..., qMl
. Formally, s′i can be expressed as

s′i = arg min
s

Ml∑

j=1

(
dS(s, s′j)− dQ(qi, qj)

)2
.(16)

Note that practically the minimum can be found by exhaustively searching over all s1, ..., sN

or even a coarser subset of Sr
N . The complexity of such a search is negligible compared to

the complexity of the iterative minimization process.

3.3 Interpolation of geodesic distances

So far, we considered the distance terms in (11) readily available, though it is obvious that
only the distances between the surfaces samples, namely dS(si, sj) are available, whereas
distances between two arbitrary points in Sr

N have to be computed. Let us now devise a
numerical procedure for computation of the geodesic distances between a pair of points on
the polyhedron Sr

N . As an input, we are given

1. Euclidean coordinates {si}N
i=1 of the polyhedron vertices si.

2. The distance matrix D, with elements dij = dS (si, sj) .

3. Two arbitrary points s = (t,u), s′ = (t′,u′) in barycentric coordinates.

The output of our numeric procedure is the approximate geodesic distance d̂S(s, s′) ≈
dS(s, s′).

Although the geodesic distance between two arbitrary points s, s′ is generally unavail-
able, each point lies inside a triangle with vertices on the grid. Let s1, s2, s3 and s′1, s′2, s′3
be the vertices of the triangles t and t′ enclosing s and s′, respectively. Note that the
mutual geodesic distances dS(si, s

′
j) are known. A näıve approach is to use the average of

the above distances as d̂S(s, s′), i.e.

d̂S(s, s′) =
1
3

3∑

i=1

dS
(
si, s

′
i

)
.(17)
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By the triangle inequality, the approximation error has the order of the radius of the
largest triangle, that is, O(r). In order to make the interpolant d̂S(s, s′) smooth as a
function u and u′, the average is replaced by a weighted sum, where the weights are chosen
according to proximity of u and u′ to each of the enclosing triangle vertices. Such an
interpolation procedure has very low computational complexity; yet, its main disadvantage
is the fact that it ignores the underlying geometry. Here we develop an alternative geometric
interpolation approach, which is a bit more elaborate, yet provides significantly more
accurate approximation of the geodesic distances.

The basic idea of our interpolator is to compute first an approximation to the geodesic
distances dS (s, s′i) between the point s and each of the three vertices s′i of t′. Computation
of each of these distances can be regarded as the problem of finding an approximation
to dS (s, s′1) given dS (si, s

′
1). We handle the solution of this problem by a numerical

procedure that we named the three-point geodesic distance approximation, which is detailed
in Appendix B. Once the approximate dS (s, s′i) are available, we invoke again the three-
point geodesic distance approximation, this time to compute the desired distance dS (s, s′)
from dS (s′i, s).

3.4 Selection of weight for partial matching

So far, we have assumed that the set P of the consistent pairs of points in (11) or,
alternatively, the weights wij in (12) are given. Here we show a way to find it in practice.
Let S be the model surface and let Q be the probe surface. We denote by Q′ a patch of
Q and assume that its sampled version is Q′M ′ . The question is how to find the indices
(i, j) ∈ {1, ..., M ′} × {1, ..., M ′} of pairs of points for which dQ′

M′ (qi, qj) 6= dQ(qi, qj), and
thus must be excluded from P .

If a sampled version QM of Q is given (this is a common situation in face recognition,
where one has the full probe surface but wishes to deliberately remove some parts of
it [7]), the solution is straightforward: we remove the pairs of points (i, j) for which
|dQ′

M′ (qi, qj) − dQM
(qi, qj)| < δ, where δ is some small threshold, related to distance

approximation accuracy. In case when only the patch Q′ is available, we note that the
minimal geodesics may change due to the change in the boundary of Q. We therefore
remove pairs of points (i, j) for which dQ′(qi, ∂Q′) + dQ′(qj , ∂Q′) < dQ′(qi, qj). Here ∂Q′
denotes the boundary of Q′. Since in practice a sampled version Q′M ′ is given, this criterion
must be discretized, and the distances approximated numerically.

