
Chapter 5

Feature-based Methods in 3D Shape
Analysis

Alexander M. Bronstein, Michael M. Bronstein, and Maks Ovsjanikov

Abstract The computer vision and pattern recognition communities have re-
cently witnessed a surge in feature-based methods for numerous applications
including object recognition and image retrieval. Similar concepts and anal-
ogous approaches are penetrating the world of 3D shape analysis in a variety
of areas including non-rigid shape retrieval and matching. In this chapter,
we present both mature concepts and the state-of-the-art of feature-based
approaches in 3D shape analysis. In particular, approaches to the detection
of interest points and the generation of local shape descriptors is discussed. A
wide range of methods is covered including those based on curvature, those
based on difference-of-Gaussian scale space, and those that employ recent
advances in heat kernel methods.

5.1 Introduction

In computer vision and pattern recognition jargon, the term features is often
used to refer to persistent elements of a 2D image (such as corners or sharp
edges), which capture most of the relevant information and allow one to per-
form object analysis. In the last decade, feature-based methods (such as the
scale invariant feature transform (SIFT) [51] and similar algorithms [55, 4])
have become a standard and broadly-used paradigm in various applications,
including retrieval and matching (e.g. for multiview geometry reconstruc-
tion), due to their relative simplicity, flexibility, and excellent performance in
practice.
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A similar trend is emerging in 3D shape analysis in a variety of areas
including non-rigid shape retrieval and shape matching. While in some cases
computer vision methods are straightforwardly applicable to 3D shapes [50,
45], in general, some fundamental differences between 2D and 3D shapes
require new and different methods for shape analysis.

One of the distinguishing characteristics that make computer vision tech-
niques that work successfully in 2D image analysis not straightforwardly ap-
plicable in 3D shape analysis is the difference in shape representations. In
computer vision, it is common to work with a 2D image of a physical object,
representing both its geometric and photometric properties. Such a represen-
tation simplifies the task of shape analysis by reducing it to simple image
processing operations, at the cost of losing information about the object’s
3D structure, which cannot be unambiguously captured in a 2D image. In
computer graphics and geometry processing, it is assumed that the 3D geom-
etry of the object is explicitly given. Depending on application, the geometric
representation of the object can differ significantly. For example, in graph-
ics it is common to work with triangular meshes or point clouds; in medical
applications with volumes and implicit representations.

Furthermore, 3D shapes are usually poorer in high-frequency information
(such as edges in images), and being generally non-Euclidean spaces, many
concepts natural in images (edges, directions, etc.), do not straightforwardly
generalize to shapes.

Most feature-based approaches can be logically divided into two main
stages: location of stable, repeatable points that capture most of the relevant
shape information (feature detection1) and representation of the shape prop-
erties at these points (feature description). Both processes depend greatly on
shape representation as well as on the application at hand.

In 2D image analysis, the typical use of features is to describe an object
independently of the way it is seen by a camera. Features found in images
are geometric discontinuities in the captured object (edges and corners) or
its photometric properties (texture). Since the difference in viewpoint can
be locally approximated as an affine transformation, feature detectors and
descriptors in images are usually made affine invariant.

In 3D shape analysis, features are typically based on geometry rather than
appearance. The problems of shape correspondence and similarity require
the features to be stable under natural transformations that an object can
undergo, which may include not only changes in pose, but also non-rigid
bending. If the deformation is inelastic, it is often referred to as isometric
(distance-preserving), and feature-based methods coping with such trans-
formations as isometry-invariant ; if the bending also involves connectivity
changes, the feature detection and description algorithms are called topology-
invariant.

1 In some literature, this is also known as interest point detection or keypoint detection.
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The main challenge of feature-based 3D shape analysis can be summarized
as finding a set of features that can be found repeatably on shapes undergoing
a wide class of transformations on the one hand and carry sufficient infor-
mation to allow using these features to find correspondence and similarity
(among other tasks) on the other.

5.1.1 Applications

Two archetypal problems in shape analysis addressed by feature-based meth-
ods are shape similarity and correspondence. The former underlies many pat-
tern recognition applications, where we have to distinguish between different
geometric objects (e.g. in 3D face recognition [13]). A particularly challeng-
ing setting of the shape similarity problem appears in content-based shape
retrieval, an application driven by the availability of large public-domain
databases of 3D models, such as Google 3D Warehouse, which have created
the demand for shape search and retrieval algorithms capable of finding simi-
lar shapes in the same way a search engine responds to text queries (detailed
discussion of this application appears in Chap. 7).

One of the notable advantages of feature-based approaches in shape re-
trieval is the possibility of representing a shape as a collection of primitive
elements (“geometric words”), and using the well-developed methods from
text search such as the bag of features (BOF) (or bag of words) paradigm
[75, 23]. Such approaches are widely used in image retrieval and have been
introduced more recently to shape analysis [17, 83]. The construction of a
bag of features is usually performed in a few steps, depicted in Fig. 5.1.
Firstly, the shape is represented as a collection of local feature descriptors
(either dense or computed as a set of stable points following an optional
stage of feature detection). Secondly, the descriptors are represented by ge-
ometric words from a geometric vocabulary using vector quantization. The
geometric vocabulary is a set of representative descriptors, precomputed in
advance. This way, each descriptor is replaced by the index of the closest ge-
ometric word in the vocabulary. Computing the histogram of the frequency
of occurrence of geometric words gives the bag of features. Alternatively,
a two-dimensional histogram of co-occurrences of pairs of geometric words
(geometric expressions) can be used [17]. Shape similarity is computed as
a distance between the corresponding bags of features. The bag of features
representation is usually compact, easy to store and compare, which makes
such approaches suitable for large-scale shape retrieval. Evaluation of shape
retrieval performance (e.g. the robust large-scale retrieval benchmark [11]
from the Shape Retrieval Contest (SHREC)) tests the robustness of retrieval
algorithms on a large set of shapes with different simulated transformations,
including non-rigid deformations.
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Fig. 5.1 Construction of bags of features for feature-based shape retrieval.

Another fundamental problem in shape analysis is that of correspondence
consisting of finding relations between similar points on two or more shapes.
Finding correspondence between two shapes that would be invariant to a wide
variety of transformations is usually referred to as invariant shape correspon-
dence. Correspondence problems are often encountered in shape synthesis
applications such as morphing. In order to morph one shape into the other,
one needs to know which point on the first shape will be transformed into
a point on the second shape, in other words, establishing a correspondence
between the shapes. A related problem is registration, where the deformation
bringing one shape into the other is explicitly sought for.

Feature-based methods for shape correspondence are based on first detect-
ing features on two shapes between which correspondence is sought, and then
match them by comparing the corresponding descriptors. The feature-based
correspondence problem can be formulated as finding a map that maximizes
the similarity between corresponding descriptors. The caveat of such an ap-
proach is that it may produce inconsistent matches, especially in shapes with
repeating structure or symmetry: for example, points on the right and left
sides of a human body can be swapped due to bilateral symmetry. A way
to cope with this problem is to add some global structure, for example, pair-
wise geodesic or diffusion distance preservation constraint. Thus, this type
of minimum-distortion correspondence tries to match simultaneously local
structures (descriptors) and global structures (metrics), and can be found by
an extension of the generalized multidimensional scaling (GMDS) algorithm
[14, 82] or graph labeling [78, 84, 85]. Evaluation of correspondence finding
algorithms typically simulates a one-to-one shape matching scenario, in which
one of the shapes undergoes multiple modifications and transformations, and
the quality of the correspondence is evaluated as the distance on the shape
between the found matches and the known groundtruth correspondence. No-
table benchmarks are the SHREC robust correspondence benchmark [12] and
the Princeton correspondence benchmark [41].
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5.1.2 Chapter Outline

In this chapter, we present an overview of feature-based methods in 3D shape
analysis and their applications, classical as well as most recent approaches.
The main emphasis is on heat-kernel based detection and description algo-
rithms, a relatively recent set of methods based on a common mathematical
model and falling under the umbrella of diffusion geometry. Detailed descrip-
tion, examples, figures, and problems in this chapter allows the implementa-
tion of these methods.

The next section outlines some prerequisite mathematical background, de-
scribing our notation and a number of important concepts in differential and
diffusion geometry. Then the two main sections are presented: Sect. 5.3 dis-
cusses feature detectors, while Sect. 5.4 describes feature descriptors. The
final sections give concluding remarks, research challenges and suggested fur-
ther reading.

