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Abstract. Recently, a 3D face recognition approach based on geometric
invariant signatures, has been proposed. The key idea is a representation
of the facial surface, invariant to isometric deformations, such as those
resulting from facial expressions. One important stage in the construc-
tion of the geometric invariants involves in measuring geodesic distances
on triangulated surfaces, which is carried out by the fast marching on
triangulated domains algorithm.

Proposed here is a method that uses only the metric tensor of the surface
for geodesic distance computation. That is, the explicit integration of the
surface in 3D from its gradients is not needed for the recognition task.
It enables the use of simple and cost-efficient 3D acquisition techniques
such as photometric stereo. Avoiding the explicit surface reconstruction
stage saves computational time and reduces numerical errors.

1 Introduction

One of the challenges in face recognition is finding an invariant representation
for a face. That is, we would like to identify different instances of the same
face as belonging to a single subject. Particularly important is the invariance to
illumination conditions, makeup, head pose, and facial expressions – which are
the major obstacles in modern face recognition systems.

A relatively new trend in face recognition is an attempt to use 3D imaging.
Besides a conventional face picture, three dimensional images carry all the infor-
mation about the geometry of the face. The usage of this information, or part of
it, can potentially make face recognition systems less sensitive to illumination,
head orientation and facial expressions.

In 1996, Gordon showed that combining frontal and profile views can improve
recognition accuracy [1]. This idea was extended by Beumier and Acheroy, who
compared central and lateral profiles from the 3D facial surface, acquired by a
structured light range camera [2]. This approach demonstrated some robustness
to head orientations. Another attempt to cope with the problem of head pose
was presented by Huang et al. using 3D morphable head models [3]. Mavridis
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et al. incorporated a range map of the face into the classical face recognition
algorithms based on PCA and hidden Markov models [4]. Their approach showed
robustness to large variations in color, illumination and use of cosmetics, and it
also allowed separating the face from a cluttered background.

Recently, Bronstein, Bronstein, and Kimmel [5] introduced a new approach
which is also able to cope with problems resulting from the non-rigid nature of
the human face. They applied the bending invariant canonical forms proposed in
[6] to the 3D face recognition problem. Their approach is based on the assump-
tion that most of human facial expressions are near-isometric transformations
of the facial surface. The facial surface is converted into a representation, which
is invariant under such transformations, and thus yields practically identical
signatures for different postures of the same face.

One of the key stages in the construction of the bending invariant repre-
sentation is the computation of the geodesic distances between points on the
facial surface. In [5], geodesic distances were computed using the Fast Marching
on Triangulated Domains (FMTD) algorithm [7]. A drawback of this method
is that it requires a polyhedral representation of the facial surface. Particularly,
in [5] a coded-light range camera producing a dense range image was used [9].
Commercial versions of such 3D scanner are still expensive.

In this paper, we propose 3D face recognition based on simple and cheap
3D imaging methods, that recover the local properties of the surface without
explicitly reconstructing its shape in 3D. One example is the photometric stereo
method, that first recovers the surface gradients. The main novelty of this paper
is a variation of the FMTD algorithm, capable of computing geodesic distances
given only the metric tensor of the surface. This enables us to avoid the classical
step in shape from photometric stereo of integrating the surface gradients into
a surface.

In Section 2 we briefly review 3D imaging methods that recover the met-
ric tensor of the surface before reconstructing the surface itself; Section 3 is
dedicated to the construction of bending-invariant canonical forms [6], and in
Section 4 we present our modified FMTD algorithm. Section 5 shows how 3D face
recognition works on photometric stereo data. Section 6 concludes the paper.

2 Surface Acquisition

The face recognition algorithm discussed in this paper treats faces as three-
dimensional surfaces. It is therefore necessary to obtain first the facial surface
of the subject that we are trying to recognize.

Here, our main focus is on 3D surface reconstruction methods that recover
local properties of the facial surface, particularly the surface gradient. 3 As we
will show in the following sections, the actual surface reconstruction is not really
needed for the recognition.

