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Multigrid multidimensional scaling
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SUMMARY

Multidimensional scaling (MDS) is a generic name for a family of algorithms that construct a con-
�guration of points in a target metric space from information about inter-point distances measured in
some other metric space. Large-scale MDS problems often occur in data analysis, representation and
visualization. Solving such problems e�ciently is of key importance in many applications.
In this paper we present a multigrid framework for MDS problems. We demonstrate the performance

of our algorithm on dimensionality reduction and isometric embedding problems, two classical problems
requiring e�cient large-scale MDS. Simulation results show that the proposed approach signi�cantly
outperforms conventional MDS algorithms. Copyright ? 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Multidimensional scaling (MDS) is a generic name for a family of algorithms that construct
a con�guration of points in a target metric space from information about inter-point distances
(dissimilarities), measured in some other metric space. The spectrum of MDS applications
is very broad and ranges from stock market analysis [1] to computational chemistry [2] and
breast cancer diagnosis [3]. MDS is widely used in dimensionality reduction, data analysis
and visualization applications, when, for example, one wishes to understand complicated high-
dimensional data structures and represent them by low-dimensional ones [4, 5].
From the point of view of the underlying optimization problem, MDS is known to be hard,

as it involves a non-linear non-convex objective function requiring heavy computation, whose
gradient and Hessian are also hard to compute, and moreover, the Hessian is dense. Current
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MDS algorithms are notoriously slow, and limited to small data sets. E�ciently solving large-
scale MDS problems arising in numerous applications has been a challenge for a long time.
In many cases, the dissimilarities can be thought of as geodesic distances measured on a

smooth Riemannian manifold, and the underlying geometry can be used to advantage. This
particular setting of the MDS problem is known as the isometric embedding problem, and
from the geometric point of view, it is the problem of representing the intrinsic structure of
a Riemannian manifold in some other metric space. The isometric embedding approach was
used by Schwartz et al. [6] to �atten convoluted 3D surface of the brain cortex in order
to study its structure as a 2D image. A similar approach was used in References [7, 8] for
texture mapping. Elad and Kimmel [9] proposed embedding surfaces into a higher-dimensional
Euclidean space in order to compute their isometry-invariant signatures. This approach was
applied in References [10, 11] to the problem of 3D face recognition.
In Reference [12] we presented a multigrid approach for e�cient isometric embedding of

surfaces arising in the 3D face-recognition application. Here, we describe a general multigrid
framework for MDS algorithms. Our main focus are isometric embedding problems, though
we discuss and exemplify general MDS problems as well.
The organization of the paper is as follows: In Section 2 we give a formal de�nition to

the isometric embedding problem and its discrete setting. We show applications where such
problems arise. Section 3 shows how MDS is used to perform the isometric embedding. First-
and second-order MDS methods are discussed. In Section 4 we introduce the full approxi-
mation scheme (FAS) multigrid MDS (hereinafter, MG-MDS) algorithm for the isometric
embedding problem. Section 5 discusses its extension to a generic MDS problem. Section 6
is dedicated to experimental results. Our approach is exempli�ed on two problems: isometric
embedding of a complicated Riemannian manifold (‘Swiss roll’) and of a facial surface. In
addition, we apply a general MDS algorithm to the problem of dimensionality reduction of
high-dimensional binary data. Section 7 concludes the paper.

2. ISOMETRIC EMBEDDING

Let S and Q be two complete smooth Riemannian manifolds, with geodesic distances induced
by the Riemannian geometry and denoted by �(�1; �2) and d(x1; x2) for all �1; �2 ∈S and
x1; x2 ∈Q, respectively. A mapping ’ :S→Q is called an isometry if it preserves the geodesic
distances, i.e.

�(�1; �2)=d(’(�1); ’(�2)) ∀�1; �2 ∈S (1)

The manifolds S and Q are said to be isometric in this case and have the same intrinsic
geometry (properties associated with the geodesic distances.)‡
Let us assume that we wish to study the intrinsic geometry of the manifold S. Yet, the

manifold can be immersed in a complicated way into some ambient space, and thus can have
a very complicated extrinsic geometry. In order to get rid of the extrinsic geometry, we map

‡Note that here we understand the terms isometry and intrinsic geometry in the context of metric rather than
Riemannian geometry, i.e. terms associated with the geodesic distances and not with the Riemannian metric
tensor.
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Figure 1. Illustration of the isometric embedding problem arising in cartography. Left: the Earth spherical
surface (shown here is the upper hemisphere). Right: a planar map of the Earth created by embedding the

spherical surface into R2, such that the geodesic distances are replaced with Euclidean ones.

S in an isometric manner into another manifold Q, which has a simple intrinsic geometry. The
problem of �nding a representation of the intrinsic geometry of a Riemannian manifold using
the intrinsic geometry of some other manifold is called the isometric embedding problem.
The manifold Q into which the mapping is performed is usually referred to in this context as
the embedding space, and ’ as an isometric embedding. Usually, the embedding space can
be chosen to our discretion. The most popular choice is a �nite-dimensional Euclidean space
Rm (though other choices are also possible [13–17]), which will be assumed hereinafter in
this paper.
As an illustration, think of the problem of Earth mapping (Figure 1). We wish to map the

spherical surface of the Earth (2-manifold) into a plane, preserving in the best possible way the
distances between geographic objects. An optimal mapping would be an isometric embedding
of the sphere into R2. However, it can be easily shown that a sphere is not isometrically
embeddable into a Euclidean space of any �nite dimension [5, 18]. Furthermore, it appears in
most cases that a general non-trivial manifold is not isometrically embeddable into Rm [5].
We must therefore keep in mind this fact, which implies that since we are unable to �nd an
exact isometric embedding, we have to resort to a near-isometric embedding, optimal in some
sense. The measure of the geodesic distances distortion by such an embedding is referred to
as the embedding error. The de�nition of the embedding error and ways of its minimization
will be discussed in Section 3.

