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Abstract

Partial matching is probably one of the most challenging
problems in nonrigid shape analysis. The problem consists
of matching similar parts of shapes that are dissimilar on
the whole and can assume different forms by undergoing
nonrigid deformations. Conceptually, two shapes can be
considered partially matching if they have significant simi-
lar parts, with the simplest definition of significance being
the size of the parts. Thus, partial matching can be defined
as a multcriterion optimization problem trying to simultane-
ously maximize the similarity and the size of these parts. In
this paper, we propose a different definition of significance,
taking into account the regularity of parts besides their size.
The regularity term proposed here is similar to the spirit of
the Mumford-Shah functional. Numerical experiments show
that the regularized partial matching produces semantically
better results compared to the non-regularized one.

1. Introduction

Partial matching is probably one of the most challenging
problems in nonrigid shape analysis. The problem consists
of matching similar parts of shapes that are dissimilar on
the whole and can assume different forms by undergoing
nonrigid deformations. Such problems often arise in com-
puter vision, for example, when the data to be matched are
not available entirely due to acquisition imperfections. De-
pending on applications, partial matching can be used ei-
ther to determine partial similarity between the shapes (a
“distance” quantifying how different the shapes are) or par-
tial correspondence (a relation between the points of the
shapes). Typically, similarity problems are encountered in
computer vision and pattern recognition, while correspon-
dence problems are more often required in the realm of
computer graphics.

Conceptually, two shapes can be considered partially
matching if they have significant similar parts. For exam-
ple, a centaur and a horse have a similar part (the horse
body), which makes them partially similar [5]. Thus, par-

tial matching can be found by segmenting the shape into
significant parts and trying to match these parts separately
[10, 7, 2]. However, “significance” is a semantic notion, and
thus automatically finding such parts is not a well-defined
problem. Many heuristic methods have been proposed in
the literature for shape decomposition (see e.g. [1]). In
shape retrieval applications, shapes are represented as col-
lections of local descriptors, analogous to “bags of words”
in text search engines. The significance of each local de-
scriptor is determined statistically by its frequency [11].
Latecki et al. [8] performed partial matching by simplifying
the shapes until they become the most similar. In [3], Bron-
stein et al. proposed solving a multicriterion optimization
problem trying to simultaneously maximize the similarity
and the size of the parts. It was argued that the size of the
part is related to its significance: the larger is the part, the
more significant it is.

In this paper, we argue that not only size matters. We
propose a different definition of significance, taking into
account the regularity of parts besides their size. The reg-
ularity term proposed here is similar to the spirit of the
Mumford-Shah [9] functional, and can be considered as an
extension thereof to non-Euclidean manifolds. The paper is
organized as follows. In Section 2, we present the generic
Paretian formulation of partial matching and the proposed
regularization approach. In Section 3, we present a specific
way of performing partial matching of nonrigid shapes and
in Section 4 describe its numerical computation. Section 5
shows experimental results. Finally, Section 6 concludes
the paper.

2. Regularized partial matching of shapes

Let X and Y be two shapes we would like to compare.
We say that X and Y are partially matching if there exist
parts X ′ ⊆ X and Y ′ ⊆ Y which are similar and signifi-
cant. The degree of dissimilarity of parts can be expressed
by a non-negative function d : ΣX × ΣY → R+ (here ΣX
and ΣY denote the collection of all the parts of the shapes).
As the measure of insignificance, Bronstein et al. [3] used
the partiality function p(X ′) = area(X) − area(X ′). In
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Figure 1. Conceptual illustration of an extreme case in which par-
tial matching without regularization produces small disconnected
parts and is semantically wrong (right). Partial matching taking
into consideration not only the size of the parts but also their reg-
ularity produces semantically correct results (left).

this formulation, partial matching can be stated as the prob-
lem of simultaneous minimization of d and p over pairs of
all the possible parts,

min
ΣX×ΣY

(d(X ′, Y ′), p(X ′) + p(Y ′)). (1)

A solution of the multicriterion optimization problem (1)
is the set of parts (X∗, Y ∗) achieving an optimal tradeoff
between the dissimilarity and the partiality, in the sense
that there exists no other pair of parts (X ′, Y ′) with both
d(X ′, Y ′) < d(X∗, Y ∗) and p(X ′) + p(Y ′) < p(X∗) +
p(Y ∗). Such a solution is called Pareto optimal and is not
unique; it can be visualized as a curve in the (d, p) plane (re-
ferred to as the Pareto frontier) shown in bold in Figure 2.
The value of d at the point with partiality p0 on the Pareto
frontier can be computed as

min
ΣX×ΣY

d(X ′, Y ′) s.t. p(X ′) + p(Y ′) ≤ p0. (2)