5.2 Mathematical Background

Throughout this chapter, an object is some subset of the ambient Euclidean
space, Ω ⊂ R3. In many cases (e.g. data acquired by a range scanner), we
can access only the boundary ∂Ω of the object, which can be modeled as a
two-dimensional smooth manifold or surface, denoted here by X. Photometric
information is given as a scalar or a vector field α : X→ Rd on the manifold
and referred to as texture. If the surface is sampled at some discrete set of
points {x1, . . . ,xN} ⊂ X, then this representation is called a point cloud ; if,
in addition, connectivity information is available in the form of a simplicial
complex (triangulation, consisting of a set of edges (xi,xj) ∈ E and faces
(xi,xj ,xk) ∈ F), such a representation is called a mesh.

In medical applications, such as tomographic data analysis, information
about the internal structure of the object in addition to its boundary is often
available. A common representation in such applications is a volumetric im-
age, which can be represented as a 3D matrix, where each voxel (3D pixel)
describes the properties of the object (e.g. its penetrability by X-ray radia-
tion). Segmentation algorithms applied to volumetric data used in medical
applications often extract boundaries of 3D objects in implicit form, repre-
sented as level-sets of some function f : R3 → R.

5.2.1 Differential Geometry

Both the two-dimensional boundary surface and the three-dimensional vol-
ume enclosed by it can be modeled as, respectively, two- and three-dimensional
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complete Riemannian sub-manifolds of R3. Every point x on the manifold X
is assigned a tangent space TxX. For two dimensional surfaces, the vector N
orthogonal to TxX is called the normal to the surface at x. The tangent space
at each point is associated with a smooth inner product gx : TxX×TxX→ R,
usually referred to as the metric tensor. Denoting by x : U ⊆ R2 → R3 the
regular map embedding X into R3, the metric tensor can be expressed in
coordinates as

gij =
∂xT

∂ui

∂x

∂uj
, (5.1)

where ui are the coordinates of U . The metric tensor relates infinitesimal
displacements du in the parametrization domain U to displacement on the
manifold,

dp2 = g11du1
2 + 2g12du1du2 + g22du2

2. (5.2)

This quadratic form is usually referred to as the first fundamental form and
it provides a way to define length structures on the manifold. Given a curve
C : [0, T ]→ X, its length can be expressed as

L(C) =

∫ T

0

g(Ċ(t), Ċ(t))
1/2
C(t)dt, (5.3)

where Ċ denotes the velocity vector. Minimal geodesics are the minimizers
of L(C), giving rise to the geodesic distances

d(x,x′) = min
C∈Γ (x,x′)

L(C), (5.4)

where Γ (x,x′) is the set of all admissible paths between the points x and
x′ on the surface X (due to completeness assumption, the minimizer always
exists). Structures expressible solely in terms of the metric tensor g are called
intrinsic. For example, the geodesic can be expressed in this way. The impor-
tance of intrinsic structures stems from the fact that they are invariant under
isometric transformations (bendings) of the shape. In an isometrically bent
shape, the geodesic distances are preserved, which is a property that allows
the design of isometrically invariant shape descriptors [31].

The metric tensor also allows the definition of differential operations on
the tangent space. Given a smooth scalar field f : X → R, its (intrinsic)
gradient ∇Xf at point x is defined through the relation f(x+dv) = f(x) +
gx(∇Xf(x),dv), where dv ∈ T ∗xX is an infinitesimal tangent vector. For a
given tangent vector v, the quantity

Dvf = lim
ε→0

f(x + εv)− f(x)

ε
√
gx(v,v)

(5.5)
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is called the directional derivative of f at point x in the direction v.

5.2.2 Curvature of Two-dimensional Surfaces

Given a curve γ : [0, L] → R3, its first-order and second-order derivatives
with respect to the parameter, γ̇ and γ̈, are called the tangent and curvature
vectors, respectively. The magnitude of γ̈(t) measures the curvature of γ
at a point. The curvature of a surface at a point x can be expressed in
terms of curves passing through it confined to the surface. Every direction
v ∈ TxX can be associated with a curve γ such that γ(0) = x and γ̇(0) = v,
and, thus, with a curvature vector γ̈(0). The projection of the curvature
vector on the tangent plane is called the geodesic curvature, and it vanishes
if and only if γ is a geodesic. The projection κn = PN γ̈(0) of the curvature
vector on the normal is called the normal curvature. The minimum and the
maximum values of κn are called the principal curvatures κ1 ≤ κ2, and
the corresponding directions the principal directions. The average of the two
principal curvatures H = 1

2 (κ1 + κ2) is called the mean curvature, and their
product K = κ1κ2 is called the Gaussian curvature.

Surprisingly enough, though the principal curvatures are extrinsic quan-
tities (i.e. quantities depending on the way the surface is embedded into the
Euclidean space), the Gaussian curvature is an intrinsic quantity, that is, it
can be fully expressed in terms of the metric of the surface. One of such def-
initions considers the perimeter P (r) of a geodesic circle of radius r centered
at a point x on the surface. On a Euclidean surface, P (r) = 2πr, while on
curved surfaces a different quantity is measured. The defect of the perimeter
is governed by the Gaussian curvature according to

K = lim
r→0

3(2πr − P (r))

πr3
. (5.6)

5.2.3 Discrete Differential Geometry

The discretization of differential geometric quantities such as tangent and nor-
mal vectors, principal directions and curvatures, gradients, and the Laplace-
Beltrami operator requires some attention, as straightforward differentiation
with respect to some parametrization coordinates usually amplifies noise to
unreasonable levels. In what follows, we briefly overview näıve and more
robust methods for estimation of such quantities. The simplest discrete rep-
resentation of a two-dimensional surface is a point cloud consisting of a set
X = {x1, . . . ,xn} of discrete points in R3 taken from the underlying contin-
uous surface. Local connectivity information can be introduced by defining
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an edge set E ⊂ X × X indicating for each pair of samples (x,x′) in the
cloud whether they are adjacent (i.e., (x,x′) ∈ E) or not. This leads to an
undirected graph representation. It is frequently convenient to approximate
a continuous surface by a piecewise-planar one, consisting of a collection of
polygonal patches glued together along their edges. A particular case of such
polyhedral approximations are triangular meshes in which all faces are tri-
angles built upon triples of points in the point cloud. Each triangle xi,xj ,xk
can be associated with the normal vector

N =
(xj − xi)× (xk − xi)

‖(xj − xi)× (xk − xi)‖
. (5.7)

The normal at a vertex of the mesh can be computed by averaging the normals
to the triangles sharing that vertex, possibly weighted by the triangle areas.
Such a neighborhood of a vertex is usually referred to as the 1-ring.

In the presence of noisy samples, the support of the 1-rings can be insuf-
ficient to reliably approximate the normal vectors. As an alternative, given
a vertex x, we can consider the r-neighborhood Nr(x) = Br(x) ∩ X where
the ball Br(x) is with respect to the Euclidean metric. The samples in Nr(x)
can be further weighted inversely proportionally to their Euclidean distances
from x. The weighted second-order moment matrix

M =
∑

y∈Nr(x)

α(y)(y − x)(y − x)T (5.8)

represents the orientation of the surface in the vicinity of x. Here, α(y) are
assumed to be non-negative weights summing to one. The two largest eigen-
vectors T1 and T2 of M span the tangent plane TxX, while the third, smallest,
eigenvector N corresponds to the normal. The tradeoff between sensitivity
to small geometric features and robustness to noise is controlled by the local
neighborhood radius r.

In the same way local that plane fitting constitutes a robust tool for the ap-
proximation of normals and tangents, fitting of a quadratic surface allows the
estimation of second-order quantities related to curvature. For that purpose,
the points in Nr(x) are first transformed so that x coincides with the origin,
the z axis coincides with the normal, and the x and y axes coincide with the
tangent vectors (i.e., a point y is represented as y = x + uT1 + vT2 + wN).
A paraboloid

w(u, v) = au2 + buv + cv2 (5.9)

is then fit using weighted least squares. The Gaussian and mean curvatures
can now be estimated using the closed-form expressions K = 4ac − b2 and
H = a + c; the principal curvatures and directions are obtained in a similar
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way [9]. For a comprehensive overview of curvature discretization methods,
the reader is referred to [52].