3 The relationship between the surface gradient and the metric tensor of the surface
is established in Section 4 in equations (16) and (18).
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2.1 Photometric Stereo

The photometric stereo technique consists of obtaining several pictures of the
same subject in different illumination conditions and extracting the 3D geometry
by assuming the Lambertian reflection model. We assume that the facial surface,
represented as a function, is viewed from a given position along the z-axis. The
object is illuminated by a source of parallel rays directed along li (Figure 1).

Ii(x, y) = ρ(x, y)n(x, y) · li , (1)

where ρ(x, y) is the object albedo, and n(x, y) is the normal to the object surface,
given as

n(x, y) =
(−zx(x, y),−zy(x, y), 1)√

1 + ‖∇z(x, y)‖22
. (2)
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Fig. 1. 3D surface acquisition using photometric stereo

Using matrix-vector notation, Eq. (2) can be rewritten as

I(x, y) = Lv, (3)

where

L =




l11 l12 l13
...

...
...

lN1 lN2 lN3


 ; I(x, y) =




I1(x, y)
...

IN (x, y)


 , (4)

and

v1 = −zxv3; v2 = −zyv3; v3 =
ρ(x, y)√

1 + ‖∇z‖22
. (5)

Given at least 3 linearly independent illuminations {li}N
i=1 and the corresponding

observations {Ii}N
i=1, one can reconstruct the values of ∇z by pointwise least-

squares solution
v = L†I(x, y) , (6)
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where L† = (LT L)−1LT denotes the Moore-Penrose pseudoinverse of L. When
needed, the surface can be reconstructed by solving the Poisson equation

z̃xx + z̃yy = zxx + zyy , (7)

with respect to z̃, which is the minimizer of the integral measure
∫ ∫ (

(z̃x − zx)2 + (z̃y − zy)2
)
dxdy.

Photometric stereo is a simple 3D imaging method, which does not require
expensive dedicated hardware. The assumption of Lambertian reflection holds
for most parts of the human face (except the hair and the eyes) and makes this
method very attractive for 3D face recognition application.

2.2 Structured light

Proesmans et al. [11] and Winkelbach and Wahl [12] proposed a shape from 2D
edge gradients reconstruction technique, which allows to reconstruct the surface
normals (gradients) from two stripe patterns projected onto the object. The
reconstruction technique is based on the fact that directions of the projected
stripes in the captured 2D images depend on the local orientation of the surface
in 3D. Classical edge-detecting operators can be used to find the direction of the
stripe edges.

Figure 2 describes the relation between the surface gradient and the local
stripe direction. A pixel in the image plane defines the viewing vector s. The
stripe direction determines the stripe direction vector v′, lying in both the image
plane and in the viewing plane. The real tangential vector of the projected stripe
v1 is perpendicular to the normal c = v′ × s of the viewing plane and to the
normal p of the stripe projection plane. Assuming parallel projection, we obtain

v1 = c× p . (8)

Acquiring a second image of the scene with a rotated stripe illumination relative
to the first one, allows to calculate a second tangential vector v2. Next, the
surface normal is computed according to

n = v1 × v2 . (9)

In [13], Winkelbach and Wahl propose to use a single lighting pattern to estimate
the surface normal from the local directions and widths of the projected stripes.

3 Bending-invariant representation

Human face can not be considered as a rigid object since it undergoes deforma-
tions resulting from facial expressions. On the other hand, the class of transfor-
mations that a facial surface can undergo is not arbitrary, and a suitable model
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Fig. 2. 3D surface acquisition using structured light

for facial expressions is of isometric (or length-preserving) transformations [5].
Such transformations do not stretch or tear the surface, or more rigorously, pre-
serve the surface metric. In face recognition application, faces can be thought of
as an equivalence classes of surfaces obtained by isometric transformations. Un-
fortunately, classical surface matching methods, based on finding an Euclidean
transformation of two surfaces which maximizes some shape similarity criterion
(see, for example, [15], [16], [17]) usually fail to find similarities between two
isometrically-deformed objects.