In many cases, the solution of problem (2) manifests a
tendency of finding multiple disconnected parts. An ex-
treme case is visualized in Figure 1 (right): the bumps on
a cast iron teapot and those on the back of an alligator make
these two objects partially similar. While the area of the
similar parts in this example is large, the parts are small and
fragmented. Semantically, one large and regular part (even
of smaller area) shown in Figure 1 (left) is preferable. This
conceptual example is a motivation to the main idea of this
paper: when the significance of parts in the partial similarity
problem is considered, not only the size matters. Quantita-
tively, we can measure the “quality” of the part X ′ using
some irregularity function r(X ′). We are thus looking for
the largest, most similar and most regular parts, giving rise

to the following multicriterion optimization problem,

min
ΣX×ΣY

(d(X ′, Y ′), p(X ′) + p(Y ′), r(X ′) + r(Y ′)), (3)

The set of the Pareto optimal solutions of problem (3) can
be visualized as a three-dimensional surface in the (d, p, r)
space (Figure 2). The new formulation can also be regarded
as a regularized version of problem (2),

min
ΣX×ΣY

d(X ′, Y ′) + µ(r(X ′) + r(Y ′))

s.t. p(X ′) + p(Y ′) ≤ p0, (4)

which we call here the regularized partial matching. For
non-zero µ, the regularity term will give preference to parts
with larger regularity even at the cost of smaller area or
larger dissimilarity. Alternatively, we can rewrite (4) as an
unconstrained minimization problem, and interpret the ag-
gregate p(X ′) + p(Y ′) + µ(r(X ′) + r(Y ′)) as a new defi-
nition of significance, taking into consideration not only the
size but also the regularity of the parts.

3. Partial matching of nonrigid shapes

In this section, we show specific definitions used in the
regularized partial matching problem of nonrigid shapes.
Following [3], we model a nonrigid shape as a compact
metric space (X, dX), where dX is the geodesic metric,
measuring the lengths of the shortest paths between pairs
of points on the shape. Geometric quantities expressed in
terms of dX are referred to as intrinsic, as they do not de-
pend on the way the shape is laid out in the ambient Eu-
clidean space. Such quantities are invariant under inelastic
deformations of the shape. Two nonrigid shapes (X, dX)
and (Y, dY ) are said to be isometric if there exists a bijective
map ϕ : X → Y such that dX(x, x′) = dY (ϕ(x), ϕ(x′))
for all x, x′ in X . Since in practice the deformations of
nonrigid shapes are rarely truly isometric, we can relax the
requirement of ϕ being metric-preserving and require that
it does not distort the metric significantly. The distortion of
the metric can be quantified, for example, as

dis(ϕ) =
∫
X×X

|dX(x, x′) − dY (ϕ(x), ϕ(x′))|2dxdx′

=
∫
X×X

eϕ(x, x′)dxdx′, (5)

where eϕ(x, x′) measures the “local” distortion of ϕ at each
pair of points (x, x′) on X . Using the distortion as a crite-
rion of dissimilarity, we define the intrinsic dissimilarity of
the shapes X and Y as

d(X,Y ) = min
ϕ:X→Y

dis(ϕ) + min
ψ:Y→X

dis(ψ). (6)

Since our final goal is partial shape matching, we need
to extend the above definition to comparison of parts. For



this purpose, we define a part of the shape X as a metric
sub-space (X ′ ⊆ X, dX |X′), where dX |X′ is the restricted
metric, equal to dX onX ′×X ′. The distance between parts
is measured as

d(X ′, Y ′) = min
ϕ:X′→Y ′

dis(ϕ) + min
ψ:Y ′→X′

dis(ψ) (7)

= min
ϕ:X′→Y ′

∫
X′×X′

eϕ(x, x′)dxdx′

+ min
ψ:Y ′→X′

∫
Y ′×Y ′

eψ(y, y′)dydy′.