5.2.4 Diffusion Geometry

The positive semi-definite self-adjoint Laplace-Beltrami operator ∆X associ-
ated with the metric tensor g is defined by the identity∫

f∆Xh dvol = −
∫
gx(∇Xf,∇Xh)dvol, (5.10)

which holds for any pair of smooth scalar fields f, h : X → R;. Here, dvol
denotes the differential area or volume element of the manifold, depending,
respectively, whether the latter is 2D or 3D.

The Laplace-Beltrami operator can be expressed in the parametrization
coordinates as

∆X = − 1√
det g

∑
ij

∂i
√

det gg−1ij ∂j , (5.11)

When the metric is Euclidean (gij = I), the operator reduces to the familiar

∆f = −
(
∂2f

∂u21
+
∂2f

∂u22

)
(5.12)

(note that, in this chapter, we define the Laplacian with the minus sign in
order to ensure its positive semi-definiteness).

The Laplace-Beltrami operator gives rise to the partial differential equa-
tion (

∂

∂t
+∆X

)
f(t,x) = 0, (5.13)

called the heat equation. The heat equation describes the propagation of heat
on the surface and its solution f(t,x) is the heat distribution at a point x
in time t. The initial condition of the equation is some initial heat distri-
bution f(0,x); if X has a boundary, appropriate boundary conditions must
be added. The solution of (5.13) corresponding to a point initial condition
f(0,x) = δ(x − x′), is called the heat kernel and represents the amount of
heat transferred from x to x′ in time t due to the diffusion process. Using
spectral decomposition, the heat kernel can be represented as

kt(x,x
′) =

∑
i≥0

e−λitφi(x)φi(x
′), (5.14)
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where φi and λi are, respectively, the eigenfunctions and eigenvalues of the
Laplace-Beltrami operator satisfying ∆φi = λiφi (without loss of generality,
we assume λi to be sorted in increasing order starting with λ0 = 0). Since the
Laplace-Beltrami operator is an intrinsic geometric quantity (i.e. it can be
expressed solely in terms of the metric of X), its eigenfunctions and eigenval-
ues as well as the heat kernel are invariant under isometric transformations
of the manifold.

The value of the heat kernel kt(x,x
′) can be interpreted as the transition

probability density of a random walk of length t from the point x to the
point x′. This allows the construction of a family of intrinsic metrics known
as diffusion metrics,

d2t (x,x
′) =

∫
(kt(x, ·)− kt(x′, ·))

2
dvol

=
∑
i>0

e−λit(φi(x)− φi(x′))2, (5.15)

which measure the “connectivity rate” of the two points by paths of length
t.

The parameter t can be given the meaning of scale, and the family {dt}
can be thought of as a scale-space of metrics. By integrating over all scales,
a scale-invariant version of (5.15) is obtained,

d2CT(x,x′) = 2

∫ ∞
0

d2t (x,x
′)dt

=
∑
i>0

1

λi
(φi(x)− φi(x′))2. (5.16)

This metric is referred to as the commute-time distance and can be inter-
preted as the connectivity rate by paths of any length. We will broadly call
constructions related to the heat kernel, diffusion and commute time metrics
as diffusion geometry.

5.2.5 Discrete Diffusion Geometry

The discretization of the heat kernel kt and the associated diffusion geometry
constructs is performed using formula (5.14), in which a finite number of
eigenvalues and eigenfunctions of the discrete Laplace-Beltrami operator are
taken. The latter can be computed directly using the finite elements method
[70], of by discretization of the Laplace operator on the mesh followed by its
eigendecomposition. For a manifold discretized as a vertex set V, a discrete
Laplace-Beltrami operator is expressed in the following generic form,
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(∆Xf)i =
1

ai

∑
j

wij(fi − fj), (5.17)

where wij are weights, ai are normalization coefficients and the the elements
fi = f(vi) of the vector f represent a scalar function on the manifold (e.g.
the heat distribution) sampled at the vertex set.

In matrix notation, (5.17) can be written as ∆Xf = A−1Wf , where f is an

N × 1 vector, A = diag(ai) and W = diag
(∑

l 6=i wil

)
− (wij). The discrete

eigenfunctions and eigenvalues are found by solving the generalized eigende-
composition [48] WΦ = AΦΛ, where Λ = diag(λl) is a diagonal matrix of
eigenvalues and Φ = (φl(vi)) is the matrix of the corresponding eigenvectors.

Different choices of A and W have been studied, depending on which con-
tinuous properties of the Laplace-Beltrami operator one wishes to preserve
[32, 86]. For triangular meshes, a popular choice adopted in this chapter is
the cotangent weight scheme [65, 57], in which

wij =

{
(cotαij + cotβij)/2 (vi,vj) ∈ E;

0 else,
(5.18)

where αij and βij are the two angles opposite to the edge between vertices
vi and vj in the two triangles sharing the edge, and ai are the discrete area
elements (see Fig. 5.2).

xi

xj

αij

βij

Fig. 5.2 One ring of a point xi, adjacent point xj and the angles αij and βij used in

the cotangent weight scheme to discretize the Laplace-Beltrami operator.

In many cases, the discretized Laplacian operator is only a means for
the computation of its eigenfunctions and eigenvalues used to approximate
the heat kernels. The family of finite elements methods (FEM) constitutes an
alternative approach, allowing direct discretization of the eigendecomposition
of the Laplace-Beltrami operator. Firstly, a set of M locally-supported basis
functions {fi(x)} spanning a sufficiently smooth subspace of L2 functions on
the manifold is selected. Linear or cubic functions are the typical choice. An
eigenfunction φi of the Laplacian admits the following weak form identity

〈∇Xφi, fj〉 = λi〈φi, fj〉 (5.19)
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for every basis function fj . Expressing φi as a linear combination φi(x) ≈
ui1f1(x) + · · ·+ uiMfM (x), we arrive at the following system of equations:

M∑
j=1

uji〈∇Xfi, fj〉 =

M∑
j=1

ujiλi〈fi, fj〉. (5.20)

As the function αi are fixed, the terms aij = 〈∇Xfi, fj〉 and bij = 〈fi, fj〉
are pre-computed forming the generalized eigendecomposition problem AU =
ΛBU, where A and B are the N ×M matrices with the elements aij and bij ,
respectively, and U is the M ×M matrix with the elements uij . Once U is
computed, the corresponding eigenfunctions can be found using the columns
of U as the coefficients of linear combinations of the basis functions.

For volumetric data, the Laplace-Beltrami operator is usually discretized
on a regular Cartesian grid using finite differences.

5.3 Feature Detectors

The goal of a feature detector is to find stable points or regions on a shape.
The main requirements of a feature detector are that the points that it selects
are (i) repeatable, that is, in two instances of a shape, ideally the same set
of corresponding points is detected, and (ii) informative, that is, descriptors
built upon these points contain sufficient information to distinguish the shape
from others.

Since there is no single way to define a feature, the construction of the
detector depends very much on the shape representation and the application
at hand, or more specifically, the desired invariance properties.

5.3.1 A Taxonomy

In the most trivial case, no feature detection is performed and the feature
descriptor is computed at all the points of the shape [17] or at some densely
sampled subset thereof. The descriptor in this case is usually termed dense.
Dense descriptors bypass the problem of repeatability, at the price of in-
creased computational cost and potentially introducing many unimportant
points that clutter the shape representation.

Many detectors assume to be given some scalar-valued or vector-valued
function defined on the surface. The function can be either photometric in-
formation (texture) or a geometric quantity such as curvature. With this
concept in mind, feature detection on shapes resembles very much that in
images and many attempts to import methods from image processing and
computer vision have been described in the literature. Several methods for
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feature detection have been inspired by the difference of Gaussians (DOG), a
classical feature detection approach used in computer vision. Zaharescu et al.
[87] introduce the mesh DOG approach by first applying Gaussian filtering
to scalar functions (e.g. mean or Gauss curvature) defined on the shape. This
allows representation of the function in scale space and feature points are
prominent maxima of the scale space across scales. Castellani et al. [21] ap-
ply Gaussian filtering directly on the mesh geometry and create a scale space
describing the displacement of the mesh points in the normal direction.