4 Numerical results

We now present numerical experiments that assess the validity of our theoretical and
computational framework. In the first experiment, we show the performance of the partial
embedding distance in matching between spheres with different radii. In the second
experiment, matching of articulated objects is performed using the Gromov-Hausdorff
distance. The Elad-Kimmel canonical form distance [14] is used as the baseline reference
in the two experiments. In the third experiment, we show matching of partially missing
objects using the partial embedding distance. Additional numerical evaluations of the
partial embedding distance can be found in [7, 8].

4.1 Partial embedding distance between spherical patches

In the first experiment, we measured the distance between a unit two-dimensional sphere
sampled at 3200 points, and spheres with radii in the range R = 0.5 ÷ 2.5 sampled at a
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Fig. 4. Normalized distance between a densely sampled unit sphere and spheres of different
radii measured using the `2 approximation of the partial embedding distance (top red line), and the
canonical form distance (three bottom black lines). The numbers on the plots stand for the number
of points used for distance computation.

smaller number of points according to the farthest point sampling strategy with a random
seed. Ten random samplings were used for each radius. Two distance measures were
compared: d2

PE with M = 100 points and dCF with M = 100, 250 and 500 points. d2
PE was

computed using the multi-resolution minimization algorithm.
Figure 4 presents the normalized distances as a function of the sphere radius. In

Figure 5, a close-up look is shown for radii in the range of R = 0.88 ÷ 1.1. The grayed
areas represent the variance of the distance computed for the ten different samplings of
the spheres. This variance makes spheres within a certain interval of radii around R = 1
indistinguishable by the distance function. The partial embedding distance appears to
be extremely sensitive to the geometry of the surfaces. A change as small as 0.1% in the
spherical patch radius (from 1.000 to 0.999) increases d2

PE by a value exceeding the variance
due to sampling. Similar results are achieved using d1

PE and slightly inferior with dPE. For
comparison, with the same number of points (100), dCF is unable to discern between spheres
differing in radius by more than 10%. Increasing the number of points to 500 makes dCF

sensitive to radius differences of about 2.64%, which is still one order of magnitude below
the sensitivity of d2

PE. From these results, dPE appears to be a promising tool for very
accurate comparison of surfaces.

Reasonable execution times were observed. The generalized stress function (12) and
its gradient implemented in C are evaluated in about 40msec on a Pentiumr IV PC for
M = 100 points. The entire computation of dPE using non-optimized MATLAB and C
code took about 10− 60 sec2.

2The codes and datasets used in this paper will be published at http://tosca.cs.technion.ac.il.
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Fig. 5. A close-up look at the normalized distance between a unit sphere and spheres of different
radii measured using d2

PE with 50 points (top) and dCF with 100 and 500 points (two bottom rows).
Gray areas denote the variance measured over ten random furthest point samplings. Intervals of
sphere radii that fall below the sensitivity threshold of the distance measure are indicated.

4.2 Gromov-Hausdorff distance between isometric surfaces

In the second experiment, we evaluated the performance of the Gromov-Hausdorff distance
on six articulated objects and their approximate isometries. The `2 and `∞ approximations
of dGH were used. All surfaces were represented as triangulated polyhedral meshes (see
Figure 6). The embedding spaces consisted of the full-density meshes, whereas the
embedded meshes were sampled at M = N = 50 points. Optimization was performed using
the multi-resolution scheme. Geodesic distances were computed using the fast marching
method for triangulated domains [20]. As a reference, the canonical form distance was
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computed between the surfaces, by comparing a full-density canonical form to canonical
forms sampled at M = 100, 250 and 600 points as well as to full-density canonical forms.
Moment signatures and an the iterative closest point algorithm were used to compare
between the canonical forms.

Figure 7 presents the distance matrices obtained using the `2 and `∞ approximations
of dGH. As few samples as 50 give perfect recognition of all the objects using both d2

GH

and dGH. For comparison, the best result of dCF with full-density canonical forms and ICP
(Figure 7, bottom right) yielded about 11% equal error rate. Figure 8 depicts Euclidean
representations of the dissimilarities between the objects measured using d2

GH and dCF.
Note the tight clusters produced by d2

GH compared to looser clusters obtained from dCF.
The objects Dog and Paper exhibit larger intra-cluster dissimilarities, which we attribute
to larger deviations from isometricity.

