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Calculus of non-rigid surfaces for geometry and
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Abstract— We present a geometric framework for automati-
cally finding intrinsic correspondence between three-dimensional
non-rigid objects. We model object deformation as near-
isometries and find the correspondence as the minimum-
distortion mapping. A generalization of multidimensional scaling
is used as the numerical core of our approach. As the result,
we obtain the possibility to manipulate the extrinsic geometry
and the texture of the objects as vectors in a linear space. We
demonstrate our method on the problems of expression-invariant
texture mapping onto an animated three-dimensional face, ex-
pression exaggeration, morphing between faces and virtual body
painting.

Index Terms— isometric embedding, minimum-distortion map-
ping, generalized multidimensional scaling, correspondence prob-
lem, texture mapping, face animation, expression exaggeration,
morphing, virtual dressing, virtual body painting, calculus of
surfaces.

I. INTRODUCTION

NON-rigid three-dimensional objects arise in numerous
computer graphics problems, including facial animation

[23] and modelling [30], [26], [3], caricaturization, expression
exaggeration [5] and transplantation from one face to another
[18], [28], [25], cross-parametrization [35], [34], texture map-
ping [35], and morphing [1], [22]. The common denominator
of all the above applications is the correspondence problem,
that is, the need to identify the corresponding points in two
different deformations of the object. Unlike synthetic object
animation, where such a correspondence is usually known, in
general, for example, when the objects are acquired by a range
scanner, the correspondence is not readily available. Hence, in
most cases, it must be established from the geometry of the
objects.

Standard approaches for finding correspondence between
two objects search for a common parametrization for the
objects. In most cases, this procedure is not fully automatic
and demands a user-assisted selection of a set of fiducial points
[27], [22], [33]. In the problem of 3D facial animation, it is
possible to construct a parametrization of faces that is common
to all expressions [13], [3]. A hybrid method based on fitting
2D facial images to a deformable 3D model of the face was
proposed in [30], [26].

Recently, methods based on isometric embeddings have
been introduced in the computer vision community for
deformation-invariant object recognition [14]. It was noted
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that in cases when the deformations approximately preserve
the metric structure, the intrinsic geometry can be used as an
invariant description of the object. Such a description is created
by mapping the object into a low-dimensional Euclidean space
(generally, referred to as the embedding space) such that the
geodesic distances are replaced with Euclidean ones. This
procedure is called isometric (or more correctly, minimum-
distortion) embedding and is carried out using a multidimen-
sional scaling (MDS) algorithm. The embedding, in a sense,
allows to “undo” the deformation, providing a representation
which is, up to the isometric group of the embedding space (in
the case of Euclidean embedding, rotations, translations and
reflections), is invariant to isometric deformations of the ob-
ject. This method was employed to find a degree of similarity
between deformable objects like different expressions of the
human face [6].

Embedding the objects into a plane can be thought of as
a method of finding a common parametrization [35]. Yet, the
simple Euclidean embedding has several drawbacks. First, in
most cases it introduces an inevitable distortion due to the fact
that a non-flat shape cannot be isometrically embedded into a
Euclidean space. Second, an alignment stage is needed in order
to resolve the remaining degrees of freedom in the embedding
space (Euclidean isometries), which, in turn, requires a dense
sampling of the object (thousands of points) in order for the
alignment to be accurate. Third, attempts to use Euclidean
embeddings for texture mapping were practically limited to
objects homeomorphic to a disc [35].

In [9], we proposed a generalization of MDS (hereinafter,
GMDS for short) that allows to embed one object into another
rather than using a common embedding space. Such an em-
bedding establishes a correspondence between the two objects.
Here, we adopt this approach, as it has several important
advantages over the Euclidean embedding computed by the
traditional MDS. GMDS can be be applied to objects with
arbitrary topology, it does not require alignment, and, since the
embedding space can be chosen to be an isometry of the object
itself, the metric distortion introduced by embedding into a
common space is avoided. GMDS can be naturally adapted to
finding correspondence between partially missing objects. This
allows us to gracefully deal with occlusions, often encountered
in objects acquired using range scanners. Furthermore, the
number of points required for accurately determining the
correspondence can be small (tens or hundreds). This can be
an important criterion in real-time applications, where compu-
tational restrictions force meshes with low-polygon count.