A different class of feature detection methods tries to find stable compo-
nents or regions in the analyzed shape. In the computer vision and image
analysis community, stable component detection is used in the maximally
stable extremal regions (MSER) algorithm [55]. MSER represents intensity
level sets as a component tree and attempts to find level sets with the smallest
area variation across intensity; the use of area ratio as the stability criterion
makes this approach affine-invariant, which is an important property in im-
age analysis, as it approximates viewpoint transformations. Methods similar
to MSER have been explored in the works on topological persistence [30].
Persistence-based clustering [22] was used by Skraba et al. [76] to perform
shape segmentation. In [27, 49] MSER-like features for meshes and volumes
have been studied.

Because many feature detectors operate locally on a function defined on
the shape, they are usually not very sensitive to non-rigid deformations.
Nevertheless, there exist several geometric quantities based on the intrin-
sic properties of the manifold and thus theoretically invariant to isometric
deformations by construction. Feature detectors based on such quantities are
called intrinsic and also isometry-invariant or bending-invariant. Examples
of intrinsic geometric quantities are the Gaussian curvature (which has been
used in several settings of [87]), and heat kernels [81, 33]. Feature detection
methods based on the heat kernel define a function on the shape, measuring
the amount of heat remaining at a point x after large time t, given a point
source at x at time 0, and detect features as local maxima of this function.

Another type of transformation, of interest in practical applications, is
changes in topology, manifested as the presence of holes, missing parts, or
changes in connectivity. Feature detectors insensitive to such changes (typ-
ically, a simpler case of point-wise connectivity change) are referred to as
topology-invariant.

Table 5.3.1 summarizes the properties of known feature detectors, some of
which are detailed in what follows.

1 Unless truly intrinsic quantities are used.
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Descriptor Representation
Invariance

Scale Rigid Bending Topology

Dense Any Yes Yes Yes Yes
Harris 3D [74] Any No Yes Approx Approx

Mesh DOG [87] Mesh No Yes Approx1 Approx

Salient features [21] Mesh No Yes Approx Approx
Heat kernel [81] Any No Yes Yes Approx

MSER [27, 49] Mesh, volume Yes Yes Yes Approx

Table 5.1 Comparison of 3D feature detectors.

5.3.2 Harris 3D

An efficient feature detection method, called Harris operator, first proposed
for the use in images [36] was extended to 3D shapes by Glomb [35] and
Sipiran and Bustos [74]. This method is based on measuring variability of
the shape in a local neighborhood of the point, by fitting a function to the
neighborhood, and identifying feature points as points where the derivatives
of this function are high [10]. Unlike images, 3D data might have arbitrary
topology and sampling, which complicates the computation of derivatives.

For each point x on the shape, a neighborhood of radius ρ (typically, a k-
ring in mesh representation) is selected. The neighborhood points are brought
into a canonical system of coordinates by first subtracting the centroid. Next,
a plane is fitted to the translated points by applying PCA and choosing the
direction corresponding to the smallest eigenvalues as the direction of the
normal. The points are rotated so that the normal is aligned with the z-axis.
A quadratic function of the form f(u, v) = aT(u2, uv, v2, u, v, 1) is then fitted
to the set of transformed points, yielding a parametric representation of the
local extrinsic surface properties. Here, u and v denote the tangent plane
coordinates, and a stands for the quadratic patch parameters.

A 2× 2 symmetric matrix

E =
1√
2πσ

∫
R2

e−
u2+v2

2σ2

(
f2u(u, v) fu(u, v)fv(u, v)

fu(u, v)fv(u, v) f2v (u, v)

)
dudv (5.21)

is computed. The 3D Harris operator is defined as the map assigning H(x) =
det(E)−0.04tr2(E) to each point x on the shape. A fixed percentage of points
with the highest values of H(x) are selected as the feature points.

In [74], the neighborhood radius ρ (alternatively, the k-ring width k) and
the Gaussian variance σ are performed adaptively for each point in order to
make the method independent on sampling and triangulation.
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5.3.3 Mesh DOG

The Mesh DOG descriptor introduced in Zaharescu et al. [87] assumes the
shape in mesh representation and in addition to be given some function f
defined on the mesh vertices. The function can be either photometric infor-
mation (texture) or a geometric quantity such as curvature.

Given a scalar function f on the shape, its convolution with a radially-
symmetric kernel k(r) is defined as

(f ∗ k)(x) =

∫
k(d(x,y))f(y)dy, (5.22)

where d(x,y) is the geodesic distance between points x and y. Zaharescu et
al. [87] propose the following r-ring approximation:

(f ∗ k)(x) =

∑
y∈Nr(x) k(‖x− y‖)f(y)∑
y∈Nr(x) k(‖x− y‖)

, (5.23)

which assumes a uniformly sampled mesh. Here, Nr(x) denotes the r-ring
neighborhood of the point x.

By subsequently convolving a function f with a Gaussian kernel gσ of
width σ, a scale space f0 = f , fk = fk−1 ∗ gσ is constructed. The difference
of Gaussians (DOG) operator at scale k is defined as DOGk = fk − fk−1.

Feature points are selected as the maxima of the DOG scale space across
scales, followed by non-maximum suppression, using the one ring neighbor-
hood in the current and the adjacent scales. A fixed percentage of points
with the highest values of DOG are selected. To further eliminate unstable
responses, only features exhibiting corner-like characteristics are retained.
For this purpose, the Hessian operator at every point x is computed as

H =

(
fuu(x) fuv(x)
fuv(x) fvv(x),

)
(5.24)

where fuu, fuv and fvv are the second-order partial derivatives of f at x.
Second order derivatives are estimated w.r.t. some local system of coordinates
u, v (e.g., by fixing u to be the direction of the gradient, u = ∇Xf(x), and
v perpendicular to it) by applying the directional derivative twice,

fuv(x) = 〈∇X〈∇Xf(x),u〉,v〉. (5.25)

The condition number λmax/λmin of H (typically, around 10) is independent
of the selection of the local system of coordinates and is used to threshold
the features.
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5.3.4 Salient Features

In Mesh DOG, the scale space is built by filtering a scalar function on the
mesh while keeping the mesh geometry intact. Castellani et al. [21] proposed
to create a scale space by filtering the shape itself.

Let X0 = {xi} ⊂ R3 denote the extrinsic coordinates of points on a surface.
For example, if the shape is represented as a mesh, X0 is the point cloud
comprising the mesh vertices. One can apply a Gaussian kernel gσ to this
point cloud, obtaining a new set of points X1 = X0 ∗ gσ, where

x1
i =

∑
j

gσ(‖xi − xj‖)xj . (5.26)

Applying the kernel several times creates a scale space of “blurred” shapes
Xk. One can naturally define a vector-valued DOG scale space on the original
surface by assigning a vertex xi the difference of the corresponding blurred
coordinates, dki = xki −xk−1i . By projecting dki onto the normal N(xi) at the
point xi, a scalar-valued DOG scale space, referred to as the scale map by
the authors, is created. From this stage on, an approach essentially identical
to Mesh DOG is undertaken. The authors do not use filtering by Hessian
operator response and propose to use a robust method inspired by [37] to
detect the feature points.

5.3.5 Heat Kernel Features

Recently, there has been increased interest in the use of diffusion geometry
for shape recognition [71, 62, 56, 53, 15, 67]. In particular, the spectral de-
composition (5.14) of the heat kernel is especially attractive as there exists
efficient and stable methods to discretize the Laplace-Beltrami operator and
its eigendecomposition.

The diagonal of the heat kernel at different scales, kt(x,x), referred to as
the heat kernel signature (HKS), can be interpreted as a multi-scale notion
of the Gaussian curvature. Local maxima of the HKS for a large time param-
eter correspond to tips of protrusions that can be used as stable features as
recently proposed by Sun et al. [81] and Gebal et al. [33].

In the simplest setting, feature points are found as two-ring local maxima
of kt(x,x) at a sufficiently large scale t [81]. In a more sophisticated setting,
the persistence diagram of kt(x,x) is computed, as described in the sequel,
and features with insufficiently large distance between birth and death times
are filtered out [76, 26, 10].
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5.3.6 Topological Features

A different variety of feature-based techniques have been inspired by topo-
logical, rather than geometrical, shape analysis [61]. The most common tool
used in applying topological methods to feature-based shape analysis is the
notion of topological persistence introduced and formalized by Edelsbrunner
et al. [30]. In its most basic form, topological persistence allows the definition
of a pairing between critical values of a function defined on a topological do-
main (such as a simplicial complex) in a canonical way. This pairing defines
a persistence value associated with each critical point, which provides a prin-
cipled way of distinguishing prominent local maxima and minima from noise.
Thus, these techniques fit naturally into the feature-based shape analysis
framework, where both feature detection and description are often obtained
via analysis of critical values of some function. Several techniques have been
recently proposed for finding stable feature points by applying topological
persistence to different functions defined on the shape, including the Heat
Kernel Signature [76, 26] and the eigenfunctions of the Laplace-Beltrami op-
erator [69].