In order to accurately quantify the discriminative power of the compared distances, we
measured the cluster separability as

σ = min
n

{
mini,j,m6=n d(Smi,Smj)

maxi,j d(Sni,Snj)

}
,(18)

where Sni denotes the ith instance of the nth object. In simple words, σ expresses the
worst-case ratio between the inter-cluster and the intra-cluster distances. The higher is
σ, the better is the discrimination between the objects. d2

GH yielded σ = 3.47, which
is a manifest of excellent separation; slightly inferior results were exhibited by dGH. For
comparison, the best result obtained by dCF was σ = 0.58.

Increasing the number of points from 100 to 600 in dCF increases the computational
complexity with small or no benefit in accuracy. We also noted that starting from about
250 points, the use of ICP in the computation of the canonical form distance gives negligible
accuracy improvement compared to the faster moment signature comparison. This leads us
to the conclusion that in this experiment, the discriminative power of the canonical form
distance is essentially limited by metric distortion introduced by the embedding the surface
into R3.

4.3 Partial matching of isometric surfaces

In the third experiment, six partial probes (Figure 9) were matched against the objects
from the previous experiment using the `2 and `∞ approximations of dPE. As before,
the embedding spaces consisted of full-density meshes, whereas the partial probes were
sampled at M = N = 50 points. Optimization was performed using the multi-resolution
scheme. Perfect matching was achieved by both distance functions, yielding the separability
of σ = 1.62 and 1.29 for d2

PE and dPE, respectively.
Additional numerical assessment of the partial embedding distance was presented in

[8], where it was used for face recognition from partially occluded data.

5 Conclusions

In this paper, we introduced a new computational framework for isometry-invariant surface
matching. This framework allowed us to formulate the Gromov-Hausdorff distance between
two surfaces as a solution of the generalized MDS problem. We also mentioned that the
same numerical framework can be used to perform isometry-invariant matching of partially
missing surfaces [7]. The GMDS problem is posed as a continuous optimization problem and
is solved efficiently using the proposed iterative optimization algorithm. A multiresolution



18

scheme can be used to practically avoid convergence to local minima. In light of recent
results [9], we foresee that further performance boosting can be obtained using multigrid
optimization methods.
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A Proofs of properties of the partial embedding distance

Property 1. Proof. (i) is trivial since disψ ≥ q.
The first direction of (ii) is straightforward, since if Q is isometrically embeddable into S,
there exists ψ : Q 7→ S with disψ = 0. The second direction is more elaborate; our proof
closely follows the proof of Theorem 7.3.30 in [11]. From dPE(S,Q) = 0 it follows that there
exists a sequence of mappings {ψn : Q 7→ S} satisfying disψn ≤ 1

n . Fix a countable dense
set Q′ ⊂ Q. Using the Cantor diagonalization procedure, one can choose a subsequence
{ψnk

}, such that for every q′ ∈ Q′ the sequence {ψnk
(q′)} converges in S. Let us assume

without loss of generality that such a sequence is {ψn} itself. We define a map ψ : Q′ 7→ S
as the point-wise limit of {ψn}, namely ψ (q′) = limn→∞ ψn (q′) for every q′ ∈ Q′. Since
|dS (ψn (q′′) , ψn (q′))− dQ (q′′, q′)| ≤ disψn → 0, we have

dS
(
ψ

(
q′′

)
, ψ

(
q′

))
= lim

n→∞ dS
(
ψn

(
q′′

)
, ψn

(
q′

))
= dQ

(
q′′, q′

)

for all q′, q′′ ∈ Q′, i.e. ψ is a distance preserving embedding of Q′ into S. Since Q′ is dense,
by Proposition 1.5.9 in [11], ψ can be extended to a distance preserving embedding of the
entire Q into S.
To prove property (iii), let dPE(R,Q) = δ1 and dPE(S,R) = δ2. Then, there exist two
sequences of mappings {ϕn : Q 7→ R} and {ψn : R 7→ S}, satisfying disϕn < 2δ1 + 1

n and
disψn < 2δ2 + 1

n . Denote by {ζn : Q 7→ S} the sequence of the compositions ζn = ψn ◦ ϕn.
Invoking the triangle inequality for real numbers, one has

