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Abstract. Presented here is the problem of recovering a dynamic image super-
imposed on a static background. Such a problem is ill-posed and may arise e.g.
in imaging through semireflective media, in separation of an illumination image
from a reflectance image, in imaging with diffraction phenomena, etc. In this
work we study regularization of this problem in spirit of Total Variation and gen-
eral sparsifying transformations.

1 Introduction

In this paper, we consider a problem of recovering images of two objects superimposed
on each other, where one of the objects is static (background) and the other one is
dynamic. Such problem can arise in imaging through semireflective media, in separation
of an illumination image from a reflectance image, in imaging with varying diffraction
phenomena, etc. An example of semireflective layers separation is shown in Figure 1.
In such a setup, the camera observes a superposition of two layers: the real layer is the
object (dog), seen through the glass. The virtual layer (girl) is formed by light reflected
from the glass.

We assume that one of the objects is dynamic and that several time frames of the
observed scene are available. Using this information, it is possible to recover both com-
ponents by solving an underdetermined linear system. Since the problem is ill-posed,
an appropriate regularization must be used.

Weiss [1] suggested a solution to this problem based on the observation that filtered
version of an image is usually sparse, when the filter is a differentiation operator. How-
ever the suggested solution uses reconstruction in the domain of filtered images, which
may suffer from noise amplification. Also explicit use of inverese filters restricts use of
other (nonlinear) priors.

In our work we study more general regularizations of this problem, in spirit of Total
Variation and general sparsifying transformations.
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Fig. 1. Scheme of an optical setup involving a semireflector.

2 Regularized separation of layers

Let us be given a time sequence of T observations of the form

y(k) = x(0) + x(k) + ξ(k), k = 1, ..., T, (1)

where x(0) is a M ×N image of the static (background) object, x(k) are images of the
dynamic object at different times, and ξ(k) is additive noise, which possibly contami-
nates the observations. An example of such a sequence is given in Figures 3–4. We will
henceforth refer to the T + 1 images x(k), k = 0, ..., T as to sources. The problem of
recovering T +1 unknown images from only T observed images is ill-posed. However,
plausible separation results might be obtained if the solution is restricted to some class
of images, to which the sources are believed a priori to belong. For simplicity of pre-
sentation, we assume that both the static and the dynamic sources obey the same prior
(which is in general not necessary).

Assuming that the prior can be expressed via convex penalty function ϕ (x), the
separation problem can be formulated as finding such x(k)’s that obey (1) up to some
allowed discrepancy due to noise and slight deviations from the linear model, and min-
imize

∑
k ϕ

(
x(k)

)
. This leads to the following constrained convex minimization prob-

lem:

min
x(0),...,x(T )

T∑

k=0

ϕ
(
x(k)

)
s.t.

∥∥∥x(0) + x(k) − y(k)
∥∥∥

2

2
≤ β

x(k) ≥ 0, (2)

where β is usually chosen proportionally to the noise variance and the second constraint
guarantees non-negativity of the estimated images. The latter can be reformulated as
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unconstrained minimization of the convex function

f
(
x(0), ..., x(T )

)
=

T∑

k=0

ϕ
(
x(k)

)
+ λ1

T∑

k=1

∥∥∥x(0) + x(k) − y(k)
∥∥∥

2

2
+ λ2

∑

i,j,k

ψ
(
x

(k)
ij

)
, (3)

where ψ(t) is a penalty on negativity and λ1, λ2 are parameters.