In this paper, we present an automatic correspondence pro-
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cedure, based on intrinsic geometric properties of the objects,
based on the assumption that the objects are approximately
isometric. The intrinsic correspondence gives us the possibility
to manipulate the extrinsic geometry and the texture of the
objects as vectors in a linear space. The numerical core is the
GMDS algorithm, which is computationally efficient and pro-
duces results competitive with previously used methods. We
start with formulating the correspondence problem between
non-rigid objects and introducing the concept of minimum-
distortion embedding in Section II. Section III describes the
GMDS problem and a numerical algorithm for its solution. In
Section IV, we address the problem of finding correspondence
between partially missing or topologically different objects. In
Section V, we present our problem from a broader perspective
of creating a (locally) linear space, in which surfaces can
be handled as vectors. Experimental results related to texture
mapping on the human body, morphing, and animation of hu-
man faces are presented in Section VI. Section VII concludes
the paper.

II. FINDING CORRESPONDENCE BETWEEN NON-RIGID
OBJECTS

We model a non-rigid object as a compact, connected
Riemannian two-dimensional manifold (surface) S , with the
geodesic distances dS : S×S → R induced by the Riemannian
metric. From the point of view of metric geometry, the pair
(S, dS) is a metric space, and dS describes the intrinsic
geometry of the object. A surface Q obtained by means of
a bijective map ϕ : S → Q is called a deformation of
S. If dS(s, s′) = dQ(ϕ(s), ϕ(s′)) for all s, s′ ∈ S, we
say that the map ϕ is an isometry and that S and Q are
isometric. In practice, deformations preserve the distances only
approximately, such that

|dS(s, s′)− dQ(ϕ(s), ϕ(s′))| ≤ ε.

We call such deformations ε-isometries (or in general, near-
isometries, without having ε specified).

The essence of the correspondence problem is finding the
map ϕ, establishing the correspondence between the objects
S and Q, from their geometry. If we knew a common
parameterization for S and Q, say πS : U ⊂ R2 → S and
πQ : U ⊂ R2 → Q, we could compute the correspondence
as ϕ = πQ ◦ π−1

S . However, the mappings πS and πQ
are unknown in practice. Correspondence algorithms based
on common parametrization usually enforce U to be, for
instance, the unit square. When only the geometry is available,
constructing such a common parametrization in a consistent
way is a challenging problem. Theoretically, the mappings πS
and πQ can be estimated by finding correspondence between
some fiducial points or features located on both objects [22].
Yet, the main limitation of feature-based approaches is the
fact that they require a robust feature detector. In some cases,

feature detection can be done automatically,1 but usually it is
user-assisted [27], [33].

Zigelman et al. [35] proposed using MDS to embed S andQ
into the plane and thus recover the parametrizations πS : R2 →
S and πQ : R2 → S . This idea can be problematic for non-flat
objects or objects with complicated topology. Moreover, since
the embedding is performed into the whole R2, there is no
guarantee that πS and πQ have the same domain.

A. Minimum-distortion embedding

In many applications, the deformations of an object can be
described as near-isometries. For example, different postures
of humans and animals are isometric deformations of their
respective bodies. In [6], we showed empirically that the defor-
mations of a human face due to natural expressions can be also
approximated by isometries (an example of such deformations
is shown in Figure 1). Relying on this knowledge, we can
find ϕ as a map with the smallest distortion of the geodesic
distances, e.g. measured as

dis ϕ ≡ sup
s,s′∈S

|dS(s, s′)− dQ(ϕ(s), ϕ(s′))|.

If S and Q are ε-isometric, it is guaranteed that dis ϕ ≤ ε.
Our goal is to find ϕ with the minimal distortion dis ϕ, which,
according to our model, will give a good correspondence
between S and Q.

