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Abstract— We propose a relative optimization framework for
quasi maximum likelihood (QML) blind deconvolution and the
relative Newton method as its particular instance. Special Hessian
structure allows fast Newton system construction and solution,
resulting in a fast-convergent algorithm with iteration complexity
comparable to that of gradient methods. We also propose the
use of rational IIR restoration kernels, which constitute a richer
family of filters than the traditionally used FIR kernels. We
discuss different choices of non-linear functions suitable for
deconvolution of super- and sub-Gaussian sources, and formulate
the conditions, under which the QML estimation is stable.
Simulation results demonstrate the efficiency of the proposed
methods.

Index Terms— blind deconvolution, Newton method, natural
gradient, maximum likelihood.

I. I NTRODUCTION

BLIND deconvolution (BD) appears in various applications
related to acoustics, optics, geophysics, communications,

control, etc. In communications, the termblind channel equal-
ization is more common, as the main interest lies in retrieving
the data transmitted over a dispersive communication channel
[1]–[4]. In control, BD is usually known asblind identification,
since the main goal is to obtain a model of the system [5]–
[7], whereas in acoustics, optics and geophysics the termblind
deconvolutionis more adequate, since the goal is to ”undo”
the influence of a system by finding its stable inverse.

In the general setup of the single-channel BD, the observed
sensor signalx is created from thesource signals passing
through a causal convolutive system

xn =
∞∑

k=0

ak sn−k + un, (1)

with impulse responsea and additive sensor noiseu. The setup
is termedblind if only x is available, whereasa, s and u
are unknown. BD aims to find such a deconvolution (restora-
tion) kernel w, that produces a possibly delayed waveform-
preserving estimate ofs:

s̃n =
∞∑

k=0

wk xn−k ≈ c · sn−∆, (2)

where c is an arbitrary scaling factor and∆ is an integer
shift. Equivalently, theglobal system responseshould be
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approximately a Kr̈onecker delta, up to scale factor and shift:

gn = (a ∗ w)n ≈ c · δn−∆. (3)

A commonly used assumption is thats is non-Gaussian i.i.d.
The majority of BD methods described in literature focus

on estimating the impulse response of the convolution system
A(z) from the observed signalx using a causal finite length
(FIR) model and then determining the source signals from
this estimate [6], [8]–[11]. Many of these methods use batch
mode calculations and usually suffer from high computational
complexity.

A wide class of the so-calledBussgangalgorithms estimate
directly the inverse kernelW (z) = A−1(z) by minimizing
some cost function using gradient descent iterations. The cost
function is usually based on high-order statistics or derived
from maximum likelihood or information maximization con-
siderations. These methods usually operate in the time domain
and the gradient is usually derived by applying some non-
linearity to the correlation of the observed signal and the
estimated source. One of the most popular algorithms in this
class is the constant modulus algorithm (CMA) proposed by
Godard [3]. A review of these algorithms can be found in [12].

In their fundamental work, Amariet al. [13] introduced
an iterative time-domain quasi maximum likelihood BD algo-
rithm based on natural gradient learning, which was originally
used in the context of blind source separation (BSS) [14]–
[16] and became very attractive due touniform performance
[16], [17]. The natural gradient algorithm estimates directly
the restoration kernel and allows real-time processing. In [18],
a generalization of the algorithm for multichannel case was
presented. Efficient frequency-domain implementations were
derived in [19], [20].

The natural gradient algorithm demonstrates significantly
higher performance compared to standard gradient descent.
In this work, we present a BD algorithm based on the
relative Newton method, which brings further acceleration.
The relative Newton algorithm was originally proposed in
the context of BSS in [21], [22]. We utilize special Hessian
structure to derive a fast version of the algorithm with iteration
complexity comparable to that of gradient methods. Our
algorithm constructs an expanding restoration filter, permitting
to estimate long restoration kernels using cheap iterations.

The main focus of this work is a batch mode single-channel
BD algorithm with FIR restoration kernel; yet, we also outline
the possibilities of block-wise processing and the use of IIR
kernels, and discuss the extensions to the multichannel case.
The smoothed absolute value is used as the nonlinearity for
deconvolution of super-Gaussian sources, and the smoothed
deadzone linear function is proposed for the sub-Gaussian
ones.