2.1 Generalized total variation regularization

A powerful prior, suitable for wide classes of natural images is obtained when ϕ (x) is
chosen to be the total variation (TV) norm of the image x

‖x‖TV =
∑

i,j

‖∇xij‖2 =
∑

i,j

√
(∂x ∗ x)2ij + (∂y ∗ x)2ij , (4)

where ∂x and ∂y are discrete derivative kernels in the x- and y-axis directions. TV
has been successfully used for regularization in inverse problems, blind deconvolution,
denoising, etc [2–5]. A more general form of the prior is the generalized total variation
(GTV) [6], given by a general bivariate function of the form

ϕ(x) =
∑

i,j

h
(
(a ∗ x)ij , (b ∗ x)ij

)
, (5)

where a, b are some convolution kernels and e.g. h(u, v) =
√

u2 + v2 + ε2. In the latter
case, the TV norm is a particular case obtained when a = ∂x and b = ∂y.

2.2 Gradient and Hessian of f
(
x(0), ..., x(T )

)

Assuming the GTV prior (5), the gradient of f
(
x(0), ..., x(T )

)
from (3) is given by

∂f

∂x
(m)
ij

=
∑

k,l

(
hu

(
u

(m)
kl , v

(m)
kl

)
ak−i,l−j + hv

(
u

(m)
kl , v

(m)
kl

)
bk−i,l−j

)

+2λ1

(
x

(0)
ij + x

(m)
ij − y

(m)
ij

)
+ λ2ψ

′
(
x

(m)
ij

)
(6)

for m > 0 and

∂f

∂x
(0)
ij

=
∑

k,l

(
hu

(
u

(0)
kl , v

(0)
kl

)
ak−i,l−j + hv

(
u

(0)
kl , v

(0)
kl

)
bk−i,l−j

)

+2λ1

T∑

k=1

(
x

(0)
ij + x

(k)
ij − y

(k)
ij

)
+ λ2ψ

′
(
x

(0)
ij

)
(7)

for m = 0, where u(k) = a ∗ x(k) and v(k) = b ∗ x(k). The first term accounting for
the prior can be evaluated efficiently using FFT-based convolution. Since the kernels a
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and b are usually significantly smaller compared to the source images x(k), the use of
the overlap-and-add (OLA) method is especially advantageous.

The Hessian of f
(
x(0), ..., x(T )

)
is given by

∂2f

∂x
(m)
ij ∂x

(m′)
i′j′

=
∑

k,l

(
huu

(
u

(m)
kl , v

(m)
kl

)
ak−i,l−jak−i′,l−j′

+hvv

(
u

(m)
kl , v

(m)
kl

)
bk−i,l−jbk−i′,l−j′

+huv

(
u

(m)
kl , v

(m)
kl

)
bk−i,l−jak−i′,l−j′

+huv

(
u

(m)
kl , v

(m)
kl

)
ak−i,l−jbk−i′,l−j′

)
δmm′

+2λ1γmm′δii′δjj′ + λ2ψ
′′

(
x

(m)
ij

)
δmm′δii′δjj′ , (8)

where δmm′ is the Kroenecker delta and γmm′ = 1 for m = m′ or m = 0 or m′ = 0 and
0 otherwise. In the following, for notation convenience we will denote the gradient by
∇x(0),...,x(T )f(x(0), ..., x(T )) and the Hessian by ∇2

x(0),...,x(T )f(x(0), ..., x(T )). Parsing
the T +1 images to MN column vector, we can represent the gradient as a (T +1)NM
vector and the Hessian as a (T + 1)NM × (T + 1)NM matrix.

The Hessian has a (T + 1) × (T + 1) block structure with MN × MN blocks.
The first term in (8) yields a band-diagonal structure of the diagonal blocks, where the
number of the diagonals and the number of bands depend on the sizes of the kernels a
and b. The second and the third terms account for a constant principal diagonal in the
diagonal blocks of the Hessian, whereas the second term also accounts for a constant
diagonal in the first row and column blocks. Typical Hessian structure is depicted in
Figure 2. The sparse structure of the Hessian is very helpful for solving efficiently the
Newton system, while carrying the optimization.