In practical applications, we work with discrete objects. The
surface S is sampled at N points, {s1, ..., sN}, and represented
as a triangular mesh. The geodesic distances between the sam-
ples are represented as an N ×N matrix ∆S = (dS(si, sj)),
which is computed numerically using, for example, the fast
marching method (FMM) [21]. Similarly, the surface Q is
represented as ({q1, ..., qM} ⊂ Q,∆Q). In this discrete
setting, we are looking for a map ϕ : {s1, ..., sN} → Q, such
that dS(si, sj) is as close as possible to dQ(ϕ(si), ϕ(sj)) for
all i, j = 1, ..., N , that is,

ϕ = argmin
ϕ

max
i,j=1,...,N

|dS(si, sj)− dQ(ϕ(si), ϕ(sj))|
= argmin

ϕ
disϕ. (1)

We refer to such ϕ as a minimum-distortion embedding of S
into Q; ϕ is a genuine isometry only if S and Q are isometric.
Note that (Q, dQ) is tacitly assumed to be a continuous surface
here, as ϕ(si) can be any point on Q, not necessarily coin-
ciding with {q1, ..., qM}. In practice, the values of dQ must
be approximated numerically from ({q1, ..., qM} ⊂ Q,∆Q).
Generally, S can be a subset of Q (up to a nearly-isometric
deformation); we address this case in Section IV.

1In the specific problem of finding correspondence between human faces,
only a few points such as the eyes and the nose tip can be detected sufficiently
accurately based on the surface geometry. This is due to the fact that the
geometry of the facial surface contains mostly low-frequency information,
while feature detection usually requires high-frequency information. Blanz
et al. [3] establish dense correspondence using optical flow applied to the
texture. However, such an approach is not applicable when the texture is not
available.
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Fig. 1. Example of deformations of a non-rigid surfaces: a video sequence of one of the author’s face, acquired using a real-time 3D scanner. Facial
expressions can be modeled as near-isometries of the reference facial surface (“neutral expression”).

III. GENERALIZED MULTIDIMENSIONAL SCALING

Problem (1) is apparently untractable, as it requires op-
timization over all the maps ϕ : {s1, ..., sN} → Q. Yet,
denoting q′i = ϕ(si) , i = 1, ..., N , we can reformulate (1) as
an optimization over the image ϕ({s1, ..., sN}), in an MDS-
like spirit. For this end, we define the generalized stress

σp(q′1, ..., q
′
N ) =

∑

i>j

|dS(si, sj)− dQ(q′i, q
′
j)|p. (2)

For p = ∞, we define

σ∞(q′1, ..., q
′
N ) = max

i,j=1,...,N
|dS(si, sj)− dQ(q′i, q

′
j)|

= dis ϕ, (3)

The embedding ϕ is computed by minimization of the gener-
alized stress,

{q′1, ..., q′N} = argmin
q′1,...,q′N

σp(q′1, ..., q
′
N ), (4)

thus establishing a correspondence between the given N points
{s1, ..., sN} ⊂ S and N points {q′1, ..., q′N} on Q. Note that
this approach is based only on the intrinsic geometry of the
surfaces, and thus independent of the alignment of the surfaces
in the Euclidean space. Unlike methods based on fiducial
points, here we obtain a correspondence between a dense set
of points, since N can be as large as necessary.

Problem (4) can be considered as a generalization of mul-
tidimensional scaling (MDS) [4] to arbitrary metric spaces.
We call it the generalized MDS or GMDS for short [9]. Like
in traditional MDS, problem (4) is a non-convex optimization
problem, and therefore convex optimization algorithms may
converge to a local minimum rather than to the global one [4].
Nevertheless, convex optimization is widely used in the MDS
community if some precautions are taken in order to prevent
convergence to local minima. In Section III-C, we show a
multiscale optimization scheme that in practical applications
shows good global convergence.

In the case of p = ∞, the GMDS can be reformulated as a
constrained optimization problem

min
q′1,...,q′N ,τ

τ s.t. |dS(si, sj)− dQ(q′i, q
′
j)| ≤ τ ; i > j, (5)

with the use of an artificial variable τ . This problem is
intimately related to the computation of the Gromov-Hausdorff

distance between metric spaces [19], [24], [7]. In practice,
small values of p (e.g. p = 2) are usually preferred.

Finally, note that since {q′1, ..., q′N} may be arbitrary points
on the mesh Q, we have to compute the distances dQ between
every pair of points on Q. For this purpose, we use the
three-point geodesic distance approximation, which is detailed
in [7]. The idea of this numerical procedure is to produce
a computationally efficient C1-approximation for dQ and its
derivatives, interpolating their values from the matrix ∆Q of
pairwise geodesic distances on Q.