T-SP-01661-2003.R1 – ACCEPTED TO IEEE TRANSACTIONS ON SIGNAL PROCESSING 2

II. QML BLIND DECONVOLUTION

Under the assumption that the restoration kernelW (z)
is strictly stable, and the source signal is real and i.i.d.,
the normalized minus-log-likelihood function of the observed
signalx in the noise-free case is [13], [18], [23], [24]

`(x; w) = − 1
2π

∫ π

−π

log
∣∣W (eiθ)

∣∣ dθ +
1
T

T−1∑
n=0

ϕ (yn) , (4)

whereT is the sample size,y = w ∗ x is a source estimate,
ϕ(s) = − log p (s), andp(s) is the probability density function
(PDF) of the sources. We assume thatw is an FIR kernel
supported onn = −N, ..., N , and denote its length byK =
2N+1. We will also assume thats is zero-mean. Cost function
(4) can be also derived using negative joint entropy [13], [18]
and information maximization [25] considerations.

Consistent estimator can be obtained by minimizing`(x;w)
even whenϕ(s) is not exactly equal to− log p (s). Suchquasi
ML (QML) estimation has been shown to be practical in
instantaneous BSS when the source PDF is unknown or not
well-suited for optimization [21]. The choice ofϕ(s) and the
stability conditions of the QML estimator are discussed in
Section IV.

In practice, the first term of̀(x; w) containing the integral
is difficult to evaluate; however, it can be approximated to any
desired accuracy by

1
2π

∫ π

−π

log
∣∣W (eiθ)

∣∣ dθ ≈ 1
NF

NF−1∑

k=0

log |Wk|, (5)

whereWk are the DFT coefficients ofw zero-padded toNF .
The approximation error vanishes asNF grows to infinity. It is
convenient to chooseNF to be an integer power of 2, to allow
the use of FFT for efficient computation. For convenience, we
will henceforth refer to the approximate target function as to
`(x; w).

The gradient of̀ (x; w) w.r.t. wi is given by

∂`

∂wi
= −q−i +

1
T

T−1∑
n=0

ϕ′(yn) xn−i, (6)

whereqn is the inverse DFT ofW−1
k . The Hessian of̀(x;w)

is given by

∂2`

∂wi∂wj
= r−(i+j) +

1
T

T−1∑
n=0

ϕ′′(yn) xn−ixn−j , (7)

wherern is the inverse DFT ofW−2
k (for derivation see [26]).

Both the gradient and the Hessian can be evaluated efficiently
using FFT.

III. R ELATIVE OPTIMIZATION

Here we introduce a relative optimization framework for
BD. The main idea of relative optimization is to iteratively
produce source signal estimate and use it as the observed
signal at the next iteration. Similar approach was explored
in [22] in the context of BSS.

Relative optimization algorithm

1) Start with initial estimates of the restoration kernelw(0)

and the sourcex(0) = w(0) ∗ x.
2) For k = 0, 1, 2, ..., until convergence

3) Start withw(k+1) = δ.
4) Using an unconstrained optimization method, find

w(k+1) such that̀ (x(k); w(k+1)) < `(x(k); δ).
5) Update source estimate:x(k+1) = w(k+1) ∗ x(k).

6) End

The restoration kernel estimate atk-th iteration is
ŵ = w(0) ∗ ... ∗ w(k), and the source estimate iŝs = x(k).
This method allows to construct large restoration kernels
growing at each iteration, using a set of relatively low-order
factors. An arbitrary restoration kernel can be constructed in
this manner. In real application, it might be necessary to limit
the filter length to some maximum order, which can be done
by croppingw after each update. The relative optimization
algorithm has uniform performance, i.e. its step at iteration
k depends only ong(k−1) = a ∗ w(0) ∗ ... ∗ w(k−1), since the
update in Step 5 does not depend explicitly ona, but on the
current global system response only.

When the input signal is very long, it is reasonable to
partition the input into blocks and estimate the restoration
kernel for the current block using the data of the previous
block and the previous restoration kernel estimate. We refer
to this method at to theblock relative optimization algorithm.
It might also be useful in cases when the input signalx is
produced as a result ofs passing through a slowly varying
convolution system.