Let w be some non-negative scalar function defined on the surface (e.g.,
the heat kernel kt(x,x) for a moderate time scale t). A super-level set of w
is defined as {x : w(x) ≥ τ}. By sweeping τ from zero to infinity, either
new connected components of the level sets are born, or previously exist-
ing components merge. Each connected component can be associated with
a local maximum of w, when the component is first born. Merging of two
components corresponding to two local maxima x1 and x2 occurs at τ such
that there exists a path connecting x1 and x2 along which f(x) ≥ τ . We
say that the component corresponding to a smaller local maximum x1 < x2

dies at time τ , that is, is merged into the component corresponding to the
larger local maximum x2. The persistence diagram represents the births and
deaths of all the connected components by assigning to each component a
point in [0,∞]2, with the x and y coordinates representing the birth and the
death time, respectively. The persistence of a local maximum is defined as
the difference between its death and birth times. Maxima that never die have
infinite persistence.

An excellent application of topological persistence to shape analysis and
shape matching was demonstrated by Agarwal et al. [1], who used it to de-
fine a feature detector and descriptor, by defining a function on a surface,
which approximately captures the concavity and convexity at each point in a
parameter-free way. For every point x on the surface, the authors use topolog-
ical persistence to find a canonical pair y which shares the normal direction
with x. Then the elevation function at x is simply the difference of the height
values of x and y in this normal direction. Elevation function is invariant to
rigid deformations and allows the analysis of both concavities and convexities
in a unified fashion. Prominent minima and maxima of the elevation function
can also be used as natural stable features of a shape. Persistent maxima of
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the heat kernel kt(x,x) have also been shown to constitute robust and re-
peatable feature points [26]. Applying methods from computational topology
to feature-based shape analysis is an active and potentially fruitful area of
research and we refer the interested reader to a recent book [29].

5.3.7 Maximally Stable Components

Another class of methods, introduced in [27, 49], detects stable regions of
the shape as an alternative to detecting stable points. For the discussion, we
will assume that the shape is represented by a graph G = (X,E) weighted
by a non-negative vertex weight w : X → R or edge weight d : E → R. The
graph is said to be connected if there exists a path between every pair of
vertices in it. A graph G′ = (X′ ⊆ X,E′ ⊆ E) is called a subgraph of G and
denoted by G′ ⊆ G. A maximal connected subgraph is called a component
of X. Given E′ ⊆ E, the graph induced by E′ is the graph G′ = (X′,E′)
whose vertex set is made of all vertices belonging to an edge in E′, that is,
X′ = {x ∈ X : ∃x′ ∈ X, (x,x′) ∈ E′}. Given a vertex-weighted graph (G,w)
with a weighting function w, the `-cross-section of G is defined as the graph
induced by E` = {(x1,x2) ∈ E : w(x1), w(x2) ≤ `} for some ` ≥ 0. In the
same way, a cross-section of an edge-weighted graph (G, d) is induced by
the edge subset E` = {e ∈ E : d(e) ≤ `}. A connected component of the
cross-section is called an `-level set of the weighted graph. The altitude of
a component C is defined as the minimal ` for which C is a component of
the `-cross-section of G. Altitudes establish a partial order relation on the
connected components of G as any component C is contained in a component
with higher altitude. The set of all such pairs (`(C), C) therefore forms a
component tree.

Given a sequence {(`, C`)} of nested components forming a branch in the
component tree, the stability of C` is defined as

s(`) =
vol(C`)
d
d`vol(C`)

, (5.27)

where vol(C) denotes the area of the component C (or its volume in case of a
three-dimensional manifold). In other words, the more the relative volume of
a component changes with the change of `, the less stable it is. A component
C`∗ is called maximally stable if the stability function has a local maximum
at `∗. Maximally stable components are widely known in the computer vi-
sion literature under the name of maximally stable extremal regions (MSER)
[55], with s(`∗) usually referred to as the region score. The construction of
weighted component trees is based on the observation that the vertex set V
can be partitioned into disjoint sets which are merged together going up in
the tree. Maintaining and updating such a partition is done using the union-
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find algorithm and related data structures with O(n log n) complexity [60].
Such an approach is used to implement single-link agglomerative clustering
which is adopted here for the construction of the component tree.

Fig. 5.3 Edge-weighted MSER. Figure reproduced from [49].

Using vertex-weighting, any scalar function that distinguishes between ver-
tices and captures the local geometrical properties such as mean curvature
[27] can be used. For non-rigid shape analysis, diffusion-geometric weights
have a clear advantage being deformation-invariant [76] and easily computed
through the heat kernel. The simplest vertex weight is obtained as the diag-
onal of the heat kernel w(x) = kt(x,x), which, up to a monotonic transfor-
mation, can be thought of as an approximation of the Gaussian curvature at
t. The choice of the parameter t defines the scale of such an approximation
[81]. A scale-invariant version of this weight (the commute-time kernel) is
obtained by integrating kt over all time scales in the range [0,∞],

w(x) =

∞∑
i=0

λ−1i φ2i (x). (5.28)

Edge weights offer more flexibility allowing the expression of dissimilarity
relations between adjacent vertices. Since the heat kernel kt(x1,x2) repre-
sents the proximity or “connectivity” of two vertices x1,x2, any function of
the form d(x1,x2) = η(k−1(x1,x2)) can define an edge weight inversely pro-
portional to the heat kernel value (here η denotes a non-negative monotonic
function). Another natural way of defining edge weights is the diffusion dis-
tance (5.15) or its scale-invariant version, the commute time distance (5.16).

While the original formulation of shape MSER detectors focused on
meshes, in principle there exists no limitation to extend it to other repre-
sentations as well. Recently, an extension of the method to volumetric data
has been proposed, with the volumetric heat kernels and diffusion distances
used as the weighting functions.
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5.3.8 Benchmarks

An ideal feature detector should be repeatable under the desired class of shape
transformations and also detect “rich” feature points from which informative
descriptors can be drawn. While the latter is largely application and data-
dependent, the repeatability of the detector can be evaluated quantitatively
on a set of representative shape transformations. SHREC’10 robust feature
detection and description benchmark [10] evaluates the detector repeatability
by running the detector on a set of reference shapes. The detected features are
used as reference locations. Then, detection is performed on the same shapes
undergoing simulated transformations of different types (non-rigid bending,
different types of noise, holes, etc.), for which groundtruth correspondence
with the reference shapes is known. Repeatability is evaluated by counting
the fraction of features that are consistently detected in the proximity of the
reference locations. Different varieties of the heat kernel methods achieved
the best results on this benchmark.

5.4 Feature Descriptors

Given a set of feature points (or, in the case of a dense descriptor, all the
points on the shape), a local descriptor is then computed. There exists a
plethora of different shape descriptor algorithms, which depend very much
on the representation in which the shape is given (e.g. mesh or point cloud),
the kind of information available and its quality (e.g. sampling resolution),
and the application in mind. A descriptor can be characterized by its (i)
“informativity”, i.e., the information content that can be used for shape dis-
crimination; (ii) invariance to some class of shape transformations, such as
deformations or noise, (iii) computational complexity, (iv) compactness of
descriptor and complexity of comparison of two descriptors (e.g. in shape
matching applications). In addition, if the descriptor is used in combination
with a feature detector, its sensitivity to feature location (detector repeatabil-
ity) might be important. There are many tradeoffs between these properties
that can be made in feature-based shape analysis applications.

5.4.1 A Taxonomy

Descriptors can be categorized as geometric or photometric (or both, referred
to as hybrid), depending whether they rely only on the 3D geometry of the
shape, or also make use of the texture. Some photometric descriptors can be
adapted to work with geometric information, where some geometric property
(e.g. curvature) is used in place of the texture [87]. A wide variety of geometric
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quantities such as local patches [58], local moments [24] and volume [34],
spherical harmonics [73], and contour and edge structures [63, 45] trying to
emulate comparable features in images, can be used for geometric descriptors.