In addition to the function d measuring the dissimilar-
ity of parts, minimization problems (3) and (4) require the
partiality p and irregularity r to be defined. We define the
partiality of a part as the area of X ′c = X \X ′,

p(X ′) =
∫
X

dx−
∫
X′
dx. (8)

As the criterion of part irregularity, the simplest choice is
the length of the part boundary ∂X ′,

r(X ′) =
∫
∂X′

d�. (9)

Using this definition, the minimization problem of the part
irregularity r(X ′) subject to fixed partiality p(X ′) = p0 can
be regarded as an isoperimetric problem. Other irregularity
criteria can be used as well to suit the specific application
needs. In the sequel, we will use the above irregularity for
the sake of simplicity.

3.1. Fuzzy formulation

The solution of (3) or (4) involves minimization over the
set of all pairs of parts of X and Y , which can be thought of
as minimization over all pairs of binary membership func-
tions u : X → {0, 1} and v : Y → {0, 1}, specifying
for each point in X and Y whether it belongs to the part or
not. Such a discrete minimization problem is clearly com-
putationally intractable. As a remedy, we replace the bi-
nary membership functions u and v by fuzzy approximation
u : X → [0, 1] and v : Y → [0, 1], respectively, bringing
the problem back to a tractable continuous formulation.

The dissimilarity of fuzzy parts u and v can be expressed
analogously to (7) by weighting the integrand with the re-
spective fuzzy membership functions,

d(u, v) = min
ϕ:X→Y

∫
X×X

u(x)u(x′)eϕ(x, x′)dxdx′

+ min
ψ:Y→X

∫
Y×Y

v(y)v(y′)eψ(y, y′)dydy′. (10)

Since d(u, v) can be decoupled into two independent mini-
mization problems with respect to ϕ and ψ, we will denote

by d(u) and d(v) the first and the second terms of d(u, v),
respectively, and write d(u, v) = d(u) + d(v).

The fuzzy version of the partiality can be written as

p(u) =
∫
X

(1 − u(x))dx. (11)

The irregularity term is slightly more elaborate, since in the
fuzzy formulation there is no “boundary”. However, adopt-
ing the spirit of the Mumford-Shah approach, we can re-
place integration along the boundary by integration of the
band in which the membership function changes from small
to large values [9],

r(u) =
∫
X

h(u(x)) ‖∇Xu(x)‖ dx, (12)

where h(t) ≈ δ(t − 0.5) is an approximation of the Dirac
delta function, and ∇Xu(x) is the intrinsic gradient of u at
the point x. The quantity ‖∇Xu(x)‖ can be thought of as
the length of the extrinsic gradient vector ∇R3u projected
on the tangent space of X at a point x.

Plugging the former expressions into the partial shape
matching problem (4), we obtain

min
u,v,ϕ,ψ

(13)
∫
X

(∫
X

u(x)u(x′)eϕ(x, x′)dx′ + µh(u(x)) ‖∇Xu(x)‖
)
dx

∫
Y

(∫
Y

v(y)v(y′)eψ(y, y′)dy′ + µh(v(y)) ‖∇Y v(y)‖
)
dy

s.t.
∫
X

u(x)dx+
∫
Y

v(y)dy ≥ area(X) + area(Y ) − p0.

Splitting the optimization variables into u, v and ϕ,ψ, prob-
lem (14) can be solved using the following alternating min-
imization algorithm:

1. Fix u and v and find ϕ and ψ by solving

ϕ = argmin
ϕ:X→Y

∫
X×X

u(x)u(x′)eϕ(x, x′)dxdx′;

ψ = argmin
ψ:Y→X

∫
Y×Y

v(y)v(y′)eψ(y, y′)dydy′.

2. Fix eϕ and eψ and find u and v by solving

min
u,v

∫
X×X

u(x)u(x′)eϕdxdx′ +
∫
Y×Y

v(y)v(y′)eψdydy′

∫
X

h(u(x)) ‖∇Xu(x)‖ dx+
∫
Y

h(v(y)) ‖∇Y v(y)‖ dy

s.t.
∫
X

u(x)dx+
∫
Y

v(y)dy ≥ area(X) + area(Y ) − p0.

3. Iterate Steps 1 – 2 until convergence.



The output of the algorithm are the optimal fuzzy parts u
and v, the minimum-distortion correspondences ϕ and ψ,
and the values of d(u, v), p(u) + p(v), and r(u) + r(v).
Thus, both partial similarity and correspondence are ob-
tained by solving the same problem. We call the value of
d(u, v) at the solution scalar partial similarity. In the fol-
lowing section, we are going to present a discretization of
this algorithm.