A. Relative Newton method

A Newton iteration can be used in Step 4 of the relative
optimization algorithm, yielding very fast convergence. In the
standard Newton method (see e.g. [27], [28]), the descent
directiond at each iteration is given by solution of the linear
system

Hd = −g, (8)

whereg = ∇w` andH = ∇2
w` are the gradient and Hessian of

`(x; w), respectively. In order to guarantee descent direction,
positive definiteness of the Hessian is usually forced by using
modified Cholesky factorization, which requires about1

3K3 +
K2 operations [27]. Having the Newton directiond(k), the
new iteratew(k+1) is given by

w(k+1) = w(k) + α(k)d(k),

whereα is the step size determined by either exact line search

α(k) = argmin `(x; w(k) + α(k)d(k)),

or by backtracking line search [22], [27]–[29] (the latter was
used in our implementation). The use of line search guarantees
monotonic decrease of the objective function at every iteration.
It should be noted that when the gradient norm becomes very
small (say, below10−5), computational inaccuracies make the
line search inefficient. For this reason, we used the Newton
direction as is (i.e. choseα = 1) when the gradient norm
dropped below10−5. Relative optimization algorithm using
the Newton step will be termed henceforth as therelative
Newtonmethod.
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Fig. 1. Structure of the Hessian at the solution point for FIR restoration
kernel withN = 3 (left) and IIR restoration kernel withN = M = L = 3
(right). White represents near-zero elements.

B. Fast relative Newton step

Practical use of the relative Newton step is limited to
small values ofN and T , due to the complexity of Hessian
construction, and solution of the Newton system. However,
this complexity can be significantly reduced if special Hessian
structure is exploited. In the proximity of the solution point,
x(k) ≈ cs, hence∇2`(x; δ) evaluated at each relative Newton
iteration becomes approximately∇2`(cs; δ). For a sufficiently
large sample size (in practice,T > 102), the following
approximation holds:

Proposition 1: The Hessian`(cs; δ) has an approximate
diagonal-anti-diagonal structure, with unit anti-diagonal.

Proof: Substitutingw = δ, x = cs and y = δ ∗ x = cs
into `(x; w) in (7), one obtains

∂2`

∂wi∂wj
= δi+j +

1
T

T−1∑
n=0

ϕ′′(csn) csn−i csn−j .

For a large sample sizeT , the sum approaches the correspond-
ing expectation value. Invoking the assumption thats is zero-
mean i.i.d., one obtains

∂2`

∂wi∂wj
≈ δi+j + IE {ϕ′′(csn) csn−i csn−j}

=





IEϕ′′(cs)(cs)2 + 1 : i = j = 0,
IEϕ′′(cs) · IE(cs)2 : i = j 6= 0,
1 : i = −j 6= 0,
0 : otherwise,

where IE denotes the expectation operator.
Typical Hessian structure is depicted in Figure 1 (left).

Under this approximation, the Newton system (8) separates
to K systems of linear equations of size2× 2

(
H−k,−k 1

1 Hkk

)(
d−k

dk

)
= −

(
g−k

gk

)
(9)

for k = 1, ...,K, and an additional equation

H00 d0 = −g0. (10)

In order to guarantee descent direction and avoid saddle points,
we force positive definiteness of the Hessian by inverting the
sign of negative eigenvaluesλ1

k, λ2
k in system (9) and forcing

small eigenvalues to be above some positive threshold, say,
ε = 10−8 · max

{|λ1
k|, |λ2

k|
}

. Computation of the Hessian
approximation involves evaluation of its main diagonal only,

which is of the same order of complexity as gradient compu-
tation. Approximate solution of the Newton system requires
O (N) operations.

Due to the separable structure of the problem, the fast
relative Newton step can be performed by updating each time
a different triplet of coordinatesw−k, w0, wk in the vector
of optimization variablesw. This implies solution of a small
problem with3 optimization variables, using the fast relative
Newton method. This idea can be simply generalized for more
general symmetric blocks of coordinates of the vectorw. A
similar block-coordinate update has been successfully used in
QML BSS [29].

IV. T HE CHOICE OFϕ(s)
The choice ofϕ(s) is limited first of all by the QML

estimator stability conditions. Here we addressasymptotic
stability only. In order to obtain an asymptotically stable
estimator of the restoration kernelw, w = δ must be a strict
minimum point of`(cs; w) in the limit T →∞.