Multiscale descriptors (e.g. [81, 20, 68]) look at the shape at multiple levels
of resolution, thus capturing different properties manifested at these scales.
This is opposed to single scale or scalar descriptors, such as conformal factor
[6].

Descriptors which are not altered by global scaling of the shape are called
scale-invariant. Such an invariance can in some cases be achieved by shape
normalization; a better approach is to build scale-invariance into the descrip-
tor construction.

Because typically a descriptor operates locally around the feature point,
feature descriptors are usually not very sensitive to non-rigid deformations of
the shape. Nevertheless, there exist several geometric descriptors which are
based on intrinsic properties of the manifold and thus theoretically invariant
to isometric deformations by construction. Examples of intrinsic descriptors
include histograms of local geodesic distances [66, 18], conformal factors [6],
some settings of [87], and heat kernels [81, 20]. Such descriptors are called
intrinsic and also isometry-invariant or bending-invariant.

Another type of transformation, of interest in practical applications, is
changes in topology, manifested as the presence of holes, missing parts, or
changes in connectivity. Descriptors insensitive to such changes (typically, a
simpler case of point-wise connectivity change) are referred to as topology-
invariant.

Finally, some authors [34] make a distinction between high-dimensional (or
rich) and low-dimensional descriptors. The former refers to descriptors pro-
viding a fairly detailed description of the shape properties around the point
such as [5, 39], while the latter computes only a few values per point and
typically are curvature-like quantities such as shape index [42] and curved-
ness [43]. We find this division somewhat misleading, as there is no direct
relation between the descriptor “richness” and dimensionality (recent works
in computer vision on descriptor hashing and dimensionality reduction [79]
demonstrate that rich descriptors such as SIFT can be compactly represented
in much lower dimensions without losing much information). The question
whether the “richness” of a descriptor is sufficient depends in general on the
application and the data.

Table 5.2 summarizes the theoretical properties of known descriptors, some
of which are detailed in what follows. The invariance properties of many de-
scriptors were evaluated quantitatively in the SHREC robust feature detec-
tion and description benchmark [10], testing the descriptor variability un-
der simulated transformations of different types (non-rigid bending, different
types of noise, holes, etc.).

We devote particular attention in this section to different varieties of the
recently introduced heat kernel signatures, which we consider to be one of the
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most versatile descriptors currently available, possessing provable invariance
properties, as well as a promising and interesting field for future research.

Descriptor Representation
Invariance

Scale Rigid Bending Topology

Gaussian curvature Any No Yes Yes Approxc

Shape index [43] Any Yes Yes No Approxc

Integral volume [34] Volume, Mesha No Yes No Approxc

Local histograms [66] Any Nob Yes Yes Nob

HKS [81] Any No Yes Yes Approxc

SIHKS [20] Any Yes Yes Yes Approxc

CHKS [47] Any+Texture Yes Yes Yes Approxc,h

VHKS [68] Volume, Mesha No Yes Yes Approxc

Spin image [39] Any Noi Yes Nog Yes

Shape context [5] Any No Yes No Yes
MeshHOG [87] Mesh (+Texture) Yesd Yes Approxe Approxd

Conformal factor [6] Mesh No Yes Yes Nof

Table 5.2 Comparison of 3D feature descriptors. aInvolving mesh rasterization.
bAssuming geodesic distances. Different invariance properties can be achieved using diffu-
sion or commute-time distances. cPoint-wise connectivity changes have only a local effect

and do not propagate to distant descriptors. dIf photometric texture is used; in general, de-
pending on the texture choice. eTriangulation-dependent. fDefined for shapes with fixed

topology (e.g. watertight). gCan be made approximately invariant using small support.
hThe use of photometric information can reduce the sensitivity to topological noise com-
pared to HKS. iCan be made scale invariance as in [44].

5.4.2 Curvature-based Descriptors (HK and SC)

The simplest and perhaps earliest shape descriptors based on curvature (also
referred to as HK descriptors) were introduced by Besl [9, 8]. The combination
of the mean curvature H = 1

2 (κ1 + κ2) and the Gaussian curvature K =
κ1 · κ2 allow the classification of the type of a local surface patch as saddle
valley (K,H < 0), saddle ridge (K < 0, H > 0), concave or convex cylinder
(K = 0, H < 0 and K = 0, H > 0, respectively), concave or convex ellipsoid
(K > 0, H < 0 and K > 0, H > 0, respectively), or plane (K = H = 0). The
values of H and K depend on the shape scale.

Koenderink and van Doorn [43] defined a different descriptor (referred to as
SC) which decouples the type and strength of local shape curvature as follows:

The shape index S = 2
πatan

(
κ1+κ2

κ1−κ2

)
is a scale-invariant continuous gradation

of concave (−1 < S < −0.5), hyperbolic (−0.5 < S < 0.5) and convex (0.5 <
S < 1) shapes. The curvedness C =

√
(κ21 + κ22)/2 measures how strong

the curvature of a particular local shape type is at a point. Planar shapes



5 Feature-based Methods in 3D Shape Analysis 23

have indeterminate shape index and can be determined from the curvedness
C = 0.

Both the HK and SC descriptors make use of the mean curvature, which
is not intrinsic and hence not deformation invariant.

5.4.3 Spin Images

The spin image descriptor [39, 2, 3] represents the neighborhood of a point
on a shape by fitting an oriented coordinate system at the point. The local
system of cylindrical coordinates at point x is defined using the normal and
tangent plane: the radial coordinate α defined as the perpendicular distance
to the line through the surface normal n(x), and the elevation coordinate
β, defined as the signed perpendicular distance to the tangent plane. The
cylindrical angular coordinate is omitted because it cannot be defined ro-
bustly and unambiguously on many surface patches, such as those where the
curvature is the similar in all directions.

A spin image is a histogram of points in the support region represented in
α, β coordinates. The bins can be in linear or logarithmic scale. The support
region is defined by limiting the range of the values of α and β (thus looking at
points y within some distance from x) and requiring that cos−1〈n(x),n(y)〉 <
ε (limiting self occlusion artifacts). The histogram can be represented as a
2D image, hence the name of the descriptor (Fig. 5.4).

The spin image is applicable to any shape representation in which the
point coordinates are explicitly given and normals and tangent planes can
be computed (e.g., meshes or point clouds). Because of dependence on the
embedding coordinates, such a descriptor is not deformation-invariant.

5.4.4 Shape Context

The concept of the shape context descriptor was first introduced in [5] for
image analysis, though it is directly applicable to 3D shapes [46]. The shape
context describes the structure of the shape as relations between a point to
the rest of the points. Given the coordinates of a point x on the shape, the
shape context descriptor is constructed as a histogram of the direction vectors
from x to the rest of the points, y − x. Typically, a log-polar histogram is
used. The descriptor is applicable to any shape representation in which the
point coordinates are explicitly given, such as mesh, point cloud, or volume.
Because of dependence on the embedding coordinates, such a descriptor is
not deformation-invariant.
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Fig. 5.4 Example of spin image descriptor computation (image taken from [38]).

5.4.5 Integral Volume Descriptor

The integral volume descriptor, used in [34], is an extension to 3D shapes of
the concept of integral invariants introduced for image description in [54].
Given a solid object Ω with a boundary X = ∂Ω, the descriptor measures
volume contained in a ball of fixed radius r,

Vr(x) =

∫
Br(x)∩Ω

dx. (5.29)
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Fig. 5.5 Example of shape context computation. Shown in red is the reference point x,

and in blue the rays y − x.

If Br(x) ∩ Ω is simply connected, the volume descriptor can be related to
the mean curvature H(x) as Vr(x) = 2π

3 r
3 − π

4Hr
4 + O(r5) [34]. Since the

mean curvature is not intrinsic, the descriptor is sensitive to deformations of
the shape. Varying the value of r, a multi-scale descriptor can be computed.
Numerically, the descriptor is efficiently computed in a voxel representation
of the shape, by means of convolution with the ball mask.