2.1. Discrete isometric embedding

In the discrete setting, we have the manifold S sampled at N points �1; : : : ; �N , and the
geodesic distances between all the points are given and can be represented as a symmetric
N ×N dissimilarity matrix with zero-diagonal and non-negative elements

�ij= �(�i; �j); i; j=1; : : : ; N (2)

Copyright ? 2006 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2006; 13:149–171
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Isometric embedding in this case is de�ned as a mapping between two �nite metric spaces,

’ : ({�1; : : : ; �N}⊂S;�)→ ({x1; : : : ;xN}⊂Rm;D) (3)

trying to achieve dij ≈ �ij. Here dij= ‖xi−xj‖2 denotes the distances in the Euclidean embed-
ding space. The embedding error can be thought of as a discrepancy between all �ij and dij.

2.2. Applications of the isometric embedding

In Reference [9], Elad and Kimmel showed an application for the isometric embedding in
the context of pattern recognition. By embedding surfaces into a low-dimensional Euclidean
space, it is possible to get rid of their extrinsic geometry and obtain an intrinsic geometric
representation. The authors coined the term bending-invariant canonical form referring to such
a representation. The use of canonical forms allows recognizing objects independently of how
they are bent, assuming that the deformation is isometric or near isometric (see Figure 2).
In References [10, 11], Bronstein et al. applied this approach to the problem of 3D face

recognition. Under the assumption that facial expressions can be approximated as near-
isometric deformations of the facial surface, isometric embedding is used to construct
expression-invariant representations of facial surfaces (Figure 3). In the 3D face-recognition
system developed at the Department of Computer Science, Technion [10], much e�ort was
focused on fast computation of an expression-invariant representation of the face. Current
implementation in C on an AMD Opteron machine allows the overall recognition process,
including 3D surface acquisition, preprocessing and canonical form computation, to be

Figure 2. Near-isometric transformations of a deformable object (�rst row) and the
corresponding canonical forms (second row). Image reproduced from Reference [9]

with the permission of the authors.
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Figure 3. Example of canonical forms (second row) of facial surfaces (�rst row) and their
insensitivity to facial expressions.

performed in less than 6 s. The MDS stage takes about 2 s,§ which constitutes over 30% of
the whole processing time. The MDS stage constitutes therefore a bottleneck of the 3D face-
recognition algorithm. Being able to reduce the MDS computation time, one can bene�t either
from faster performance or the possibility to perform more accurate embedding using more
surface points or allowing more iterations, which increases the recognition accuracy.

3. MULTIDIMENSIONAL SCALING

Let � be a symmetric N ×N matrix of geodesic distances �ij measured between N points
on a Riemannian manifold S. Our goal is to �nd a set of points x1; : : : ;xN in Rm, such that
the embedding error, i.e. the discrepancy between �ij and dij, is minimal. An error criterion
commonly used in MDS literature is the stress function, given by

s(X;�;W)=
N∑
i=1

N∑
j=i+1

wij(dij(X)− �ij)2 (4)

Here X=(xij) is the N ×m matrix of co-ordinates of the resulting points in Rm. Following
Elad and Kimmel, we refer to X∗= arg minx s(X;�;W) as the canonical form of S.¶ The

§On a facial surface containing 2500 points, carried out using 40 iterations of the SMACOF algorithm (see
Section 3.2). Note that the implementation of the algorithms in this paper (shown in Section 6) is in MATLAB and
is about 100 times slower.

¶The term con�guration matrix is used in the MDS community when referring to X [19].

Copyright ? 2006 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2006; 13:149–171
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symmetric N ×N matrix of weights W=(wij) determines the relative contribution of distances
to the embedding error criterion. The use of weights allows to give more importance to
some distances, or alternatively, exclude some distances from the stress computation. We
will distinguish between the weighted stress, where values of wij are speci�ed, and the non-
weighted stress, where wij=1.

3.1. General remarks

Note that the only input in the MDS problem is the matrix � (and the matrix W in case of
weighted stress). The solution of the MDS problem is not unique. Any isometric transforma-
tion in the embedding space applied to the canonical form X∗ is a minimizer of the stress.
In Rm, such transformations are translations, re�ections and rotations. The canonical form is
computed by iterative minimization of s(X;�;W) w.r.t. X. In many applications, reaching
the exact minimum is not required or cannot be achieved due to real-time limitations (e.g. in
3D face recognition). Stopping criteria commonly used in MDS algorithms include reaching
a predetermined stress value (if such is known a priori), or when the decrease of the stress
function at two subsequent iterations is below some threshold [4].
MDS is in all respects a hard optimization problem. The stress is a non-linear non-convex

function w.r.t. X, and convex optimization algorithms do not guarantee convergence to a
global minimizer of s(X) and are liable to converge to local minima. Using a good initial-
ization is therefore important. One possibility to construct such an initialization is using the
Young–Torgerson classical scaling algorithm [20, 21]. Another possibility is the multistart
approach, consisting of running an MDS algorithm using a small number of iterations from
many di�erent random starting con�gurations and choosing the one with the lowest stress.
However, both these methods require extensive preprocessing and usually are computationally
expensive [4].
In the isometric embedding problem, the extrinsic geometry of the manifold (i.e. the loca-

tions of the points �1; : : : ; �N in the ambient space) can be sometimes used to construct a good
initialization. In the particular case discussed here in the context of the 3D face-recognition
application, R3 is assumed as the ambient and the embedding space. Therefore, we can use
the Cartesian co-ordinates of �1; : : : ; �N in R3 as the initialization of MDS [9]. In Section
6.2, we demonstrate empirically that such an initialization works particularly well for facial
surfaces, since it appears to be su�ciently close to the optimal solution.
Another characteristic of the MDS problem is the high computational complexity of the

stress function and its derivatives (see Table I); this stems from the fact that the matrix � is
dense. This property will result in some limitations on the choice of optimization algorithms
for stress minimization.