Proposition 2: The QML estimator of the restoration kernel
w obtained by minimization of̀(x; w) is asymptotically stable
if [30]

IEϕ′′(cs)(cs)2 + 1 > 0 (11)

IEϕ′′(cs) > 0 (12)

IEϕ′′(cs) · IE(cs)2 > 1, (13)

where the scaling factorc obeys the equation

IEϕ′(cs)cs = 1. (14)

Remark: that the expectations are evaluated w.r.t. the true
source PDF.

Proof: w = δ is a strict minimum point of̀ (cs; w) in the
limit T →∞ if the asymptotic gradient IE∇`(cs; δ) vanishes
and the asymptotic Hessian IE∇2`(cs; δ) from Proposition 1
is positive definite. The former holds trivially when (14) is
satisfied, whereas the latter holds if conditions (11)-(13) are
satisfied.

Note that anyconvexϕ(s) satisfies conditions (11) and
(12) under mild assumptions on the source PDF, hence,
(13) becomes essentially the only stability condition. In this
paper we discuss three choices of convexϕ(s): the smoothed
absolute value, the power function and the smoothed deadzone
linear function.

A. Smoothed absolute value

When the source is super-Gaussian, e.g. sparse (sources
common in seismology), or sparsely representable, a smooth
approximation of the absolute value function usually obeys the
asymptotic stability conditions [31]–[33]. The typical choice
of ϕ(s) in this case is

ϕABS
λ (s) = −λ

2
log

(
tanh2

( s

λ

)
− 1

)
,

so thatϕ′λ(s) = tanh (s/λ). The scalarλ acts as a smoothing
parameter, yieldingϕABS

λ (s) → |s| in the limit λ → 0+. Other
possible choices areϕABS

λ (s) =
√

s2 + λ2 and [22]

ϕABS
λ (s) = |s| − λ log

(
1 +

|s|
λ

)
(15)
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(see Figure 2, left). The latter choice was found espe-
cially suitable for Newton-based optimization due to itsself-
concordanceup to a factor [28], [34]. It can be shown that
in the limit λ → 0+, the asymptotical stability condition (13)
reduces to

IE|s| < 2p(0)IEs2.

B. Power function

In case of sub-Gaussian sources, common in digital com-
munications, the family of power functions

ϕPWR
µ (s) = |s|µ (16)

with the parameterµ > 2 is usually a good choice for the
non-linearity (see Figure 2, center). It can be shown that the
asymptotical stability conditions reduce to

IE|s|µ+2 < (µ + 1)IEs2 IE|s|µ,

which for the particular choice ofµ = 4 corresponds to
negative kurtosis excess. An increase ofµ usually yields
better performance; for example, when sources are uniformly
distributed,ϕPWR

µ (s) approaches the minus log-PDF in the
limit µ → ∞. However, it is obvious that large values ofµ
imply high sensitivity to outliers due to the high powers.

C. Smoothed deadzone linear function

As a remedy to the sensitivity to outliers, we propose to
replace the power function with thedeadzone linearfunction
of the form

ϕDZ
µ (s) = µ ·max {|s| − 1, 0} , (17)

which is often used in regression, data fitting and estimation
[28]. This function has linear increase with controllable slope
µ, and is known to have low sensitivity to outliers compared to
the power function. Up to an additive constant, the deadzone
linear function can be smoothly approximated by

ϕDZ
λ,µ(s) =

µ

2
(
ϕABS

λ (s− 1) + ϕABS
λ (s + 1)

)
(18)

(see Figure 2, right), where the parameterλ controls the
smoothness.

In the limit λ → 0+, the smoothed deadzone linear function
(18) yields an asymptotically stable QML estimator forµ
satisfying the following coupled equation and inequality w.r.t.
µ andc:

µ >
1

2c · IEs2 (p (c−1) + p (−c−1))

1 = µc

∫

|cs|≥1

|s| p(s)ds.

In the particular case of sources with compactly supported
PDF (e.g. digital communication signals), which take the
extreme values with non-zero probability, a more explicit
condition can be obtained. Let us denote bysext the extreme
value thats takes (either positive or negative, including the
case when the distribution is symmetric), and letρ = P (|s| =
sext). Then, for a sufficiently smallλ, (14) becomes

1 = IEϕ′(cs)cs ≈ ρ · ϕ′(csext).