In [6], Elad and Kimmel introduced a deformable surface matching method,
referred to as bending-invariant canonical forms, which was adopted in [5] for
3D face recognition. The key idea of this method is computation of invariant
representations of the deformable surfaces, and then application of a rigid surface
matching algorithm on the obtained invariants. We give a brief description of
the method, necessary for the elaboration in Section 4.

Given a polyhedral approximation of the facial surface, S. One can think
of such an approximation as if obtained by sampling the underlying continuous
surface with a finite set of points {pi}n

i=1, and discretizing the metric associated
with the surface

δ(pi, pj) = δij . (10)

We define the matrix of squared mutual distances,

(∆)ij = δ2
ij . (11)

The matrix ∆ is invariant under isometric surface deformations, but is not a
unique representation of isometric surfaces, since it depends on arbitrary order-
ing and the selection of the surface points. We would like to obtain a geometric
invariant, which would be unique for isometric surfaces on one hand, and will
allow using simple rigid surface matching algorithms to compare such invari-
ants on the other. Treating the squared mutual distances as a particular case of
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dissimilarities, one can apply a dimensionality-reduction technique called mul-
tidimensional scaling (MDS) in order to embed the surface points with their
geodesic distances in a low-dimensional Euclidean space IRm [10], [14], [6].

In [5] a particular MDS algorithm, the classical scaling, was used. The em-
bedding into IRm is performed by first double-centering the matrix ∆

B = − 1
n

J∆J (12)

(here J = I− 1
nU ; I is a n×n identity matrix, and U is a matrix of ones). Then,

the first m eigenvectors ei, corresponding to the m largest eigenvalues of B, are
used as the embedding coordinates

xj
i = ej

i ; i = 1, ...n; j = 1, ..., m . (13)

where xj
i denotes the j-th coordinate of the vector xi. The set of points xi

obtained by the MDS is referred to as the bending-invariant canonical form of
the surface; when m = 3, it can be plotted as a surface. Standard rigid surface
matching methods can be used in order to compare between two deformable
surfaces, using their bending-invariant representations instead of the surfaces
themselves. Since the canonical form is computed up to a translation, rotation,
and reflection transformation, in order to allow comparison between canonical
forms, they must be aligned. This can be done by setting the first-order moments
(center of mass) and the mixed second-order moments of the canonical form to
zero (see [18]).

4 Measuring geodesic distances

One of the crucial steps in the construction of the canonical form of a given
surface, is an efficient algorithm for the computation of geodesic distances on
surfaces, that is, δij . A numerically consistent algorithm for distance computa-
tion on triangulated domains, henceforth referred to as Fast Marching on Trian-
gulated Domains (FMTD), was used by Elad and Kimmel [6]. The FMTD was
proposed by Kimmel and Sethian [7] as a generalization of the fast marching
method [8]. Using FMTD, the geodesic distances between a surface vertex and
the rest of the n surface vertices can be computed in O(n) operations. Measuring
distances on manifolds was later done for graphs of functions [19] and implicit
manifolds [20].

Since the main focus of this paper is how to avoid the surface reconstruction,
we present a modified version of FMTD, which computes the geodesic distances
on a surface, using the values of the surface gradient ∇z only. These values can
be obtained, for example, from photometric stereo or structured light.

The facial surface can be thought of as a parametric manifold, represented by
a mapping X : IR2 → IR3 from the parameterization plane U = (u1, u2) = (x, y)
to the manifold

X(U) = (x1(u1, u2), x2(u1, u2), x3(u1, u2)) ; (14)
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which, in turn, can be written as

X(U) = (x, y, z(x, y)) . (15)

The derivatives of X with respect to ui are defined as Xi = ∂
∂ui X, and they

constitute a non-orthogonal coordinate system on the manifold (Figure 3). In
the particular case of Eq. (15),

X1(U) = (1, 0, zx(x, y)); X2(U) = (0, 1, zy(x, y)) . (16)