4. Discretization

We assume the input shapes to be given as triangular
meshes, which for the sake of convenience we will continue
denoting as X and Y . The mesh X comprises M vertices
{x1, ..., xM}, whose coordinates in R

3 are represented as an
M × 3 matrix X, and T faces, represented as a T × 3 ma-
trix of vertex indices. Similarly, the mesh Y is represented
by an N × 1 matrix Y of vertices, and an S × 1 matrix S
of face indices. The fuzzy membership functions u(x) and
v(y) are discretized onX and Y , and denoted by the vectors
u = (u1, ..., uM )T and v = (v1, ..., vN )T, respectively.
The area elements on X are discretized and represented as
the vector a = (a1, ..., aN )T, where ai is set to be 1

3 of the
sum of the areas of the triangular faces of X sharing the
vertex xi. The discrete area elements of Y are computed in
the same way, and are denoted by b = (b1, ..., bN )T.

We first discretize Step 1 in the alternating minimization
algorithm from the previous section. Since the dissimilar-
ity d(u, v) in (10) can be decoupled into two independent
terms d(u) and d(v), in what follows we will show the dis-
cretization of d(u) on the mesh X only. The other term
d(v) is discretized on Y in the same manner. The mesh
X is sampled at m points using the farthest point sampling
procedure [4]. For simplicity, we assume this set of points
to be a sub-set of the vertices of X , numbered without loss
of generality as Xm = {x1, ..., xm}. We also assume to
be given two linear operators, an m ×M matrix P, and an
M × m matrix P′, projecting a function on X onto Xm,
and vice versa. To simplify our discussion, we will assume
that P′ = PT, though other possibilities to construct P and
P′ also exist. Projecting u onto Xm, we can write

d(u) = (14)

min
ϕ:Xm→Y

m∑
i,j=1

u′iu
′
j |dX(xi, xj) − dY (ϕ(xi), ϕ(xj))|2a′ia′j

where u′ = Pu, and a′ = Pa. Minimization over all map-
pings ϕ : Xm → Y can be reformulated in terms of the
images y′i = ϕ(xi) as

d(u) = (15)

min
{y′1,...,y′m}

m∑
i,j=1

u′iu
′
j |dX(xi, xj) − dY (y′i, y

′
j)|2a′ia′j .

Minimization problem (15) is solved using the weighted
generalized multidimensional scaling algorithm detailed in
[3]. Since the xi are fixed, distance terms dX(xi, xj) can
be precomputed using, for example, the fast marching al-
gorithm [6]. On the other hand, the terms dY (y′i, y

′
j) in-

volve optimization variables and are approximated using the
geodesic interpolation procedure from [3].

Once d(u) is computed, we construct the m×m matrix
E′
ϕ, whose elements are given by

ei = |dX(xi, xj) − dY (y′i, y
′
j)|2. (16)

Since E′
ϕ is a function on Xm × Xm, we can use PT to

project it onto X ×X , obtaining the M ×M matrix Eϕ =
PTE′

ϕP. The second dissimilarity term d(v) and the N ×
N matrix Eψ are computed in an analogous way.

Discretization of Step 2 in the alternating minimization
algorithm requires the discretization of the dissimilarity
terms d(u) + d(v), the regularity terms r(u) + r(v), and
the constraint on partiality in minimization problem (14).
The dissimilarity terms can be straightforwardly discretized
as the quadratic forms

d(u) = uTAEϕAu, d(v) = vTBEψBv, (17)

where A = diag(a) and B = diag(b) denote the diago-
nal matrices with the discrete area elements a and b on the
diagonal, respectively.

In order to discretize the irregularity term r(u), we
first need to approximate the norm of the intrinsic gradi-
ent ∇Xu on the mesh X . Assuming a first-order approx-
imation of u, the gradient ∇Xu is constant one each face
of the mesh. Given a triangle i formed by the vertices
xti,1 , xti,2 , xti,3 , the gradient norm can be expressed as gi =√

δT(XT
i Xi)−1δ, where Xi = (xti,2 − xti,1 , xti,3 − xti,1)

is a 3 × 2 matrix with the local system of coordinates of
triangle t, and δ = (uti,2 − uti,1 , uti,3 − uti,1) is the vec-
tor of the membership function differences. We arrange the
gi’s as the elements of the T × 1 vector gX(u). Since gX
is a function on the faces of X , while the membership u
and the discrete area elements a are defined on the ver-
tices, we need to project gX onto X . For this purpose,
we construct an M × T matrix Q, whose elements qij
are set to 1