A. Iterative solution of the GMDS problem

Our goal is to bring the generalized stress (2) to a
(possibly local) minimum over {q′1, ..., q′N}, represented in
some parametrization domain as vectors of coordinates
{u1, ...,uN}. For example, if the surface Q admits some
global parametrization, e.g. [0, 1)2 → Q, every point on Q
can be represented by u ∈ [0, 1)2. Global parametrization
is often readily available for objects acquired using a range
scanner. For objects with more complicated topology, global
parametrization may be cumbersome to construct; in this case,
we may represent a point on Q by the index t of the triangle
enclosing it and a vector u of barycentric coordinates [16]
in the local coordinate system of that triangle. For the sake
of simplicity, in the following, we freely switch between q′i
and their local or global parametric representation, (ti,ui) or
ui, respectively. We refer to the latter case as the parametric
GMDS.

The minimization algorithm starts with an initial guess
u(0)

i of the points and proceeds by iteratively updating their
locations, thus producing a decreasing sequence of stress
values. Let {u(k)

1 , ...,u(k)
N } be the optimization variables at

the kth iteration and let {d(k)
1 , ...,d(k)

N } be a set of directions
such that displacement of u(k)

i along them by some step
size α(k) decreases the value of the stress σp. The simplest
way to select the directions is di = −∇uiσp, known as the
gradient descent algorithm. More efficient ways to chose the
step direction exist, including conjugate gradients and quasi-
Newton algorithm [2].

The step size α has to be chosen in such a way that it
guarantees a sufficient decrease of σp. When constant step is
used, there is generally a tradeoff between too small steps,
which result in slow convergence, and too large steps, which
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are liable to increase the value of σp. In order to provide a
guaranteed decrease of σp, we adaptively select the step size at
every iteration using the Armijo rule, which first sets α = α0

and then successively reduces it by some factor β ∈ (0, 1)
until

σp(u1, ...,uN0)− σp(u1 + αd1, ...,uN0 + αdN0)

≥ −γα
∑

i

dT
i ∇uiσp(u1, ...,uN0),

where γ ∈ (0, 1). An empirical choice we use is γ = 0.3, and
β = 0.5. We start with a large initial value of α0, gradually
refining it at each iteration. A similar rule can be applied
when the update is performed for a single point per iteration,
yielding a block-coordinate descent algorithm.

When a global parametrization is used, we must restrict
ui +αdi to remain inside the parametrization domain. This is
done by applying a projection operator PU on the point coordi-
nated after each iteration, forcing them to the parametrization
domain U . When the barycentric representation is used, it is
impossible to simply add αdi to ui, since the latter might leave
the triangle ti, thus invalidating the barycentric representation.
Instead, the displacement is performed by following a poly-
linear path starting at ui, propagating along a straight line in
the direction di until the first intersection with the triangle
boundary, then proceeding along a line inside the triangle
adjacent to the intersected edge, and so on until the total length
of the path is α by a path unfolding algorithm [7].

B. Complexity

The complexity of the generalized stress and its gradient
computation is O(N2). In practice, N varies between tens
to hundreds of points, therefore, GMDS is computationally
efficient. In our implementation of the parametric version of
GMDS, the computation of the stress σp and its gradient ∇σp

in a problem with N = 100 points takes about 80 msec
on a mobile Intel Pentium IV 2 GHz CPU. The number of
function and gradient evaluations required for the optimization
is usually of the order of 100.

C. Multiresolution optimization

Multiresolution methods are widely employed to resolve
the problem of local convergence in non-convex problems,
such as one we have here. The key idea of a multiresolution
optimization scheme is to work with a hierarchy of problems,
starting from a coarse version of the problem containing a
small number of variables (points). The coarse level solution
is interpolated to the next resolution level, and is used as an
initialization for the optimization at that level. The process
is repeated until the finest level solution is obtained. Such a
multiresolution scheme can be thought of as a smart way of
initializing the optimization problem. Small local minima tend
to disappear at coarse resolution levels, thus reducing the risk
of local convergence which is more probable when working
at a single resolution.