Since ϕ′(s) is monotonic andϕ′(s) → µ for s → ∞, one
obtainsµ > ρ−1. For example, if the source is a symmetric
N -level pulse amplitude modulation (PAM) signal,µ > N

2
must hold.

For a sufficiently smallλ,

ϕ′(csext) ≈ µ

2

(
1 +

csext − 1
λ + |csext − 1|

)

ϕ′′(csext) ≈ µλ

2 (λ + |csext − 1|)2 . (19)

Substitutingρ · ϕ′(csext) ≈ 1 and expressingϕ′′ in terms
of ϕ′ yields ϕ′′(csext) ≈ 2 max

{
(µρ− 1)2, 1

}
/2λµρ2, from

where, usingcsext ≈ 1, the asymptotic stability condition can
be derived:

1 < IEϕ′′(cs)IE(cs)2 ≈ ρ ϕ′′(csext) · c2 IEs2

≈ 2σ2 max
{
(µρ− 1)2, 1

}

s2
extλµρ

. (20)

V. SUPER-EFFICIENT ESTIMATION

In [33], it was shown that in the noise-free case, the
asymptotic variance of the estimation error∆w is given by

var∆wk ≈(
IEϕ′2(cs)

(
IE2ϕ′′(cs)IE2(cs)2 + 1

)− 2IEϕ′′(cs)
)

IE(cs)2

T
(
IE2ϕ′′(cs)IE2(cs)2 + 1

)2

for k 6= 0, and

var∆w0 ≈ IEϕ′2(cs)(cs)2 − 1
T (IEϕ′′(cs)(cs)2 + 1)2

.

Let us now consider the particular case of strictlysparse
sources, i.e. such sources that take the value of zero with
some non-zero probabilityρ > 0. An example of such dis-
tribution is the Gauss-Bernoully (sparse normal) distribution
[33]. Whenϕ(s) is chosen according to (15),ϕ′λ(s) → sign(s)
andϕ′′λ(s) → 2δ(s) asλ → 0+. Hence, for a sufficiently small
λ,

IEϕ′′(cs) ≈ 1
λ

∫ +λ/c

−λ/c

p(s) ds ≈ ρ

λ
,

whereas IEϕ′2(cs) andc are bounded. Consequently, fork 6= 0

plim
T→∞

T · var∆wk ≤ IEϕ′2(cs)
IE2ϕ′′(cs)IE(cs)2

≤ const · λ2,

whereplim denotes the probability limit. Observe that

lim
λ→0+

plim
T→∞

T · var∆wk ≤ lim
λ→0+

const · λ2 = 0,

that is, the QML estimator issuper-efficientin the limit
λ → 0+, assuming absence of noise.

Similarly, for sources whose PDF is compactly supported,
it can be shown that the choice of the power function (16)
or the smoothed deadzone linear function (18) yields a super-
efficient estimator in the limitµ → ∞. When in addition
the source signal takes the values at the extremal points of
the interval with some non-zero probabilityρ, the use of
the smoothed deadzone linear function (18) withλ → 0+

and finite µ > ρ−1 yields a super-efficient estimator, since
ϕ′′(csext) in (19) grows to infinity asλ approaches zero.
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Fig. 2. Different choices ofϕ(s): smoothed absolute value (15) (left), power function (16) (center), and the smoothed deadzone linear function (18) up to
an additive constant (right), for different values ofλ andµ.

Sequential optimization

For extremely small values ofλ or extremely large values
of µ, optimization of the objective functioǹ(x; w) becomes
numerically difficult. To avoid this problem, one can start
with a relatively large value ofλ (or small value ofµ) and
gradually reduce (or increase) it on each iteration of the
relative optimization algorithm. Thissequential optimization
algorithm has been previously used in the BSS problem,
wherein it has demonstrated very high accuracy [22]. As an
alternative, the smoothing method of multipliers proposed in
[35] can be used.