5.4.6 Mesh Histogram of Gradients (HOG)

MeshHOG [87] is a shape descriptor emulating SIFT-like image descriptors
[51], referred to as histograms of gradients or HOG. The descriptor assumes
the shape in mesh representation and in addition to be given some function
f defined on the mesh vertices. The function can be either photometric infor-
mation (texture) or a geometric quantity such as curvature. The descriptor
at point x is computed by creating a local histogram of gradients of f in an
r-ring neighborhood of x. The gradient ∇f is defined extrinsically as a vec-
tor in R3 but projected onto the tangent plane at x which makes it intrinsic.
The descriptor support is divided into four polar slices (corresponding to 16
quadrants in SIFT). For each of the slices, a histogram of 8 gradient orienta-
tions is computed. The result is a 32-dimensional descriptor vector obtained
by concatenating the histogram bins.
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The MeshHOG descriptor works with mesh representations and can work
with photometric or geometric data or both. It is intrinsic in theory, though
the specific implementation in [87] depends on triangulation.

5.4.7 Heat Kernel Signature (HKS)

The heat kernel signature (HKS) was proposed in [81] as an intrinsic descrip-
tor based on the properties of heat diffusion and defined as the diagonal of
the heat kernel. Given some fixed time values t1, . . . , tn, for each point x on
the shape, the HKS is an n-dimensional descriptor vector

p(x) = (kt1(x,x), . . . , ktn(x,x)). (5.30)

Intuitively, the diagonal values of the heat kernel indicate how much heat
remains at a point after certain time (or alternatively, the probability of a
random walk to remain at a point if resorting to the probabilistic interpre-
tation of diffusion processes) and is thus related to the “stability” of a point
under diffusion process.

The HKS descriptor is intrinsic and thus isometry-invariant, captures lo-
cal geometric information at multiple scales, is insensitive to topological
noise, and is informative (if the Laplace-Beltrami operator of a shape is
non-degenerate, then any continuous map that preserves the HKS at every
point must be an isometry). Since the HKS can be expressed in the Laplace-
Beltrami eigenbasis as

kt(x,x) =
∑
i≥0

e−tλiφ2i (x), (5.31)

it is easily computed across different shape representations for which there is
a way to compute the Laplace-Beltrami eigenfunctions and eigenvalues.

5.4.8 Scale-invariant Heat Kernel Signature (SI-HKS)

A disadvantage of the HKS is its dependence on the global scale of the shape.
If X is globally scaled by β, the corresponding HKS is β−2kβ−2t(x,x). In some
cases, it is possible to remove this dependence by global normalization of the
shape.

A scale-invariant HKS (SI-HKS) based on local normalization was pro-
posed in [20]. Firstly, the heat kernel scale is sampled logarithmically with
some basis α, denoted here as k(τ) = kατ (x, x). In this scale-space, the heat
kernel of the scaled shape becomes k′(τ) = a−2k(τ+2 logα a) (Fig. 5.6a). Sec-
ondly, in order to remove the dependence on the multiplicative constant a−2,



5 Feature-based Methods in 3D Shape Analysis 27

the logarithm of the signal followed by a derivative w.r.t. the scale variable
is taken,

d

dτ
log k′(τ) =

d

dτ
(−2 log a+ log k(τ + 2 logα a))

=
d

dτ
log k(τ + 2 logα a)

=
d
dτ k(τ + 2 logα a)

k(τ + 2 logα a)
. (5.32)

Denoting

k̃(τ) =
d
dτ k(τ)

h(τ)
=
−
∑
i≥0 λiα

τ logαe−λiα
τ

φ2i (x)∑
i≥0 e

−λiατφ2i (x)
, (5.33)

one thus has a new function k̃ which transforms as k̃′(τ) = k̃(τ + 2 logα a) as
a result of scaling (Fig. 5.6b). Finally, by applying the Fourier transform to
k̃, the shift becomes a complex phase,

F [k̃′](ω) = K̃′(ω) = K̃(ω)e−jω2 logα a, (5.34)

and taking the absolute value in the Fourier domain (Fig. 5.6c),

|K̃′(ω)| = |K̃(ω)|, (5.35)

produces a scale-invariant descriptor (Fig. 5.7).
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Fig. 5.6 Construction of the Scale-Invariant HKS: (a) we show the HKS computed at
the same point, for a shape that is scaled by a factor of 11 (blue dashed plot); please notice
the log-scale. (b) The signal h̃(τ), where the change in scale has been converted into a
shifting in time. (c) The first 10 components of |H̃(ω)| for the two signals; the descriptors

computed at the two different scales are virtually identical.



28 Alexander M. Bronstein, Michael M. Bronstein, and Maks Ovsjanikov

HKS SI-HKS

Fig. 5.7 Top: three components of the HKS (left) and the proposed SI-HKS (right),
represented as RGB color and shown for different shape transformations (null, isometric

deformation+scale, missing part, topological transformation). Bottom: HKS (left) and SI-

HKS (right) descriptors at three points of the shape (marked with red, green, and blue).
Dashed line shows the null shape descriptor.

5.4.9 Color Heat Kernel Signature (CHKS)

If, in addition, photometric information is available, given in the form of
texture α : X → C in some m-dimensional colorspace C (e.g. m = 1 in case
of grayscale texture and m = 3 in case of color texture), it is possible to
design diffusion processes that take into consideration not only geometric
but also photometric information [77, 47]. For this purpose, let us assume
the shape X to be a submanifold of some (m + 3)-dimensional manifold
E = R3 × C with the Riemannian metric tensor g, embedded by means of a
diffeomorphism ξ : X → ξ(X) ⊆ E . A Riemannian metric on the manifold X
induced by the embedding is the pullback metric (ξ∗g)(r, s) = g(dξ(r), dξ(s))
for r, s ∈ TxX, where dξ : TxX → Tξ(x)E is the differential of ξ, and T denotes
the tangent space. In coordinate notation, the pullback metric is expressed
as (ξ∗g)µν = gij∂µξ

i∂νξ
j , where the indices i, j = 1, . . . ,m + 3 denote the

embedding coordinates.
The structure of E is to model joint geometric and photometric infor-

mation. The geometric information is expressed by the embedding coordi-
nates ξg = (ξ1, . . . , ξ3); the photometric information is expressed by the em-
bedding coordinates ξp = (ξ4, . . . , ξ3+m) = (α1, . . . , αm). In a simple case
when C has a Euclidean structure (for example, the Lab colorspace has
a natural Euclidean metric), the pullback metric boils down to (ξ∗g)µν =
〈∂µξg, ∂νξg〉R3 + 〈∂µξp, ∂νξp〉R3 .

The Laplace-Beltrami operator associated with such a metric gives rise to
a heat diffusion equation which takes into consideration both the geometry
and the color of the object (simplistically put, the heat flows more slowly
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across different colors). This, in turn, allows the definition of a color-sensitive
HKS (CHKS) that merges geometric and photometric information [47].

5.4.10 Volumetric Heat Kernel Signature (VHKS)

So far, we have considered the shape as a 2D boundary surface of a 3D phys-
ical object and represented the deformations of the object as deformation
of the 2D surface. While physically realistic transformations of reasonably
inelastic objects can be modeled as isometries of the 2D boundary surface
(“boundary isometries”), the converse is not true: one can easily think of
a transformation that preserves the metric structure of the object bound-
ary, but not the volume (Fig. 5.8). Such transformations are not physically
realistic, as they change the object volume or mass. However, all intrinsic de-
scriptors we have discussed (including the HKS) would be invariant to such
boundary isometries and thus have “too much invariance”.

A different approach is to consider shapes as volumes and require invari-
ance to transformations that preserve the metric structure inside the volume
(“volume isometries”). Such descriptors are called volumetric. The idea of
the heat kernel descriptor can be applied to volumetric shape representations
[68]. In this case, given a solid object Ω, the heat diffusion inside the volume
is given by the heat equation with Neumann boundary conditions on the
boundary ∂Ω, (

∆+
∂

∂t

)
U(x, t) = 0 x ∈ int(Ω),

〈∇U(x, t),n(x)〉 = 0 x ∈ ∂Ω (5.36)

where n is the normal to the boundary surface ∂Ω, ∆ is the positive-
semidefinite Laplacian operator in R3, and U : Ω × [0,∞) → R is the volu-
metric heat distribution in Ω. The volumetric heat kernel signature (VHKS)
is defined as the diagonal of the heat kernel of (5.36) at a set of time values
t, expressible in the eigenbasis of the Laplacian as

Kt(x,x) =

∞∑
l=0

e−ΛltΦl(x)2, (5.37)

where Λl, Φl are the eigenvalues and eigenfunctions of the Laplacian operator
with the above boundary conditions,

∆Φl(x) = ΛlΦl(x);

〈∇Φl(x),n(x)〉 = 0 x ∈ ∂Ω. (5.38)
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(a) (b) (c)

Fig. 5.8 Volumetric (a,b) and boundary (c) isometric deformations of a camel shape.
Figure from [80]. According to [68], volume isometries are a better model of physical

objects deformation than boundary isometries.