3.2. Gradient-descent-type algorithms

The easiest choice of an optimization algorithm in the MDS problem are �rst-order, gradient-
descent-type methods, in which the direction at the (k + 1)st iteration is X(k+1) =
X(k) − �(k)∇s(X(k)). The gradient of s(X) with respect to X can be written in matrix
form [4] as

∇s(X;�;W)=2VX − 2B(X;�;W)X (5)

Copyright ? 2006 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2006; 13:149–171
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Table I. Approximate computational complexity (in terms of multiplication operations)
of the stress function s(X) and its derivatives ∇s(X), ∇2s(X). N denotes the number
of points, m denotes the embedding space dimension. Cs denotes the complexity of
square-root computation in terms of multiplication operations; typically, Cs ≈ 25.

Weighted Non-weighted

s 1
2 N (N − 1)(3 + Cs) 1

2 N (N − 1)(2 + Cs)
∇s 1

2 N (N − 1)(3 + Cs) + 2Nm 1
2 N (N − 1)(2 + Cs) + Nm

∇2s 1
2 N (N − 1)(8 + Cs)m2 1

2 N (N − 1)(7 + Cs)m2

where V is a matrix with elements

vij=

{−wij if i �= j∑
k �=i wik if i= j

(6)

and B is a matrix with elements

bij=

⎧⎪⎪⎨
⎪⎪⎩
−wij�ijd−1

ij (X) if i �= j and dij(X) �=0
0 if i �= j and dij(X)=0
−∑

k �=i bik if i= j

(7)

The step size �(k) is computed by means of line search. However, in our problem the com-
putation complexity of the stress and its gradient is roughly the same (O(N 2); see Table I).
Consequently, the complexity of exact line search becomes excessive in large-scale problems.
An important conclusion is therefore that we would tend to favour optimization methods that
use a constant step size, and use line search only as a safeguard, i.e. when the step increases
the stress function value.
In Reference [22], a scaled gradient-descent algorithm has been proposed for the MDS

problem, observing that the �rst-order optimality condition, ∇s(X∗)=0, can be written as
VX∗=B(X∗)X∗, where X∗ denotes a minimum of s(X). It follows that the sequence

X(k+1) =V†B(X(k))X(k) (8)

converges to a local minimum of s(X) (here † denotes matrix pseudoinverse). The algorithm
using this multiplicative update is called SMACOF [4, 23, 24]. It can be easily shown to be
equivalent to weighted gradient descent with constant step size

X(k+1) =X(k) − 1
2V

†∇s(X(k)) (9)

and if a non-weighted stress is used, it is essentially a gradient descent with constant step
size

X(k+1) =X(k) − 1
2N
∇s(X(k)) (10)

SMACOF is widely used for large-scale MDS problems as it appears to be practically
one of the most e�cient MDS algorithms [4]. Particularly, it was adopted for computing
the expression-invariant representations of faces in the Technion 3D face-recognition system

Copyright ? 2006 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2006; 13:149–171
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mentioned above. Its disadvantage is slow convergence in the proximity of the minimum,
which is inherent to all �rst-order methods. In the Technion 3D face-recognition system, a
preset number of 40 SMACOF iterations is used to compute the canonical forms of faces.
Being certainly a compromise in accuracy (usually, more than 40 SMACOF iterations are
required to achieve the minimum), this stopping criterion allows real-time performance.

3.3. Newton-type algorithms

Some recent papers (e.g. Reference [19]) propose using second-order (Newton-type)
algorithms for stress minimization. A basic Newton iteration has the form X(k+1) =
X(k) −H−1∇s(X(k)), where H denotes the Hessian, which is a fourth-order tensor in this
notation. If X is column stacked into an Nm× 1 vector, the Hessian can be represented by
an Nm×Nm matrix, consisting of m2 blocks of size N ×N . Each block is given by

Hkl=

⎧⎨
⎩
H̃
kl

if k �= l
H̃
kl
+ 2(V − B) if k= l

; 16 k; l6m (11)

where

h̃
kl
ij =

⎧⎪⎪⎨
⎪⎪⎩
−2wij(xik − xjk)(xil − xjl)�ijd−3

ij (X) if i �= j and dij(X) �=0
0 if i �= j and dij(X)=0
−∑

n�=i h̃
kl
in if i= j

(12)

Note that when m=1, the Hessian has the form H(X)=2B(X) + 2(V − B(X))=2V.
The Newton method has quadratic convergence, as, in the proximity of the minimum, a

function is accurately approximated by a quadratic function. The disadvantage of the Newton
method is the relatively high computational complexity required for the Hessian construction
and inversion. The Newton algorithm with explicit Hessian inversion appears to be e�cient
only for small-scale problems (practically, hundreds of points), as the cost of Hessian con-
struction and inversion (requiring O(N 3m3) operations) becomes prohibitive with large N.
In order to reduce the cost of Newton iteration, inexact- or truncated-Newton methods