VI. GENERALIZATIONS

A. IIR restoration kernels

For consistency of relative optimization, it is favorable that
the restoration kernelw for a group, such that the action ofwk

can be undone bywk+1. This may be satisfied with rational
IIR restoration filters of the form

W (z) =
h−NzN + ... + hNz−N

(1 + b1z−1 + ... + bMz−M ) (1 + f1z + ... + fLzL)
,

parameterized by the ARMA coefficientsh−N , ..., hN ,
b1, ..., bM and f1, ..., fL. Additional advantage of using an
ARMA parametrization ofw appears when the convolution
systema has zeros close to the unit circle, and the restoration
kernel w has to be long in order to achieve good restoration
quality.

Restoration kernel produced at thek-th iteration of the
relative Newton algorithm is of the following form:

Ŵ (z) =
H(0)(z) · ... ·H(k)(z)

B(0)(z) · ... ·B(k) · F (0)(z) · ... · F (k)
.

Since the kernels found at first iterations can be arbitrary, a
necessary condition that the zeros and the poles ofW (0)(z)
can be cancelled by the poles and the zeros of the subse-
quent factors. This implies that the kernelW (k)(z) has to
be invertible for everyk, i.e. H(k)(z), B(k)(z) and F (k)(z)
have no roots outside the unit circle. WhenL = M = N ,
the subspace of filters of the formH(z)

B(z)F (z) with stable non-
zero H(z), B(z) and F (z) form a convolutional group. In
order to force stability of the restoration kernel in the relative
optimization algorithm, line search should be restricted to
its stability region, e.g. by checking the value of the log

determinant of the Toeplitz matrices associated withh, b and
f [26], [33].

The asymptotic Hessian of`(x; h, b, f) with respect to these
coefficients, evaluated atw = δ (i.e., all the coefficients, except
h0 = 1 are set to zero) andx = cs has the following sparse
structure:

∂2`

∂bi∂bj
=

∂2`

∂fi∂fj
≈

{
IEϕ′′(cs) · IE(cs)2 : i = j,
0 : otherwise,

∂2`

∂bi∂fj
≈

{
IEϕ′(cs)(cs) : i = j,
0 : otherwise,

and

∂2`

∂bi∂hj
=

∂2`

∂fi∂h−j
≈





IEϕ′′(cs) · IE(cs)2 + IEϕ′(cs)(cs) : i = j = 0,
IEϕ′′(cs) · IE(cs)2 : i = j > 0,
IEϕ′(cs)(cs) : i = −j > 0,
0 : otherwise,

where the indicesi, j are in the appropriate ranges. The
derivative ∂2`

∂hi∂hj
has the same form as ∂2`

∂wi∂wj
in Propo-

sition 1. Typical Hessian structure is depicted in Figure 1
(right). Approximate Newton system solution can be carried
out using an analytical expression for the regularized inverse of
the structured Hessian. Another possibility is to consider tech-
niques for solution of sparse symmetric systems. For example,
one can use sparse modified Cholesky factorization for direct
solution, or alternatively, conjugate gradient-type methods,
possibly preconditioned by incomplete Cholesky factor, for
iterative solution. In both cases, Cholesky factor is often
not as sparse as the original matrix, but it becomes sparser,
when appropriate reordering is applied before factorization.
Approximate Hessian evaluation and Newton system solution
have the complexity of a gradient descent iteration.

B. The MIMO case

In the MIMO case, the multichannel convolution model
involvescrosstalk,

xin =
∑

j,k

aijksj,n−k,
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where xin is the i-th observed channel andsjn is the j-th
source. Restoration is performed using a matrix of filterswijk:

yin =
∑

j,k

wijkxj,n−k.

The normalized minus log likelihood function becomes [13]

`(x; w) = − 1
2π

∫ π

−π

log
∣∣detW (eiθ)

∣∣ dθ +
1
T

∑

i,n

ϕi (yin) ,

whereW (eiθ) is a matrix of the DFTs ofwijk taken w.r.t. the
index k.

In [30], it was shown that in the MIMO case, the Hessian
of `(x;w) for xi = cisi and wijk = δijδk has the following
approximate sparse structure:

∂2`

∂wijk∂wi′j′k′
≈





IEϕ′′i (cisi)(cisi)2 + 1 : i = i′ = j = j′, k = k′ = 0,
IEϕ′′i (cisi) · IE(cjsj)2 : i = i′, j = j′, k = k′ 6= 0,
1 : i = j′, j = i′, k = −k′,
0 : otherwise.