Formally, let us denote by S1 ⊂ S2 ⊂ ... ⊂ SR = S an
R-level hierarchy of our data. We denote |Sr| = Nr, where
NR = N . The points at the (r + 1)-st resolution level are

obtained by removing part of the points in the rth level. The
corresponding distance matrices ∆1, ...,∆R = ∆S are cre-
ated as sub-matrices of ∆S . One possibility to construct such a
hierarchy is the farthest point sampling (FPS) strategy [15]. As
the coarsest resolution level S1, we select N1 points. If some
prior information about the object is available, it can be em-
ployed for the initialization of the coarsest level (in the human
body, the initialization can be, for example, with points located
at the hands and legs); otherwise, random initialization is used.
Note that unlike in feature-based approaches, these points are
used only as initialization and need not be located precisely.
At the next resolution level, we add points in the following
manner: sN1+1 is selected as the most distant point from S1,
and so on, sNr+k = argmaxs∈S dS(s, {s1, ..., sNr+k−1}).
Taking the first Nr points from the sequence produced in this
manner, we obtain Sr.

Let us assume that at the rth resolution level, Sr =
{s1, ..., sNr} is embedded into Q using the iterative mini-
mization algorithm described above. As a result, the set of
images ϕt(Sr) = {s′1, ..., s′Nr} on the mesh Q is obtained. At
the next resolution level, we have to embed a larger set Sr+1

0

into Q, solving the minimization problem for {s′1, ..., s′Nr+1}.
The initialization for the first Nr points is readily available
from the solution at the previous level. The initial locations
for the remaining points q′i for i = Nr + 1, ..., Nr+1 have to
be interpolated.

It is reasonable to initialize q′i as a point on Q such that the
geodesic distances from it to the points q′1, ..., q

′
Nr are as close

as possible to the geodesic distances from si to s1, ..., sNr .
Formally, q′i can be expressed as

q′i = arg min
q

∑

j∈N (si)

(
dQ(q, q′j)− dS(si, sj)

)2
, (6)

where N (si) denotes the neighborhood of si on S . Note
that practically the minimum can be found by exhaustively
searching over all samples or even a coarser subset of Q. The
complexity of such a search is O(NrM), which is of the same
order as the complexity of the iterative minimization process.

IV. PARTIAL EMBEDDING

When working with objects acquired by means of a range
scanner, due to occlusions, parts of the objects may be missing.
In some cases, missing data can result in the objects having
different topology. Think, for example, of a hole in one of
the objects, which contradicts our fundamental assumption
that the objects are near-isometric. Let us assume to be given
S ′ ⊂ S , a patch of the surface S . Our approach requires the
embedding of S ′ into Q. Yet, if we try to apply the GMDS
straightforwardly, we may find significant distortions of the
geodesic distances. This results from the fact that geodesic
distances corresponding to geodesics that have passed through
S \ S ′ may change, while we have tacitly assumed that the
metric on S ′ is the restricted metric dS |S′ . We call geodesic
distances that violate this assumption inconsistent.

In order to guarantee a correct embedding, inconsistent
distances must be excluded. In the discrete setting, given S ′
sampled at {s1, ..., sN ′}, we denote by P ⊆ {1, ..., N ′} ×
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{1, ..., N ′} the set of pairs of points between which the
geodesic distances are consistent. Consequently, the minimum-
distortion embedding can be defined as

ϕ = argmin
ϕ

∑

(i,j)∈P

|dS(si, sj)− dQ(ϕ(si), ϕ(sj))|p.

This can be equivalently formulated as the minimization of
the weighted generalized stress

σp(q′1, ..., q
′
N ) =


∑

i>j

wij |dS(si, sj)− dQ(q′i, q
′
j)|p




1/p

,(7)

where wij = 1 if (i, j) ∈ P and 0 otherwise.
If the surface S is available, we can define the inconsistent

distances as those in which dS′(si, sj) 6= dS(si, sj) ; i, j =
1, ..., N ′. Otherwise, we must remove distances between pairs
of points (i, j) close to the boundary ∂S ′, for which

dS′(si, ∂S ′) + dS′(sj , ∂S ′) < dS′(si, sj).

In practice, when the surfaces are given in a discrete repre-
sentation, the above criteria are applied to finite sets of points,
and the geodesic distances are computed numerically.