[25–27] can be used. In these algorithms, the Newton direction computation H−1∇s is con-
sidered as a linear system of equations and solved using some e�cient method, e.g. conjugate
gradients. Typically, the Hessian does not even have to be explicitly constructed, and only an
e�cient (exact or approximate) computation of Hessian-vector products of the form HX is
required. This computation is e�cient if the Hessian H is sparse or has some other convenient
structure, or alternatively, can be approximated by an operator with such a structure.
Unfortunately, in our case, though the Hessian is structured, it is not sparse. The diagonals

of each block are N times larger than the rest of the elements, which leads to a structure
with 2m− 1 dominant diagonals. The Hessian can be approximated by such a multidiagonal
matrix, yet, since the diagonals in each block consist of sums of all the block elements, the
construction cost of such a sparse Hessian approximation (or alternatively, the approximate
Hessian-vector product cost) is similar to that of the full Hessian. We are not aware of an
e�cient analytic Hessian approximation in the MDS problem. Yet, it is possible to approxi-
mate the Hessian-vector products using �nite di�erences, thus practically computing only the
gradients ∇s [26].
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Another possible implementation of a truncated-Newton algorithm is using a multigrid
solver for the Newton system at each iteration [26–30]. Such methods often show performance
comparable to FAS multigrid methods, like the one developed in this paper.

3.4. Quasi-Newton algorithms

Another family of algorithms, widely used in problems where the Hessian computation is
hard, is called quasi-Newton methods. The main idea of these algorithms is to construct an
approximate inverse Hessian L≈H−1 at each iteration, using gradients from a few previ-
ous iterations [26]. Practical experience has shown the Broyden–Fletcher–Goldfarb–Shanno
(BFGS) scheme to be the best quasi-Newton method in most circumstances. The inverse
Hessian approximation update (in matrix representation) in this scheme is given by

L(k+1) =
(
I − [Q

(k+1);Y(k+1)]
〈Q(k+1);Y(k+1)〉

)
L(k)

(
I − [Y

(k+1);Q(k+1)]
〈Q(k+1);Y(k+1)〉

)
+
[Q(k+1);Q(k+1)]
〈Q(k+1);Y(k+1)〉 (13)

where 〈Q;Y〉= trace(QTY) denotes matrix inner product; [Q;Y]= (qij·ykl) is the outer product
arranged as an Nm×Nm matrix, and

Q(k+1) =X(k+1) −X(k)

Y(k+1) =∇s(X(k+1))−∇s(X(k))
(14)

As an initialization, L(0) = I is usually chosen. The BFGS step is obtained directly as

X(k+1) =X(k) −L(k)∇s(X(k)) (15)

Note that here, as in truncated-Newton methods, Hessian-vector product rather than Hessian
construction is required. The information necessary for Hessian-vector product computation at
kth iteration is Q(i);Y(i), i=0; 1; : : : ; k − 1 and their inner products. This information can be
e�ciently stored. A version of BFGS using this idea is usually referred to as limited-memory
or L-BFGS [26].

4. MULTIGRID MDS

Our previous results [18] demonstrated that substantial performance improvement can be
achieved by using a multiresolution initialization to the embedding problem. Here, we
extend these results into a genuine multigrid approach.
Originally, multigrid methods were introduced in the context of di�erential equations

[31–34]. More recently, this framework was adapted to non-linear discrete optimization prob-
lems (see, for example, Reference [35]). The optimization problem minX s(X) is equivalent
to the solution of the non-linear equation ∇s(X)=0, arising from the �rst-order optimal-
ity conditions. The spirit of multigrid is to solve the non-linear problem ∇s(X)=0 using a
sequence of approximate solutions to non-linear problems of the form ∇s(X)=T, solved on
coarse grids. The term T arises from the residual transferred from previous levels. In the
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optimization problem formulation, we need to minimize functions of the form

s(X)− 〈X;T〉= s(X)− trace(XTT) (16)

whose gradient equals ∇s(X)− T.

4.1. Modi�ed stress

The second (linear) term makes the function s(X)− trace(XTT) unbounded. In order to over-
come this problem, we introduce the modi�ed stress

ŝ(X;�;W)=
∑
i¿j
wij(dij(X)− �ij)2 + �

m∑
j=1

(
N∑
i=1
xij

)2
; �¿0 (17)

and use it instead of s(X) hereinafter. Having in mind that the solution to the MDS problem
is de�ned up to an isometry in the embedding space, note that such a modi�cation resolves
the translation ambiguity by restricting the centre of mass of the resulting canonical form to
be at the origin. In the following, the value of �=1 is tacitly assumed. Since the second
term is quadratic, the function ŝ(X)− trace(XTT) is bounded. This modi�cation results in an
increment by 2� of every element of the Hessian diagonal blocks, Hkk . The computational
complexity of the modi�ed stress has the same order as of the original stress function.