The descriptor can be computed on any volumetric representation of the
shape, allowing for efficient computation of the Laplacian eigenvalues and
eigenfunctions. For meshes and other surface representations, it is necessary
to perform rasterization to convert them into voxel representation [68].

The VHKS is invariant to volumetric isometries of the shape (i.e. defor-
mations that do not change the metric structure inside the shape). Such
transformations are necessarily isometries of the boundary ∂Ω, but not vice
versa. Thus, VHKS does not have the extra invariance that HKS has.

5.4.11 Case Study: Shape Retrieval using Two Heat
Kernel Descriptors (HKS and SI-HKS)

We conclude this section with a case study comparing the performance of
two descriptors on a shape retrieval application using a “bags of features”.
For additional details on this application, the reader is referred to Chap. 7. A
bag of features is a histogram of vector-quantized descriptors, which allows
an efficient computation of similarity between shapes, boiling down to the
comparison of two histograms. The bag of features inherits the invariance of
the underlying local feature descriptor used for its construction. Thus, the
choice of the descriptor is crucial for obtaining desired invariance.

In this test case, we used the cotangent weight scheme to discretize the
surface Laplace-Beltrami operator; the heat kernel h was approximated using
k = 100 largest eigenvalues and eigenvectors. For HKS, we used six scales
1024, 1351, 1783, 2353, 3104 and 4096; for the SI-HKS, we used an exponential
scale-space with base α = 2 and τ ranging from 1 to 25 with increments of
1/16. After applying logarithm, derivative, and Fourier transform, the first
6 lowest frequencies were used as the local descriptor. SHREC 2010 dataset
was used. The query set consisted of shapes from the dataset undergoing
different transformations. Only a single correct match exists in the database,
and ideally, it should be the first one.
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HKS SI-HKS

Fig. 5.9 Retrieval results using bags of features computed with HKS and SIHKS, tested
on the SHREC’10 robust large-scale shape retrieval dataset. Left: query shapes, middle:

first three matches obtained with HKS descriptors, right: first three matches obtained with

SI-HKS descriptors. Only a single correct match exists in the database (marked in red),
and ideally, it should be the first one.

An example of retrieval using bags of features built from HKS and SI-HKS
descriptors is shown in Fig. 5.9. It clearly shows the failure of HKS-based bags
of features to correctly find similarity between scaled shapes, which makes
the use of SI-HKS preferable over HKS in problems involving arbitrary shape
scaling.

5.5 Research Challenges

Current challenges in descriptor research include finding a good proportion
between theoretical invariance, discriminativity, sensitivity to noise and com-
putational complexity. A single ideal tradeoff is unlikely to be found, since
these parameters heavily depend on the application.

Another important challenge of interest both in 2D image and 3D shape
analysis is incorporating spatial relations between features. Most feature de-
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scriptors capture only local information of the shape, while it is known that,
in many cases, the spatial relations between different features are not less im-
portant. For example, on a human hand one would find five similar features
corresponding to fingers, while their particular spatial configuration is what
makes the object recognizable as a hand. Taking this example ad absurdum,
one can think of a “soup of features” which have no clear spatial configura-
tion. Recent works on symmetry [40, 59, 66, 62, 67], self-similarity [64, 16]
and structure detection is a step in this direction.

5.6 Conclusions

This chapter described feature-based methods in 3D shape analysis that are
commonly used in applications such as content-based shape retrieval and in-
variant shape correspondence. Though not completely new, this field is rela-
tively unexplored in shape analysis and has lagged behind similar methods in
2D image analysis. The success of feature-based methods in computer vision
has recently brought significant interest for developing similar approaches
in shape analysis, either by finding analogies to 2D image features, or by
exploiting 3D shape-specific construction.

This chapter tried to overview the basic ideas and principles in modern
feature-based shape analysis models, placing an emphasis on feature detection
and description, their invariance and quality. For different applications of
these methods (e.g. in shape retrieval), the reader is referred to other chapters
in this book.

It should be understood that feature-based shape analysis is a complicated
pipeline with inter-dependent stages and, in particular, feature detection and
description is a linked pair of operations. In some cases, the link is very
natural and homogenous and falls under the same mathematical model. For
example, heat kernels can be used for both detection (heat kernel features)
and description (heat kernel signatures).

More generically, it is possible to use different methods for feature detec-
tion and description. However, it is important to understand the strengths
and limitations of each approach, which are often dependent on the data in
hand. For example, one might use Gaussian curvature extrema as a detector,
but then using spin images as a descriptor could be a bad idea, since they
depend on the normal and Gaussian curvature extrema are exactly where
this normal is changing the most.
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5.7 Further Reading

For a broad overview of geometric foundations and algorithms in shape anal-
ysis, we refer the reader to [14]. For an excellent comprehensive treatment of
differential and Riemannian geometry the reader is referred to [28] and [7].
While focusing on local features in this chapter, we intentionally completely
left aside an interesting and broad field on global or holistic shape descrip-
tors based on global geometric quantities such as metric distributions. The
reader is referred to the chapter on manifold intrinsic similarity in [72] for an
overview of these methods. An introduction to diffusion geometry and diffu-
sion maps can be found in [25]. Details of SHREC’10 benchmarks mentioned
in this chapter appear in [10, 11, 12]. Algorithms for dimensionality reduc-
tion and hashing of descriptors in the context of deformable shape retrieval
are discussed in [19, 79]. For additional details on shape retrieval, refer to
Chap. 7 of this book.

5.8 Questions

1. Give three example applications where feature-based methods in 3D shape
analysis are useful.

2. What qualities do we look for in a good feature detector?
3. What qualities do we look for in a good feature descriptor?
4. Explain why descriptor invariance and the information richness of a de-

scriptor often need to be traded-off against each other. Use spin images as
an example in your argument.

5. Explain why Gaussian curvature is an intrinsic shape property, whereas
mean curvature is not.

6. Outline how heat kernel signatures can be used to determine a set of
correspondences across two shapes.

7. Explain the effect of global uniform shape scaling of the shape on the
eigenfunctions and eigenvalues of the Laplace-Beltrami operator.

5.9 Exercises

1. Compute the Gaussian curvature map on a 3D shape and display it as a
colormap. Which points have positive Gaussian curvature? Negative cur-
vature?

2. Repeat Exercise 1 using several local scales. How does it affect the result?
3. Determine the local extrema of the Gaussian curvature at the most suitable

scale. Display the detected points by overlaying them on the 3D shape.
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4. Compute a set of descriptors at the points detected in Exercise 3. As
the descriptor at each point, use the coordinates x, y, z. Under what cir-
cumstances is x, y, z a good/poor choice of descriptor with this particular
detector?

5. Match the descriptors across a pair of facial scans of the same person
using simple Euclidean metric. Note the problems matching across the
symmetrical face. Suggest solutions to this problem of point matching for
symmetrical objects.

6. Given a shape represented as a triangular mesh, discretize the Laplace-
Beltrami operator using the cotangent weights formula. Compute and show
the eigenvalues and eigenfunctions of the Laplace-Beltrami operator.

7. Test the effect of shape transformations on the eigenvalues and eigen-
functions of the Laplace-Beltrami operator. Experimentally confirm their
bending-invariance.

8. Using the eigenvalues and eigenfunctions of the Laplace-Beltrami operator,
compute the heat kernel. Show the heat kernel diagonal values at points
of different curvature.

9. Using the heat kernel diagonal, compute the HKS descriptor. Test its be-
havior for different values of time scale.

10. Compute dense HKS descriptor on multiple shapes (use for example the
SHREC dataset). Create a geometric vocabulary by clustering in the HKS
descriptor space. Compute a bag of features by means of vector quanti-
zation of the descriptors in the geometric vocabulary. Compare different
settings of hard and soft quantization.

11. Using bags of features computed in Exercise 10, perform shape retrieval
on a dataset of shapes undergoing deformations. Experimentally observe
invariance and sensitivity of the descriptors.
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