2.3 Sparsity-based priors

Another powerful class of priors on images is related to their sparse representation using
some system of basis functions, or overcomplete ”dictionaries”, based on wavelets,
curvelets, contourlets, etc. This paradigm is already used in image denoising and in
solution of some inverse problems. Assume that the original images can be represented
as

x(k) =
∑

l

c
(k)
l φl

or in operator form
x(k) = Φc(k)

where the coefficients c
(k)
l are sparse. The following regularized problem can be con-

sidered:

min
c

T∑

k=0

‖c(k)‖1 + λ1

T∑

k=1

∥∥∥Φc(0) + Φc(k) − y(k)
∥∥∥

2

2
+ λ2

∑

i,j,k

ψ
(
(Φc(k))ij

)
,
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Fig. 2. Example of the Hessian sparse structure in a problem with 3 frames of size 5 × 5 and
a = ∂x, b = ∂y . Black shows non-zero elements.

2.4 Minimization of f
(
x(0), ..., x(T )

)

Since the function f
(
x(0), ..., x(T )

)
is convex with respect to x(0), ..., x(T ), it can be

minimized using standard convex optimization technique [7]. In our case, second-order
Newton-type methods appear especially appealing. Let us denote by X the (T +1)NM
vector of variables x(0), ..., x(T ) in column-stack representation. In the basic Newton
method, the minimization of f (X) is carried out by iteratively updating X in the fol-
lowing manner

X[k + 1] = X[k] + α[k]d[k] (9)

where k denotes the iteration index, α(k) is the step size and d(k) is the Newton direc-
tion, give by the solution of the Newton system:

∇2f(X[k])d[k] = −∇f(X[k]). (10)

The Newton system, in turn, can be solved iteratively to some preset degree of accu-
racy, e.g. using the conjugate gradients method [7], which does not require an explicit
Hessian computation, but rather computation of Hessian-vector products. Such compu-
tations are very efficient due to the sparse structure of the Hessian. This version of the
Newton algorithm with approximate solution of the Newton system is often referred to
as inexact or truncated Newton [8] method.

Since the function is convex, global convergence is guaranteed with any initializa-
tion. Yet, selecting an initialization which is sufficiently close to the solution, e.g. using
the mixture images to initialize x(0), ..., x(T ), faster convergence can be achieved.
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3 Computational Results

In this work we present computational experiments with TV prior, leaving sparsity-
based priors for future study. The proposed method was tested on synthetic data created
by superposition of a static image of a female face and three frames showing a running
dog (Figure 3). The observed result is a sequence of 3 frames (Figure 4).

The separation was carried out using the TV norm with smoothing parameter ε =
10−3 and the non-negativity penalty, with λ1 = 10−1, λ2 = 10−1. The mixture images
y(1), ..., y(3) were used as the initialization for x(1), ..., x(3), and the image y(1) was
used as the initialization for x(0). Optimization was carried out using the truncated
Newton algorithm. The reconstructed images are shown in Figure 5.

Our algorithm provides a plausible separation of the background and the dynamic
scene. Slight residuals of the dynamic scene are visible in the reconstructed image.
These artifacts appear in regions where there is little or no motion in the dynamic scene,
and thus the separation problem is ill-posed. The use of the TV prior results in a slight
degradation of the texture details in the reconstructed dynamic scene.

4 Discussion

We presented an efficient solution of the ill-posed problem arising in separation of
semireflective dynamic image from static background using TV prior. Further research
should explore other types of priors, e.g. on coefficients of some decomposition (e.g.
wavelet-type) of the images. Application to other optical problems should be considered
as well. A potentially interesting application is separation of illumination and reflection
components in pictures with multiple exposures [9].
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x(0) (background) x(1) x(2) x(3)

Fig. 3. Source sequence. First column: static background image, second through fourth columns:
three frames of the dog sequence.

y(1) y(2) y(3)

Fig. 4. Observed mixtures sequence.

x̃(0) (background) x̃(1) x̃(2) x̃(3)

Fig. 5. Unmixed sequence.