4.2. Hierarchy of grids

We use a hierarchy of grids �1⊃ · · · ⊃�R, constructed in a multiresolution manner, where
R is the coarsest resolution level, and denote by Nr the number of grid points at the rth
level (such that N1 =N ). For simplicity, let us assume the original manifold to be 2D (i.e. a
surface). If the surface is given in a parametric form, the grids can be constructed by sampling
the parameterization domain. In the frequent case where the parameterization is given on the
unit square domain, Cartesian (e.g. dyadic) grids can be used.
If the parameterization domain is complicated (for example, non-convex), or alternatively,

if the surface is given in a polyhedral (triangulated) representation, a hierarchy of grids can
be constructed using the farthest point sampling algorithm [36]. The key idea is progressively
re�ning the grid in the following manner: Start from an arbitrary single source point xi1 , and
add a point xi2 located at the largest geodesic distance from the source point. The set of
source points is then updated and becomes {xi1 ; xi2}. The whole process is repeated, such that
at the kth iteration the point

xik = argmax
xi :i=1;:::; N

min
l=1;:::; k−1

�(xi; xil) (18)

is selected. The geodesic distances are computed using an approximate numerical method,
e.g. fast marching on triangulated domains [37] or parametric fast marching [38]. Selecting
the �rst NR¡NR−1¡ · · ·¡N1 points out of the obtained set, a hierarchy of grids covering
the whole surface is constructed (see example in Figure 4). Such a sampling was used in
References [7, 9] for subsampling of the surfaces prior to the construction of canonical forms.
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Figure 4. Example of a grid hierarchy construction in the facial surface embedding problem.
Left: three resolution levels constructed using the farthest point sampling algorithm. Right:

geodesic distances from the coarsest grid points.

4.3. Coarsening strategy

The transfer from resolution level r to the coarser level r + 1 or the �ner level r − 1 is
performed using an Nr+1×Nr matrix Pr+1r (referred to as restriction operator in the multigrid
literature) and an Nr−1×Nr matrix Pr−1r (interpolation operator), respectively. These matrices
are sparse (typically, every row contains from 1 up to 8 non-zero elements) and are often
chosen to satisfy

Pr+1r =(Prr+1)
T (19)

If the surface is given parametrically, the relationships between the points in the param-
eterization domain are used to construct the interpolation and restriction operators based,
for example, on spline. Similarly, in case of a polyhedral representation, the triangulation is
employed to determine the neighbours of each grid point and construct Pr+1r , Prr+1. Attention
should be taken on the boundary, ensuring that grid points at �ner resolution levels can be
interpolated from the coarse ones (this can be achieved, for example, by requiring that the
points on �ner resolution levels belong to the convex hull of the points on the coarsest level).
The optimization problem is transferred to the next coarser level by applying a restriction

operator P̃r+1r (not necessarily equal to Pr+1r ) to the matrices � and W in the following
manner:

�r+1 = P̃r+1r �r(P̃r+1r )T

Wr+1 = P̃r+1r Wr(P̃r+1r )T
(20)

Consequently, we have a hierarchy of problems of the form

sr(Xr ;Tr)≡ ŝ(Xr;�r ;Wr)− trace(XTr Tr) (21)

that need to be solved at each level.
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4.4. Relaxation

We use SMACOF-type iterations for the relaxation stage of the MG-MDS algorithm. The
gradient (as opposed to the conventional stress) has two extra terms, attributed to the quadratic
penalty in the modi�ed stress function and the linear residual term. In matrix notation, the
gradient has the form

∇ŝ(X;�;W)=2VX − 2B(X;�;W)X − T+ �Z(X) (22)

where the matrix Z(X) is de�ned in the following way:

zij ≡
∑
k
xkj (23)

We use an additive update form like in (9). Figure 5 demonstrates that such a relaxation has
the error-smoothing property, which is one of the necessary properties for the success of a
multigrid method. Below (left) the error

�i(X(0);X∗)≡
√

m∑
j=1
(x(0)ij − x∗

ij)2 (24)

in an isometric embedding problem of a surface given on a 33× 33 grid is shown (see Section
6.1). The initialization X(0) is random. The plot on the right demonstrates the error after a
few SMACOF iterations, i.e. �(X(k);X∗). Note that the smoothing is slightly deteriorated on
the boundary.
From the point of view of computational complexity it may be advantageous to use

SMACOF iterations as the relaxation procedure at higher-resolution levels and Newton or
quasi-Newton iterations at coarser resolution levels. Yet, in this paper we show only the
aforementioned SMACOF-type relaxation.
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Figure 5. Error-smoothing property of the SMACOF algorithm: error magnitude in the Swiss
roll problem before and after applying a few SMACOF iterations.
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4.5. V-cycle

The simplest multigrid algorithm is the V -cycle. The complete non-linear multigrid optimiza-
tion algorithm can be de�ned recursively in the following manner:

MG Vcycle(Xr ;Tr ;�r ;Wr ; K; K ′)

• If r=R (coarsest level) solve

min
XR
sR(XR;TR)

and return.
• Otherwise:
◦ Relaxation: apply K iterations of an unconstrained optimization algorithm to sr(X;Tr)
initialized with Xr and obtain X′

r .
◦ Compute

G′
r =∇sr(X′

r)

X′
r+1 =P

r+1
r X′

r

G′
r+1 =∇sr+1(X′

r+1)

Tr+1 =G′
r+1 − Pr+1r G′

r

◦ Apply the multigrid method on the coarser level,

X′′
r+1← MG Vcycle(X′

r+1;Tr+1;�r+1;Wr+1; K; K ′)

◦ Correction

Er = Prr+1(X
′′
r+1 −X′

r+1)

X′′
r ←X′

r + �Er

◦ Relaxation: apply K ′ iterations of an unconstrained optimization algorithm to sr(X;T)
initialized with X′′

r and obtain X′′′
r .