V. CALCULUS OF NON-RIGID OBJECTS

In a broader perspective, we can think of non-rigid objects
as of points in some infinite-dimensional space. Let S be an
object, and M denote an abstract subspace of all the near-
isometric deformations of S . It is known empirically that
the intrinsic dimensionality of M is usually low and it can
be represented approximately as an abstract manifold [29].
Assume that we have a sequence of smooth deformations of
S, represented as a smooth trajectory St : [0, T ] → M. For
example, it can be a 3D video sequence acquired by a range
scanner, where t is thought of as the time. Let St and St+dt be
two adjacent samples on the trajectory St (or in other words,
two consecutive frames in the video sequence), and let st and
st+dt be the corresponding extrinsic coordinates. If the step dt
is sufficiently small, the difference between St and St+dt is
also small. We can therefore linearize the manifold M around
the point St, approximating its generally non-Euclidean struc-
ture by a Euclidean one (Figure 2). The piece of the trajectory
Sτ∈[t,t+dt] is replaced by a linear displacement, which can
be represented abstractly as dS = St+dt − St (though the
subtraction between surfaces is not yet formally defined).
Broadly speaking, our construction resembles the notion of
tangent space in Riemannian geometry. In this way, we obtain
an ability to work with surfaces as with vectors in a linear
space, which provides us with a calculus of non-rigid objects:
the ability to “add” and “subtract” two surfaces.

The knowledge of the correspondence ϕt : St → St+dt

between St and St+dt is crucial in order to think of surfaces
as of vectors and be able to apply arithmetic operations on their
extrinsic coordinates. Thus, in terms of extrinsic coordinates,
we can write dS as ds = st+dt ◦ ϕt − st. Consequently, once
establishing the correspondence ϕt using the GMDS, we can
approximate St+λdt by the following convex combination

st+λdt(s) = (1− λ)st(s) + λst+dt(ϕt(s)), (8)

 

Fig. 2. Geometric illustration of interpolation and extrapolation of deforma-
tions of non-rigid objects.

for all s ∈ St and λ ∈ [0, 1]. If in addition the surfaces are
endowed with the textures represented as vector fields αt :
St → R3 and αt+dt : St+dt → R3, we can similarly construct
the texture αt+λdt by blending between the corresponding
pixels.

Varying the value of λ continuously from 0 to 1, we
can create a linear interpolation between St and St+dt (see
Figure 2 for a geometric illustration). Such an interpolation is
useful, for example, as a method of temporal super-resolution
of a 3D video. Since the video is given at a finite sampling
rate, rarely exceeding 30 frames per second, we can produce
the missing frames by linear interpolation between the given
adjacent frames. If our objects are different faces S and Q,
such an interpolation will produce a morphing effect: a face
which gradually turns from S into Q. Note that the morphing
is applied both to the extrinsic geometry of S and Q and their
textures; the extrinsic geometries should be at least roughly
aligned for a graceful morphing effect. This stage is trivial
because we have the correspondence between the surfaces,
therefore, a rigid transformation that will align them is found
straightforwardly (in fact, it can be expressed analytically).

Allowing for λ < 0 or λ > 1, we can extrapolate the
trajectory beyond [t, t + dt]. As a particular example in the
facial animation problem, if St is a neutral posture of the
face and St+dt is an expression, we can exaggerate this
expression by taking λ > 1. This approach can be extended
for facial features exaggeration or caricaturization. Suppose
we are given an ensemble of representative faces S1, ...,SN .
After finding correspondences between them, we can create
the average face (androgenus) S̄. Given a new face Q, we
can compute the combination Qλ = λQ − (1 − λ)S̄ . By
taking λ > 1, we exaggerate the difference between Q and the
average facial features S̄ , thus emphasizing the non-average
features of Q and thereby creating a 3D caricature. The degree
of caricaturization is controlled by the value of λ.

VI. APPLICATIONS AND RESULTS

A. Virtual body painting

A contemporary stream of art, known as body painting,
presents the challenge of drawing clothes on the human body
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skin, in order to create an illusion of genuine clothes. When
the person moves, the drawn picture deforms naturally with
the skin, thus looking realistic practically in every pose of the
body. In the computer graphics world, this “virtual dressing”
effect can be achieved by texture mapping. As an illustration
of a possible application, imagine that we would like a human
actor to be used as a character in a computer game. The actor
is scanned in several poses, then, an artist draws the texture
that should be mapped on the character. In order to to avoid
drawing a different texture for each pose, the texture from
some reference pose Q must be transferred to the rest of the
poses of the character. Assume that the texture αQ is drawn
on Q. We wish to map it onto a deformed version of the object
(a different pose of the character), S . The new texture is given
by αS = αQ ◦ ϕ, where ϕ is the correspondence between S
and Q computed using GMDS.