∣∣dS
(
ζn (q) , ζn

(
q′

))− dQ
(
q, q′

)∣∣ ≤ ∣∣dS
(
ζn (q) , ζn

(
q′

))− dR
(
ϕn (q) , ϕn

(
q′

))∣∣

+
∣∣dR

(
ϕn (q) , ϕn

(
q′

))− dQ
(
q, q′

)∣∣ ≤ disϕn + disψn < 2 (δ1 + δ2) +
2
n

.

for all q, q′ ∈ Q′. Hence, dis ζn ≤ 2 (δ1 + δ2) + 2
n and dPE(S,Q) ≤ δ1 + δ2.

Property 2. Proof. (i) This property follows straightforwardly from the fact that
dPE(S,Q) ≤ dGH(Q,S).
Property 3. We divide the proof into the following two separate statements:
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(i) dPE(S,Q)− r ≤ dPE(S,Qr) ≤ dPE(S,Q)

(ii) dPE(S,Q) ≤ dPE(Sr′ ,Q) ≤ dPE(S,Q) + r′

The combination of (i) and (ii) gives Property 3.
Proof. The right side of inequality (i) is straightforward, since supq,q′∈Q |dQr(q, q′) −

dS(ψ(q), ψ(q′))| ≤ supq,q′∈Q |dQ(q, q′) − dS(ψ(q), ψ(q′))|. To show the left side, we invoke
Property 1ii, which yields dPE(S,Q) ≤ dPE(S,Qr) + dPE(Qr,Q). It remains to show that
dPE(Qr,Q) ≤ r. Let the mapping ψ : Q 7→ Qr be defined in the following way: for q ∈ Qr,
ψ(q) = q; and for q ∈ Q\Qr, ψ(q) = arg minq′∈Qr dQ (q, q′) (the minimum exists, since
Qr can be replaced by its finite sub-covering). From the fact that Qr is an r-covering,
it follows that dQ (q, ψ(q)) ≤ r. Let q1, q2 be two points in Q; if both are in Qr, then
|dQ (q1, q2)− dQ (ψ (q1) , ψ (q2))| = 0. If both q1 and q2 are in Qr, invoking the triangle
inequality one has |dQ (q1, q2)− dQ (ψ (q1) , ψ (q2))| ≤ dQ (q1, ψ (q1)) + dQ (q2, ψ (q2)) ≤ 2r.
Similarly, when only q1 is in Qr, |dQ (q1, q2)− dQ (ψ (q1) , ψ (q2))| ≤ r. Hence, disψ ≤ 2r.
The left side of inequality (ii) is straightforward. To show the right side, let us be given
some ψ : Q → S. We define a new mapping ψ̃ : Q → Sr′ in the following way

ψ̃(q) =
{

ψ(q) ψ(q) ∈ Sr′

argmins∈Sr′ dS(s, ψ(q)) else

Since Sr′ is an r′-covering of S, supq,q′∈Q |dQ(q, q′)−dS(ψ̃(q), ψ̃(q′))| ≤ supq,q′∈Q |dQ(q, q′)−
dS(ψ(q), ψ(q′))|+ 2r′ for all ψ, and consequently dPE(Sr′ ,Q) ≤ dPE(S,Q) + r′.
Property 4. Proof. The right side of the inequality follows from the combination of
Property 3 and Property 1ii, dPE(Sr′

M ,Qr
N ) ≤ dPE(Sr′

M ,Q) + dPE(Q,Qr
N ) ≤ dPE(S,Q) + r′.

The left side of the inequality follows from Property 3, dPE(S,Q) ≤ dPE(S,Qr
N ) + r ≤

dPE(Sr′
M ,Qr

N ) + r.

B Three-point geodesic distance approximation

We now outline a numerical scheme for interpolation of geodesic distance dS(s, s′) between
two arbitrary points s = (t,u) and s′ = (t′,u′) on a polyhedral surface SN from the matrix
DS of geodesic distances between all si and sj . Let us denote the vertices of the triangle t,
in which the point s lies, as s1, s2, s3 ∈ SN . Similarly, the vertices of t′ will be denoted by
s′1, s

′
2, s

′
3.