The procedure MG Vcycle(X;T;�;W; K; K ′) is initialized with some X and T=0 on the
�nest grid. The procedure is executed for a few iterations. Following standard notation, we
denote as V (K;K ′)-cycle a V -cycle with K and K ′ relaxation iterations, respectively. When
multigrid works well, a small number of V -cycles is required to obtain an accurate solution.
Note that theoretically the step size � at the �ne grid correction stage should be computed

using line search [35]. To reduce the computational cost, we select �=1 and use line search
only as a safeguard, when such a step increases the stress value. In practice, it appears that
the line search is almost never used.
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Figure 6. Schematic representation of di�erent multigrid cycles.

4.6. F-cycle

Another popular MG cycle is the F-cycle [39]. In the recursive de�nition, the F-cycle pro-
cedure MG Fcycle(Xr ;Tr ;�r ;Wr ; K; K ′) is very similar to V -cycle, except the recursive call,
which has the form

X′′
r+1← MG Fcycle(X′

r+1;Tr+1;�r+1;Wr+1; K; K ′)

X′′
r+1← MG Vcycle(X′′

r+1;Tr+1;�r+1;Wr+1; K; K ′)

The di�erence between V -cycle and F-cycle is shown in Figure 6.

5. GENERAL MDS PROBLEMS

Up to this point, we have discussed MDS in the context of the isometric embedding problem,
where the matrix of distances � arises from a smooth Riemannian manifold and the underlying
geometry is explicitly available. This is, however only a particular case of the MDS problem.
In general, an MDS problem can be applied to a case in which only the matrix � is given and
the geometry of the metric space of the original points is not available. Such a situation can
occur in dimensionality reduction problems, where one has information about the distances (or
more generally, dissimilarities) between the points, but has no access to the points themselves.

5.1. Generalization of the MG-MDS algorithm

The implication of the absence of explicit geometry in the general MDS problem is the in-
ability to use the geometric multigrid framework described in Section 4. Simply put, there
is no ‘grid’ in the problem. This particularly means that the construction of the interpolation
and restriction operators is a much more complicated problem compared to the isometric em-
bedding case. From a theoretical point of view, this problem is related to algebraic multigrid,
e.g. the classical Ruge–St�uben scheme [40]. De�ning the coarsening strategy in non-linear
problems is still an open research question.
Here, we propose an ad hoc solution, which may be applicable in certain cases. We wish

to construct a hierarchy of grids with decimation factor q (for simplicity, we assume that N
is an integer power of q). The process starts by picking up a point at the �nest resolution
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level, whose index we denote by j10, and �nding its q−1 nearest neighbours (in sense of �ij),
whose indices we denote by j11 ; : : : ; j

1
q−1. The corresponding coarse level point is obtained by

linear combination, e.g.

x′
1 =

∑q−1
k=1 �

1
j10j

1
k
xj1k∑q−1

k=1 �
−1
j10j

1
k

(25)

Other choices of the weighting coe�cients are also possible. When q=2, we produce the
coarsening by simple averaging of points j10 and j

1
1, i.e. x

′
1 =

1
2(xj10 + xj11 ). The process is re-

peated for all the rest of the points and at other resolution levels in a similar manner. Alterna-
tively, the farthest point strategy can be employed for the construction of the hierarchy of grids.

6. RESULTS

In order to assess the performance of MG-MDS algorithm, three experiments were performed:
two isometric embedding problems and a dimensionality reduction problem. In all the experi-
ments, we used non-weighted MDS. The algorithms’ performance was evaluated by the stress
value versus the execution time (measured with the average error of about 10%) and the com-
putational complexity in terms of multiplication operations (FLOPs). The square-root operation
was estimated as Cs=25 FLOPs. All tests were performed on a PC with a 2.0GHz Mobile
Intel Pentium 4 processor and 1GB RAM. The algorithms were implemented in MATLAB
under Windows XP.
The MG-MDS was terminated when the stress function at subsequent iterations decreased by

less than 1% (this stopping criterion is common in the MDS literature, see, e.g. Reference [4]).
For comparison, SMACOF and BFGS quasi-Newton‖ algorithms were executed with the same
initialization and were terminated when reaching the same stress achieved by the MG-MDS.

6.1. Unrolling the Swiss roll

In the �rst experiment, we performed isometric embedding of a surface called the Swiss roll
into R3. The Swiss roll is known as a complicated object due to its highly non-linear and
non-Euclidean structure [41]. Yet, this surface can be thought of as a ‘rolled’ planar patch,
and is thus isometric to a planar surface. Consequently, MDS should ‘unroll’ it in R3.
In our experiment, the Swiss roll surface was given parametrically by the following formula:

x= �

y=0:51
(

1
2:75�

+ 0:75�
)
cos(2:5��)

z=0:51
(

1
2:75�

+ 0:75�
)
sin(2:5��)

(26)

where (�; �)∈ [0; 1]× [0; 1] (see Figure 7, �rst column).
‖We used a MATLAB implementation of the BFGS algorithm from Kelley [26]. The code is available online:
http:==www4.ncsu.edu=∼ctk=matlab darts.html
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Figure 7. Unrolling the Swiss roll: a few iterations of the MG-MDS. The resulting points in R3 are
visualized as a surface using Phong shading. Shown here is a problem of size 2145.