We demonstrate the GMDS approach in a virtual body
painting experiment, using as a reference a public domain
mesh of a head-less human body containing about 2600
vertices. Four poses were created by deforming the body in a
CAD program. We painted two textures (Figure 3) that were
mapped onto the reference surface. The GMDS algorithm was
employed to embed 200 points on the reference object into its
four different poses in order to establish the correspondence
between the objects. Optimization was performed using the
multi-resolution scheme with six resolution levels, created us-
ing the farthest point sampling. The correspondences obtained
from the embedding are depicted in Figure 4. The texture
mapping coordinates were transferred from the reference mesh
to the four poses by inverse square distance-weighted interpo-
lation. The final results are visualized in Figure 5. For better
rendering, a head was manually added to each object. The
mapping is good in general, despite some small yet noticeable
artifacts, for example, in the fourth column of the second row
in Figure 5.

B. Virtual makeup

In the motion pictures industry, one of the challenges is
the creation of visually-realistic moving human faces. Current
level of computer graphics allows to render a 3D animated
head and embed it into the movie. Yet, such 3D animation
is computationally-intensive and usually lacks the realism of
genuine human face movements. On the other hand, the rapid
development of 3D real-time video acquisition techniques [20]
opens a new direction for creating a synthetic character, by
scanning an actor and replacing his or her facial texture with
a virtual one, automatically mapping a single image onto a 3D
video sequence and creating a “virtual makeup” effect [8].

Thinking of the 3D video sequence frames as of de-
formable objects, and assuming the isometric model of facial
expressions, the knowledge of the intrinsic correspondence
between two facial surfaces allows expression-invariant texture
mapping onto all the frames of the video sequence. We
must note that expressions with open and closed mouth are
topologically different, as opening the mouth creates a “hole”
in the facial surface. This can be solved by imposing a
topological constraint on the facial surface as described in

 

 
 
 

Fig. 6. The open mouth problem. Red: the cropped lips region S \ S′.
Blue dotted: a geodesic between the points s1 and s2 on S. Black: the
corresponding inconsistent geodesic on S′.

Section IV, excluding the geodesics passing through the lips
by setting the appropriate weights wij in problem (7) to zero
(see Figure 6).

A scheme of the whole procedure is depicted in Figure 7.
The reference surface S (e.g., the first frame in the video
sequence) is first cropped to remove the lips and leave only
the facial contour. The remaining surface S ′ is subsampled
using farthest point sampling, geodesic distance between the
samples are computed using FMM. The distances crossing the
cropped lips region are assigned zero weights. The points are
then embedded into the target surface Q (one of the 3D video
frames) using GMDS, which produces the correspondence ϕ.
The texture αS is transferred from the reference surface S
onto Q similarly to the virtual body painting problem.

In our experiment shown here, we mapped “virtual makeup”
to a real 3D video sequence of a face, acquired by a structured
light scanner at 640× 480 spatial resolution, three frames per
second (Figure 1). The lip contour in the reference frame
was segmented manually. The cropped reference frame was
sampled at 100 points; all the rest of the frames were sampled
uniformly at about 3000 points. The surfaces were triangulated
using Delaunay triangulation; then, the geodesic distances
were computed using FMM [21]. The correspondence was
found by embedding 100 points on S into Q using a mul-
tiresolution optimization scheme initialized with 8 points at
the coarsest resolution. Figure 8 depicts a synthetic Shrek-
like character, created from the video sequence by mapping a
synthetic face texture image. The obtained faces look real and
the texture alignment is good even in cases of strong facial
expressions. Slight artifacts can be attributed to alignment
imperfections of the reference texture image.

C. Synthesis and exaggeration of facial expressions

The same 3D face video data were used to demonstrate the
idea of calculus of non-rigid objects, presented in Section V.
The correspondences found in the previous experiment were
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Fig. 3. Two textures used in the virtual body painting experiment.

Fig. 4. Visualization of correspondence between poses of the human body, established using GMDS. Different colors depict corresponding patches built
around 100 points on the objects used in the embedding.

used to transform the extrinsic geometry of the surfaces.
Figure 9 shows interpolation between two frames computed
according to formula (8). If, for example, we take the first
frame to be a “neutral expression” and the second one to
be a “sad” expression, varying λ continuously in the range
[0, 1] creates a natural transition between the “neutral” and

the “sad” faces. Taking λ beyond 1 creates an exaggerated
sad expression, depicted in Figure 10.