The distance element on the manifold is

ds =
√

gijuiuj , (17)

where we use Einstein’s summation convention, and the metric tensor gij of the
manifold is given by

(gij) =
[

g11 g12

g21 g22

]
=

[
X1 ·X1 X1 ·X2

X2 ·X1 X2 ·X2

]
(18)

The classical Fast Marching method [8] calculates distances in an orthogonal
coordinate system. The numerical stencil for the update of a grid point consists
of the vertices of a right triangle. In our case, g12 6= 0 and the resulting triangles
are not necessarily right ones. If a grid point is updated by a stencil which is
an obtuse triangle, a problem may arise. The values of one of the points of the
stencil might not be set in time and cannot be used. There is a similar obstacle
in Fast Marching on triangulated domains which include obtuse triangles [7].
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Fig. 3. The orthogonal grid on the parameterization plane U is transformed into a
non-orthogonal one on the manifold X(U)

Our solution is similar to that of [7]. We perform a preprocessing stage for
the grid, in which we split every obtuse triangle into two acute ones (see Figure
4). The split is performed by adding an additional edge, connecting the updated
grid point with a non-neighboring grid point. The distant grid point becomes
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part of the numerical stencil. The need for splitting is determined according to
the angle between the non-orthogonal axes at the grid point. It is calculated by

cosα =
X1 ·X2

‖X1‖‖X2‖ =
g12√
g11g22

. (19)

If cos α = 0 , the axes are perpendicular, and no splitting is required. If cosα < 0,
the angle α is obtuse and should be split. The denominator in the rhs of Eq. (19)
is always positive, so we need only check the sign of the numerator g12. In order
to split an angle, we should connect the updated grid point with another point,
located m grid points from the point in the X1 direction, and n grid points in
the X2 direction (m and n can be negative). The point is a proper supporting
point, if the obtuse angle is split into two acute ones. For cos α < 0 this is the
case if

cos β1 =
X1 · (mX1 + nX2)
‖X1‖‖mX1 + nX2‖ =

mg11 + ng12√
g11(m2g11 + 2mng12 + n2g22)

> 0, (20)

and

cos β2 =
X2 · (mX1 + nX2)
‖X2‖‖mX1 + nX2‖ =

mg12 + ng22√
g22(m2g11 + 2mng12 + n2g22)

> 0 . (21)

Also here, it is enough to check the sign of the numerators. For cosα > 0,
cosβ2 changes its sign and the constraints are

mg11 + ng12 > 0; and mg12 + ng22 < 0 . (22)

This process is done for all grid points. Once the preprocessing stage is done, we
have a suitable numerical stencil for each grid point and we can calculate the
distances.

The numerical scheme used is similar to that of [7], with the exception that
there is no need to perform the unfolding step. The supporting grid points that
split the obtuse angles can be found more efficiently. The required triangle edge
lengths and angles are calculated according to the surface metric gij at the grid
point, which, in turn, is computed using the surface gradients zx, zy. A more
detailed description appears in [22].

5 3D face recognition using photometric stereo without
surface reconstruction

The modified FMTD method allows us to bypass the surface reconstruction
stage in the 3D face recognition algorithm introduced in [5]. Instead, the values
of the facial surface gradient ∇z is computed on a uniform grid using one of the
methods discussed in Section 2 (see Figure 5). At the second stage, the raw data
are preprocessed as proposed in [5]; in that paper, the preprocessing stage was
limited to detecting the facial contour and cropping the parts of the face outside
the contour.
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Fig. 4. The numerical support for the non-orthogonal coordinate system. Triangle 1
gives a proper numerical support, yet triangle 2 is obtuse. It is replaced by triangle 3
and triangle 4

   

 
Fig. 5. Surface gradient field (left), reconstructed surface (center) and its bending-
invariant canonical form represented as a surface (right)
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Next, an n × n matrix of squared geodesic distances is created by applying
the modified FMTD from each of the n selected vertices of the grid. Then, MDS
is applied to the distance matrix, producing a canonical form of the face in a
low-dimensional Euclidean space (three-dimensional in all our experiments). The
obtained canonical forms are compared using a rigid surface matching algorithm.
Texture is not treated in this paper.