Table II. Experiment Ia: Comparison of MG-MDS, SMACOF and BFGS algorithms on the Swiss roll
isometric embedding problems of di�erent sizes, initialization with the original points in R3. Overall

execution time shown in seconds (±10%), overall complexity shown in MFLOPs.
SMACOF BFGS MG-MDS V (3; 3)-cycle, R=3

N Iter. Time Complexity Iter. Time Complexity Iter. Time Complexity

289 293 30.83 760.88 94 37.22 943.63 7 5.42 125.69
561 350 130.14 3:42× 103 115 201.41 5:09× 103 6 15.84 403.74
1089 340 452.58 1:25× 104 118 804.37 2:04× 104 6 56.20 1:51× 103
2145 341 2:13× 103 4:88× 104 134 3:76× 103 9:03× 104 6 211.76 5:86× 103

We compared our MG-MDS to conventional SMACOF and BFGS algorithms. In the �rst
part of the experiment (Experiment Ia), we studied how the algorithms perform on problems
of di�erent size, namely: N =289, 561, 1089 and 2145 (corresponding to grids of sizes
17× 17, 33× 17, 33× 33 and 65× 33, respectively). Approximated geodesic distances in these
problems were computed on a �ner 65× 65 grid using the parametric fast marching [38]. The
solution restriction and interpolation operators Pr+1r and Prr+1 were based on cubic and zero-
order interpolation, respectively (generated using MATLAB function griddata). The data
restriction operators P̃

r+1
r were based on zero-order interpolation.

The algorithms were initialized using the original points’ co-ordinates in R3. In Experiment
Ia, a V (3; 3) cycle with R=3 was used in MG-MDS. In the second part of the experiment
(Experiment Ib), we compared di�erent MG cycles on the problem of size 1089. All the
algorithms were terminated when reaching the same stress value.
The experimental results are summarized in Tables II and III, which show a comparison be-

tween SMACOF, BFGS and the MG-MDS algorithms in terms of CPU time and computational
complexity. The convergence ratio (i.e. the gradient norm ratio, ‖∇s(X(k))‖=‖∇s(X(k−1))‖−1,
computed at the last iterations) of the MG-MDS algorithm in Experiment Ia ranged from 0.81
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Table III. Experiment Ib: Comparison of di�erent algorithms
on the Swiss roll isometric embedding problem of size 1089,
initialization with the original points in R3. Overall execution
time shown in seconds (±10%), overall complexity shown in

MFLOPs.

Algorithm Iter. Time Complexity

SMACOF 340 452.58 1:25× 104
BFGS 118 804.37 2:04× 104

MG V (3; 3) R=2 21 191.40 5:18× 103
V (2; 2) R=3 11 73.75 1:99× 103
V (3; 3) R=3 6 56.20 1:51× 103
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Figure 8. Experiment Ia: Convergence of SMACOF, BFGS and the MG-MDS V (3; 3) cycle in the Swiss
roll problem of size 2145, initialization with the original points in R3. Shown here is the stress starting
from the �rst iteration, as a function of computational complexity (bottom scale). The corresponding

approximate CPU time is given on the upper scale (1 s ∼ 25:55± 2:26 MFLOPs).

(N =289 points) to 0.67 (N =2145 points). Figure 7 shows a few iterations of the MG-MDS
algorithm, which unroll the Swiss roll very quickly into a surface which looks approximately
like a planar patch (due to numerical inaccuracies in geodesic distance computation, the
Swiss roll is not exactly isometric to a planar patch). Figure 8 shows the convergence of
SMACOF, BFGS and MG-MDS V (3; 3) cycle on the problem of size 2145. Figure 9 shows
the convergence of SMACOF, BFGS and di�erent MG-MDS cycles on the problem of size
1089.
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Figure 9. Experiment Ib: Convergence of di�erent algorithms for the Swiss roll problem of size 1089,
initialization with the original points in R3. Shown here (partially) is the stress starting from the �rst
iteration, as a function of computational complexity (bottom scale). The corresponding approximate

CPU time is given on the upper scale (1 s ∼ 25:4± 0:3 MFLOPs).

6.2. Embedding a facial surface

In the second experiment, we computed the expression-invariant representation of the face of
one of the authors by isometrically embedding it into R3. The surface containing 5263 points
was given parametrically; the parameterization domain had a non-convex shape. A hierarchy
of grids with three resolution levels (containing 1977, 492 and 128 points, respectively) was
constructed by the furthest point sampling algorithm. This is a problem of slightly smaller
scale than those encountered in the 3D face-recognition applications (typically, N ≈ 2500).
Parametric fast marching [38] was used to compute the approximate geodesic distances on
the surface in full resolution (5263 points).
The solution restriction and interpolation operators Pr+1r and Prr+1 were based on cubic

and zero-order (nearest-neighbour) interpolation, respectively. The data restriction operators
P̃r+1r were based on zero-order interpolation. The algorithms were initialized using the original
points’ co-ordinates in R3. We compared SMACOF, BFGS and di�erent MG-MDS cycles.
All the algorithms were terminated when reaching the same stress value.
The experimental results are summarized in Table IV that shows a comparison between

the SMACOF, BFGS and the MG-MDS algorithms in terms of CPU time and computational
complexity. Figure 10 depicts the results of a few iterations of the MG-MDS algorithm that
e�ciently ‘�atten’ the facial surface into the canonical form. Figure 11 shows the convergence
of SMACOF, BFGS and di�erent MG-MDS cycles. For additional results on facial surfaces
embedding using the MG-MDS algorithm, see Reference [12].
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Table IV. Experiment II: Comparison of di�erent algorithms on
the facial surface isometric embedding problem, initialization
with the original points in R3. Overall execution time shown
in seconds (±10%), overall complexity shown in MFLOPs.