3 if triangle j shares the vertex xi, and 0 other-
wise. Using this projection operator, we can we can express
the irregularity term as r(u) = h(u)TAQgX(u), where
h(u)T = (h(u1), ..., h(uM )) is the approximation of the
delta function h(t) ≈ δ(t−0.5) applied element-wise to the
vector u. The second irregularity term r(v) is discretized in
a similar way, yielding r(v) = h(v)TBRgY (v), where R
is theN×S analog of the projection matrix Q. The partial-
ity constraint in Step 2 can be straightforwardly discretized
as aTu+bTv ≥ 1Ta+1Tb−p0, where 1 denotes a vector
of ones.



Figure 2. 3D Pareto frontier in the regularized partial matching problem. Shown in bold curve is the 2D Pareto frontier of the non-
regularized problem. A, C: non-regularized parts; B, D: regularized parts.

Arranging u and v into an (M + N) × 1 vector w =
(u;v), and plugging in the former expressions, we can for-
mulate a discrete version of Step 2 in the alternating mini-
mization algorithm as the solution of

min
0≤w≤1

wT

(
AEϕA

BEψB

)
w+

µh(w)T
(

AQ
BR

)
g(w)

s.t. (a;b)Tw ≥ (a;b)T1 − p0 (18)

where g(w) = (gX(u);gY (v)).

5. Results

In this section, we show three experiments to exemplify
the proposed method. The experiments were performed on
objects from the Nonrigid world dataset available online at
http://tosca.technion.ac.il.Each shape in the
dataset was represented as a triangular mesh with 2000 ver-
tices. Geodesic distances were measured using fast march-
ing [6]. We used a BFGS quasi-Newton minimization al-
gorithm for the solution of (18) in Step 2 of the alternat-
ing minimization algorithm. The minimum distortion cor-
respondence (15) in Step 1 was computed using GMDS [3].

In the first experiment, we computed the 3D Pareto fron-
tier representing the tradeoff between the dissimilarity, par-
tiality and irregularity in the problem of partial matching of
a centaur and a man (Figure 2). The results produced by the
method of [3] can be considered as a particular case where
no regularization is used, visualized by a bold curve in the
figure. It can be clearly seen that the parts are fragmented

(Figure 2 A and C). Regularization makes the resulting parts
better and the matching more meaningful (Figure 2 B and
D).

In the second experiment, we compared full similarity
and partial similarity criteria on the Nonrigid world dataset.
The dataset consisted of five objects (centaur, horse, sea-
horse, male and female); each object appeared in five dif-
ferent instances produced by near-isometric deformations.
Full similarity of shapes was computed using GMDS. Par-
tial similarity was computed using the presented approach.
Figure 3 shows the confusion matrices representing the re-
sults. The full similarity criterion is insensitive to the intra-
class variability of the shapes (i.e., different deformations
of the same objects are similar). However, it fails to capture
correctly the inter-class similarity: the centaur, horse and
seahorse appear dissimilar. On the other hand, the partial
similarity criterion captures correctly the similarity of the
centaur, horse and the seahorse (Figure 3, bottom).

In the third experiment, regularized intrinsic partial cor-
respondence between the shapes of a centaur, a horse and a
man was computed. Figure 4 visualizes the correspondence
by plotting the Voronoi regions around each of the corre-
sponding points. The obtained correspondence is mean-
ingful and accurate despite significant deformations of the
shapes and large non-overlapping parts.

6. Conclusions

In this paper, we considered the Paretian approach for
partial matching of shapes based on a multicriterion prob-
lem of simultaneous maximization of similarity and signif-
icance of the parts. In [3], the significance was measured



Figure 3. Confusion matrices representing full dissimilarity (top)
and partial dissimilarity (bottom) between a set of nonrigid shapes.
Darker shade of gray stands for higher similarity.

as the size of the parts. Here, we extended this approach,
proposing a different definition of part significance, which
takes into account the regularity of parts besides their size.
We showed an efficient computation scheme based on fuzzy
approximation, which allowed formulating the regulariza-
tion in the spirit of the Mumford-Shah [9] functional. In
our future studies, we intend to explore other definitions of
topological and geometric regularity.
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