As a starting point, let us consider the particular case where s′ is one of the polyhedron
vertices. In this case, the distances dj = dS(si, s

′) for i = 1, 2, 3 can be obtained from
the matrix DS . We will assume without loss of generality that the triangle s1, s2, s3

lies in R2 with s1 at the origin and s2 on the horizontal axis, denoting by x1 = (0, 0)T,
x2 = (x2, 0)T, and x3 = (x3, y3)T the planar coordinates of the corresponding vertices. The
original triangle can always be brought to this canonical coordinate system by a simple
pre-computed transformation. In other words, the actual vertex coordinates si in a triangle
are not required by the algorithm.

Let us assume that there exists a (virtual) source point x̂0 = (x̂0, ŷ0)T in the plane of
the triangle, whose Euclidean distance from xi is di. When the surface S is planar, there,
indeed, exists such a point consistent with the data, and it can be found by computing the
intersection of three circles of radii di centered at the corresponding triangle vertices xi
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(Fig. 10, left). This gives rise to the following system of quadratic equations

x̂2
0 + ŷ2

0 = d2
1

(x̂0 − x2)
2 + ŷ2

0 = d2
2

(x̂0 − x3)
2 + (ŷ0 − y3)

2 = d2
3.(19)

Once x̂0 is determined, the Euclidean distance ‖x̂0 − x‖ serves as the approximation to the
geodesic distance dS(x0,x). In the above particular case, the two coincide.

However, in the general case when the surface has non-zero Gaussian curvature, the
Euclidean distances ‖x̂0 − xi‖ will be inconsistent with the geodesic distances di, and thus
the three circles will not generally intersect at a single point (Fig. 10, right). Even if x̂0

can be found to satisfy (19) in the “best possible way”, the Euclidean distance ‖x̂0 − x‖
will not generally coincide with the true geodesic distance dS(x,x0). Yet, this scheme still
gives a good approximation to dS(x,x0).3

Here, we find the virtual source x̂0 by a weighted least-squares solution of (19), namely,

x̂0 (X,d,w) = arg min
x0

` (x0;X,d,w) ,(20)

where

`(x0;X,d,w) =
3∑

i=1

wi

(
‖x0 − xi‖2 − d2

i

)2
,(21)

X = (x1,x2,x3), d =
(
d2

1, d
2
2, d

2
3

)T, and w = (w1, w2, w3)
T is a vector of weights controlling

the influence of each of the vertices. For a moment, we assume that the weights are given;
later we will discuss their choice.

In our implementation, the minimization is carried out using Newton steps [1]. The
gradient g and the Hessian matrix H of `(x0;X,d,w) with respect to x0, required by the
Newton method, are given by

g = 4
(
wTf · x−X ·w ¯ f

)
(22)

H = 4 wTf · I + 8
3∑

i=1

wi (x0 − xi) (x0 − xi)
T(23)

where (f)i = ‖x0 − xi‖2 − d2
i , and w ¯ f denotes the element-wise (Hadamard) product.

When the vertices xi are not collinear, which normally happens in a valid triangulation,
the Hessian is full rank for wi 6= 0. When one of the weights, say w3, is zero, the first two
equations in (19) are satisfied and hence the first terms of f vanish. Consequently, the first
term in the Hessian is zero, whereas the second term is a sum of two outer products of
linearly independent vectors, which is full rank. When only one weight, say w1 is non-zero,
the Hessian assumes the form H = 8w1 (x0 − x1) (x0 − x1)

T, which is a rank one matrix.
Since in this case the solution x̂0 admits only the first equation in (19), the minimum of
`(x0;X,d,w) is achieved on the circle described by the said equation, and the null vector
of H corresponds to the tangential direction, in which the function does not change.