Algorithm Iter. Time Complexity

SMACOF 85 471.85 1:28× 104
BFGS 51 1:15× 103 2:92× 104

MG V (2; 2) R=3 4 86.52 2:36× 103
V (3; 3) R=3 4 119.07 3:29× 103
F(2; 2) R=3 3 66.28 1:81× 103

Figure 10. Embedding of a facial surface: as few as three MG-MDS iterations are su�cient
in order to obtain a good expression-invariant representation. The resulting points in R3 are

visualized as a surface using Phong shading.

6.3. Dimensionality reduction

In the third experiment, MDS was used to perform dimensionality reduction of a high-
dimensional data set in a Euclidean space. The target embedding space was R2. Two sets
of points were generated as random vectors (statistically independent in each co-ordinate) in
R500 according to the following formula:

xi=sign(N(±0:75; 1)); i=1; : : : ; 1024 (27)

where N(	; 
) denotes Gaussian distribution with mean 	 and variance 
2, and

sign(x)≡
{
+1 x¿0

−1 x6 0
(28)

Data of such kind typically appear in biochemical applications [42]. Note that no geometric
structure is given explicitly.
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Figure 11. Experiment II: Convergence of di�erent algorithms in the facial surface embedding problem,
initialization with the original points in R3. Shown here is the stress starting from the �rst iteration, as
a function of computational complexity (bottom scale). The corresponding approximate CPU time is

given on the upper scale (1 s ∼ 23:33± 1:7 MFLOPs).

Table V. Experiment III: Comparison of MG-MDS and standard SMACOF algorithm on dimensionality
reduction problems of di�erent sizes, random initialization. Results averaged over 50 runs. Execution

time shown in seconds, complexity shown in MFLOPs.

SMACOF MG-MDS (V -cycle, 3 levels)

N Iter. Time Complexity Iter. Time Complexity

256 39:0± 9:5 3:5± 0:8 78:4± 18:7 5± 1:7 2:4± 0:8 49:2± 16:5
512 38:1± 7:8 12:5± 2:6 306:5± 61:0 4:8± 1:3 8:4± 2:3 189:5± 52:7
1024 40:7± 7:1 51:5± 9:1 1:3× 103 ± 223:2 4:6± 0:9 31:3± 6:1 732:4± 142:8
2048 43:8± 6:4 223:5± 30:9 5:6× 103 ± 803:4 4:4± 0:8 116:8± 22:1 2:8× 103 ± 526:4

The di�erence between the two sets appears as one of them being slightly biased
towards −1 and the other towards +1. If one observes each of the co-ordinates, the data
will appear random. Therefore, this is a typical example of a dimensionality reduction prob-
lem where linear techniques like principal component analysis (PCA) would not produce
plausible results, whereas MDS would.
In our experiment, we compared the conventional SMACOF algorithm and our MG-MDS

(V (2; 2)-cycle with 3 resolution levels). The restriction and interpolation operators Pr+1r , Prr+1,
P̃r+1r and P̃rr+1 were computed using the ad hoc algorithm described in Section 5.1. Decimation
factor q=2 was used. Identical random initializations were used for MG-MDS and SMACOF.
The results were averaged over 50 runs.
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Figure 12. Dimensionality reduction: as few as three MG-MDS iterations are su�cient in
order to obtain distinguishable clusters.

The experimental results are summarized in Table V that shows a comparison between the
SMACOF and the MG-MDS algorithms in terms of average CPU time and computational
complexity on problems of di�erent sizes. Figure 12 shows the result of a few iterations of
the MG-MDS algorithm. The separation into two distinguishable clusters becomes obvious
after as few as two–three iterations.

6.4. Discussion

Several conclusions can be drawn from the above results. Firstly, MG-MDS demonstrates sig-
ni�cant performance improvement in isometric embedding problems (over 8 times compared
to SMACOF and over 15 times compared to BFGS in the Swiss roll experiment). Secondly,
the improvements contributed by the multigrid algorithm, when compared to SMACOF or
BFGS, become more pronounced as the size of the problem increases. That is, for large-scale
problems the improvement is dramatic. Thirdly, the number of iterations of the MG-MDS in
both isometric embedding experiments and also in the dimensionality reduction experiment
seems to be independent of N , while the number of SMACOF and BFGS iterations tends
to grow with N . Such a behaviour is typical for multigrid algorithms. Fourthly, the F-cycle
generally appears to perform better than the corresponding V -cycle. For additional comparison
results, see Reference [12].
We believe that the boundary e�ects observed in Figure 5 may result in slowing down

the MG-MDS convergence. A simple remedy commonly used in multigrid literature would
be performing extra relaxation on the boundary. It can either be done by applying additional
iterations near the boundary points, or devising a smarter scheme of weighting the gradient-
descent step to do stronger relaxation on the boundary.
The general MDS results presented here (the dimensionality reduction problem) are pre-

liminary, as the coarsening strategy used was very na��ve. Yet, a performance improvement of
about 2 times was obtained over the SMACOF algorithm.

7. CONCLUSIONS

We proposed a multigrid framework for e�cient solution of multidimensional scaling prob-
lems. The advantage of our MG-MDS algorithm in MDS problems with explicitly given
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geometry (isometric embedding problems) is up to an order of magnitude in performance
compared to standard algorithms for problems of moderate size. The gain is expected to in-
crease appreciably with problem size. In general, MDS problems, where the geometry of the
underlying metric space is not given explicitly, we showed that performance improvement can
be obtained using our multigrid framework using even a very na��ve coarsening approach. The
problem of a good coarsening strategy for this case is still an open research question.
The range of applications in which our approach can be used is very wide, and includes,

to mention a few, problems in data visualization, machine learning, computational chemistry,
etc.
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