As in [5], the method of moments described in [18] was used for rigid surface
matching. The (p, q, r)-th moment of a three-dimensional surface is given by

Mpqr =
∑

n

(x1
n)p(x2

n)q(x3
n)r , (23)

where xi
n denotes the i-th coordinate of the n-th point in the surface sam-

ples. In order to compare between two surfaces, the vector of first M moments
(Mp1q1r1 , ..., MpM qM rM

), termed as the moment signature, is computed for each
signature surface. The Euclidean distance between two moment signatures mea-
sures the dissimilarity between the two surfaces.

5.1 Experimental results

In order to exemplify our approach, we performed an experiment, which demon-
strates that comparison of canonical forms obtained without actual facial surface
reconstruction, is in some cases, better than reconstruction and direct (rigid)
comparison of the surfaces. It must be stressed that the purpose of the example
is not to validate the 3D face recognition accuracy (which has been previously
performed in [5]), but rather to test the feasibility of the proposed modified
FMTD algorithm together with photometric stereo.

The Yale Face Database B [21] was used for the experiment. The database
consisted of high-resolution grayscale images of different instances of 10 subjects
of both Caucasian and Asian type, taken in controlled illumination conditions
(Figure 6). Some instances of 7 subjects were taken from the database for the
experiment. Direct surface matching consisted of the retrieval of the surface gra-
dient according to Eq. (6) using 5 different illumination directions, reconstruction
of the surface according to Eq. (7), alignment and computation of the surface
moments signature according to Eq. (23). Canonical forms were computed from
the surface gradient, aligned and converted into a moment signature according
to Eq. (23).

In order to get some notion of the algorithms accuracy, we converted the
relative distances between the subjects produced by each algorithm into 3D
proximity patterns (Figure 7). These patterns, representing each subject as a
point in IR3, were obtained by applying MDS to the relative distances (with
a distortion of less than 1%). The entire cloud of dots was partitioned into
clusters formed by instances of the subjects C1–C7. Visually, the more Ci are
compact and distant from other clusters, the more accurate is the algorithm.
Quantitatively, we measured (i) the variance σi of Ci and (ii) the distance di

between the centroid of Ci and the centroid of the nearest cluster. Table 1 shows
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Fig. 6. A face from Yale Database B, acquired with different illuminations. Numbers
in brackets indicate the azimuth and the elevation angle, respectively, determining the
illumination direction

a quantitative comparison of the algorithms. Inter-cluster distances di are given
in units of the variance σi. Clusters C5–C7, consisting of a single instance of the
subject are not presented in the table. The use of canonical forms improved the
cluster variance and the inter-cluster distance by about one order of magnitude,
compared to direct facial surface matching.

Table 1. Properties of face clusters in Yale Database B using direct surface matching
(dir) and canonical forms (can). σ is the variance of the cluster and d is the distance
to the nearest cluster.

Cluster σdir ddir σcan dcan

C1 0.1749 0.1704 0.0140 4.3714
C2 0.2828 0.3745 0.0120 5.1000
C3 0.0695 0.8676 0.0269 2.3569
C4 0.0764 0.7814 0.0139 4.5611

6 Conclusions

We have shown how to perform face recognition according to [5], without recon-
structing the 3D facial surface. We used a modification of the Kimmel-Sethian
FMTD algorithm for computation of geodesic distances between points on the
facial surface using only the surface metric tensor at each point. Our approach
allows to use simple and efficient 3D acquisition techniques like photometric
stereo for fast and accurate face recognition. Experimental results demonstrate
feasibility of our approach for the task of face recognition.
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Fig. 7. Visualization of the face recognition results as three-dimensional proximity
patterns. Subjects from the face database represented as points obtained by applying
MDS to the relative distances between subjects. Shown here: straightforward surface
matching (A) and canonical forms (B)
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