3Theoretically, the scheme is first order, yet, in practice we observed that its accuracy is often superior
about two order of magnitudes compared to the straightforward “non-geometric” linear interpolation of
geodesic distances on articulated objects.
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Due to the lack of convexity of `(x0;X,d,w), we need to pay attention to the
initialization. In our implementation, we first find simultaneous solutions of different
pairs of equations from (19), giving at most six different points, and then initialize the
minimization algorithm by the one yielding the smallest value of `. Solution of a pair of
quadratic equations has an analytic expression; for example, the first two equations yield

x̂0 =
d2

1 − d2
2 + x2

2

2x2

ŷ0 = ±
√

d2
1 − x̂2

0,(24)

wherever two, one, or none of the solutions exist. Since by its virtue such an initialization is
sufficiently close to the optimal x̂0, the algorithm converges in about two or three iterations.

Lemma B.1. Let the vertices xi be non-collinear and let w contain at least two non-zero
weights. Then, the first-order derivatives of x̂0 (X,d,w) with respect to d and w are given
by

Jw = ∇wx̂T
0 = −GwH−1

Jd = ∇dx̂T
0 = −GdH−1,(25)

where Gw = ∇wgT and Gd = ∇dgT are given by

Gw = 4F
(
x01T −X

)

Gd = −4W
(
x01T −X

)
,(26)

W and F are diagonal matrices containing the elements of w and f , respectively, on the
diagonal, and 1 = (1, 1, 1)T.

Proof. Let us start with the derivative with respect to w. By (20), x̂0 is a local minimum
of ` (x0;X,d,w), hence g (x̂0;X,d,w) = 0, where g stands for the gradient ∇x0`. Adding
an infinitesimal perturbation to w results in g (x̂0;X,d,w + dw) 6= 0, yet there exists
an infinitesimal perturbation dx̂0, such that g (x̂0 + dx̂0;X,d,w + dw) = 0. From the
first-order Taylor expansion,

g (x̂0 + dx̂0;X,d,w + dw) ≈ g (x̂0;X,d,w)
+H (x̂0;X,d,w) dx̂0 + GT

w (x̂0;X,d,w) dw,(27)

where H stands for the Hessian matrix of ` with respect to x0 given in (23). Substituting
g (x̂0;X,d,w) = 0 and neglecting second-order terms, we obtain the following equation

Hdx̂0 + GT
wdw = 0.(28)

Since for non-collinear xi and at most one zero weight the Hessian is invertible,

dx̂0 = −H−1GT
wdw,(29)

from where Jw is straightforwardly obtained. In the same way, Jd is derived.
Having the approximant of the virtual source x̂0 (X,d,w) and its first-order derivatives,

we can construct the three-point geodesic distance approximant

d̂2
S (x;X,d,w) = ‖x− x̂0 (X,d,w)‖2(30)
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and it derivatives

∇xd̂2
S (x;X,d,w) = 2 (x− x̂0)

∇wd̂2
S (x;X,d,w) = 2Jw (x̂0 − x)

∇dd̂2
S (x;X,d,w) = 2Jd (x̂0 − x) ,(31)

where for convenience we use the squared distance. Assuming that s = (t,u) is given
in normalized barycentric coordinates u1 + u2 + u3 = 1, one has x = Xu = u1x1 +
u2x2 + u3x3, where X is a pre-computed matrix defining the geometry of the triangle
t. Hence, we have a tool to compute the approximate geodesic distance d̂2

S(s, s′) given
d =

(
d2
S(s1, s

′), d2
S(s2, s

′), d2
S(s3, s

′)
)T and a vector of weights w. The derivatives of d̂2

S
with respect to u are obtained using the chain rule, ∇ud̂2

S = XT∇xd̂2
S(Xu).

Let us now address the issue of weights. We fix s′ to be a point on SN and assume
that the vector d =

(
d2

1, d
2
2, d

2
3

)T of the geodesic distances dS (s′, si) for i = 1, 2, 3 is known.
It is straightforward that for non-zero weights w and s = (t,u) belonging to the interior
of the triangle s1, s2, s3 (i.e., ui > 0), the function d̂2

S (u) is C1. However, the transition
of s to an adjacent triangle, say s4, s3, s2 will cause the vector of distances to change to
d =

(
d2

4, d
2
2, d

2
3

)T. As a result, d̂2
S (u) is liable to be discontinuous along the triangle edges.