D. Morphing between different faces

So far, we have assumed that the deformations of our non-
rigid object, e.g., the expressions of the face in the virtual
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Fig. 5. Virtual body painting experiment. The texture is transferred from a reference pose of the human body (left column, outlined in gray) to its different
poses. The correspondence between the objects is established by embedding 200 points on the reference object into its poses using the GMDS algorithm.
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Fig. 8. Virtual makeup experiment. A few frames from the video sequence with a Shrek texture image mapped using the correspondence established by
GMDS.

Fig. 9. Expression interpolation between two frames in the video sequence (in the first row the faces are shown without texture to emphasize the natural
look of the synthetic expressions).

makeup experiment, can be described by near-isometries.
Practice shows that the surfaces do not necessarily have to be
isometric in order for the minimum-distortion mapping to be
a good correspondence. For example, thinking of two faces as
of flexible rubber masks, the correspondence problem is that
of putting one mask onto the other, while trying to stretch
it as little as possible. It is obvious that in most cases, the
geometry features (nose, forehead, mouth, etc.) of the two
masks will coincide, because in a broad sense, all human
faces have similar geometry. Consequently, given two faces
of different subjects, we can still use the same principle to

find correspondence between them.

To exemplify this idea, we took a female and a male face
from the Notre Dame database [12], [17] (denoted by S and
Q, with the textures αS and αQ, respectively). Each face was
subsampled at approximately 3000 points and triangulated.
Fifty points were taken on S and embedded into Q using
GMDS; the inverse of resulting correspondence was then used
to map the texture αS from S to Q, as αQ = αS ◦ ϕ−1.
Figure 11 shows a synthetic face with male geometry and
a female texture, obtained in this way. Figure 12 depicts a
morphing effect between S and Q, obtained by interpolating



IEEE TRANS. VIS. COMP. GRAPHICS 10
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Fig. 10. Expression exaggeration. Shown left to right are three expressions and their exaggerated versions.

Fig. 11. Texture substitution. GMDS is used to find the minumum-distortion mapping between face S and Q (by embedding S into Q). Using this mapping
as a correspondence, the texture α is mapped onto Q.

Fig. 12. Morphing. In the example from Figure 11, the correspondence is used to transform the texture and the extrinsic geometry of S into the corresponding
texture and extrinsic geometry of Q, creating a morphing effect.

the extrinsic geometry and the texture according to (8).

VII. CONCLUSION

We presented a procedure for establishing dense correspon-
dence between non-rigid surfaces. Exploiting the empirical
fact that facial expressions can be modeled as isometries,
our approach is based on finding the minimum-distortion
mapping between two surfaces. This is carried out by a
procedure similar to multidimensional scaling. The algorithm
is computationally efficient, though currently not real-time.
Our preliminary results show that near-real-time performance

can be achieved by exploiting multigrid optimization [10], [11]
for the GMDS and implementation on graphics processors
(GPU).

Being purely geometric, our approach is applicable when
texture is not available. Since it is based on the intrinsic
geometry (geodesic distances measured on the surfaces), the
method is completely automatic and does not require any
alignment based on the extrinsic geometry. Unlike feature-
based methods, our approach does not require feature detection
and tracking. We find correspondence between an arbitrarily
dense set of points, as opposed to feature-based methods,
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Fig. 7. Processing stages in the virtual makeup problem: (a) reference
surface; (b) cropping and subsampling; (c) correspondence establishment
using GMDS; (d) texture mapping onto the reference surface; (e) texture
mapping onto the target surface.

which are usually limited to a small set of fiducial points
that can be robustly detected and tracked. An additional
advantage is that the minimum-distortion embedding approach
uses a global criterion for finding the correspondence. This is
especially important when working with noisy data. The fact
that we use geodesic distances between all the points can be
thought of as a means of regularization, which usually prevents
outliers from compromising the correspondence quality. From
this perspective, we can think of GMDS as a generalization
of the elastic graph matching approaches [31], [32]. Finally,
handling missing data is natural in our approach using the
weighted generalized stress minimization.

The proposed method has a wide range of application in
computer graphics and computer vision. We demonstrated
only a few of them, including invariant texture mapping
onto animated object, expression synthesis and exaggeration,
texture substitution and morphing.
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