This complicates the numerical solution of (13). Therefore, our goal is to achieve at least
C1 continuity for d̂2

S on entire SN .
In order to handle this problem, we set the weights w proportional to the barycentric

coordinates of s, u. Inside the triangle one has ui > 0 and, consequently, the weights are
set to some positive values inside the triangle. For s located on the edge s2s3, one has
w1 = u1 = 0, which cancels the influence of the vertex s1 in the least squares problem.
Hence, the same vertices participate with the same weights when d̂2

S is computed both
from the triangle s1, s2, s3 and s2, s3, s4, yielding a continuous transition of d̂2

S across the
edge. In order to enforce C1 continuity for d̂2

S , a change of u by a unit vector ∆u and
of u′ by a unit vector ∆u′ must displace the point x inside the triangles t and t′ by the
same Euclidean distance. Since barycentric coordinates are defined up to scale, this can be
enforced by selecting an appropriate scaling for u in each triangle.

Since the least-squares problem (20) is under-determined when one of the weights is set
to zero and generally yields two distinct solution, one has to select the solution consistent
with the case when the weight is slightly larger than zero. In practice, it is easier to avoid
the second inconsistent solution by setting the weight to some small positive constant ε
rather than strictly to zero. At the triangle vertices two weights vanish, which makes the
least squares problem under-determined. In this case, however, there is no need for the least
squares solution, since the geodesic distances between the triangle edges to s′ are assumed
to be known.

Our final step is to put everything together to obtain the approximant d2
S(s, s′)

of the geodesic distance between two arbitrary points s = (t,u) and s′ = (t′,u′) on
SN , given the mutual geodesic distances dS(si, s

′
j) between the vertices s1, s2, s3 of t

and s′1, s
′
2, s

′
3 of t′. We first compute the approximate geodesic distances from s to s′i,

d̂2
S (s, s′i) = d̂2

S (u;X,di,w = u) for i = 1, 2, 3, where X is the matrix with the canonical
coordinates of s1, s2, s3 and di = (d2

S(s1, s
′
i), d

2
S(s2, s

′
i), d

2
S(s3, s

′
i))

T. Using the vector of
distances d̂ = (d̂2

S (s, s′1) , d̂2
S (s, s′2) , d̂2

S (s, s′3))
T and operating in the triangle t′, we compute

the approximate geodesic distance between s and s′, d̂2
S (s, s′) = d̂2

S(u′;X′, d̂,w = u′), where
X′ are the canonical coordinates of s′1, s

′
2, s

′
3.
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Using the chain rule, it is straightforward to show that the derivatives of d̂2
S (s, s′) with

respect to u and u′ are given by

∇u′ d̂
2
S

(
s, s′

)
= ∇ud̂2

S
(
u′;X′, d̂,u′

)
+∇wd̂2

S
(
u′;X′, d̂,u′

)

∇ud̂2
S

(
s, s′

)
=

(
∇ud̂2

1,∇ud̂2
2,∇ud̂2

3

)T
∇dd̂2

S
(
u′;X′, d̂,u′

)
,(32)

where

∇ud̂2
i = ∇ud̂2

S (u;X,di,u) +∇wd̂2
S (u;X,di,u) .
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Fig. 6. Six objects (Human, Dog, Giraffe, Crocodile, Paper and Spider) with their approximate
isometries.
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Fig. 7. Matrices of distances (dissimilarities) between the objects obtained using d2
GH (top

left) and dGH (top right) with M = N = 50; and dCF with M = 600 (bottom left) and full-density
canonical forms (bottom right).
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Fig. 8. Euclidean proximity pattern representing the distances between different objects

measured according to d2
GH with M = N = 50 (left), and dCF with M = 600 and full-density

canonical forms (middle and right, respectively). Each point represents an object; Euclidean distance
between two points represents dissimilarity between the corresponding objects.

 
 

   
 

   
 
Fig. 9. Parts of the objects Human, Dog, Giraffe, Crocodile, Paper and Spider used as probes

in the third experiment.
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Fig. 10. Geodesic distances associated with the triangle vertices x1, x2, x3 are used to find
a virtual “source” point, distant d1, d2 and d3 from the corresponding vertices. When the surface
is a plane, the three circles intersect at one point x0 and such a source exists (left); in the general
case, only an approximate source x̂0 can be found, yet every pair of circles usually intersect at two
distinct points (right).