Due to this sparse structure, the use of the fast relative Newton
method is feasible. The block-coordinate update might be also
done by updating each time the symmetric sets of coefficients
wij,−k, wji,−k, wijk, wjik, or more general blocks containing
them.

C. The 2D case

The fast relative Newton method can be generalized for
deconvolution of images (see [33]). Direct estimation of the
restoration kernel is especially advantageous for blurs aris-
ing from scattering, whose point spread functions can be
inverted using a small FIR restoration kernel. It must be
noted, however, that unlike the 1D case, an arbitrary 2D
kernel can not be generally factorized into smaller 2D kernels
as the relative Newton method suggests. This implies that
the restoration kernel obtained using relative optimization is
usually suboptimal to the restoration kernel of the same size
obtained using standard optimization methods. However, in
practice, the achieved performance is very good.

VII. N UMERICAL RESULTS

Simulation results are presented to evaluate the performance
of the proposed algorithms. Signal-to-interference ratio (SIR)
is used as the restoration quality measure. Additional results
can be found in [26], [33].

A. Deconvolution of a PAM source

The source signal was a104 samples long i.i.d. 2-level PAM
process. The empirically measured digital microwave channel
impulse response from [36] was used to model the convolution
system. Input SNRs of 10, 20, 30, 40 and 100 dB were used.
FIR restoration kernel with 33 coefficients was adapted in
a block-wise manner, using blocks of length 33. The block
fast relative Newton algorithm was compared to Joho’s FDBD

natural gradient-based algorithm [20] (in both cases, the power
function was used withµ = 4) and to CMA withp = 2.

Figure 3 (top) presents the restoration SIR averaged over 10
independent Monte-Carlo runs, as a function of the input SNR.
For SNR higher than 20 dB, the block relative Newton algo-
rithm demonstrates an improvement of about 4 dB compared
to other methods. Good restoration quality is obtained for SNR
starting from 10 dB. In absence of noise, the relative Newton
algorithm performs very close to the theoretical SIR bound of
30.51 dB, achieving SIR of about 29 dB. Figure 4 (top) depicts
the convergence of the compared algorithms, averaged over 10
independent runs with input SNR set to 20 dB. In Figure 5
(top), the average convergence time (time in samples required
for the SIR to achieve 90% of its final value) is depicted
for different algorithms. The block relative Newton algorithm
converges in average about 10 times faster compared to FDBD
and CMA.

In our MATLAB implementation on a 700MHz Pentium
III PC, the block fast relative Newton algorithm requires about
0.6354±0.0431 msec per input sample, compared to0.0438±
0.0435 msec/sample for the FDBD algorithm and0.1605 ±
0.0298 msec/sample for CMA.

B. The deadzone linear function vs. the power function

The use of the power function (16) with different values
of µ, and the smoothed deadzone linear function (18) was
compared for deconvolution of a 2000 samples long 2-level
PAM source, degraded by the channel from the previous ex-
periment. The comparison was performed both in the absence
of noise, and in the presence of shot noise (sparse normal noise
with 0.1% density, which introduced outliers into the signal).
Figure 6 shows the SIR, averaged over 20 independent Monte-
Carlo runs, for different choices ofϕ(s). In the noiseless case,
an increase ofµ leads to better performance, as expected.
However, in the presence of shot noise, the performance drops
dramatically for largeµ’s due to sensitivity to outliers. The
proposed smoothed deadzone linear function appears to yield
higher performance in the noiseless case and demonstrates
negligible sensitivity to outliers (Figure 6, rightmost bars).

C. Deconvolution of a sparse source

The previous experiment was repeated for a104 samples
long i.i.d. sparse normal source with 20% density of the non-
zero samples. The block fast relative Newton algorithm was
compared to the FDBD algorithm. In the first case,ϕ(s) was
chosen according to (15) withλ = 10−2, whereas in the
second the exact absolute value was used. Figure 3 (bottom)
presents the average restoration SIR as a function of the
input SNR. For SNR higher than 20 dB, the block relative
Newton algorithm demonstrates an improvement of about 7
dB compared to other methods. Good restoration quality is
obtained for SNR starting from 10 dB. Figure 4 (bottom)
depicts the convergence of the compared algorithms, averaged
over 10 independent runs, with input SNR set to 20 dB. In
Figure 5 (bottom), the average convergence time is depicted
for different algorithms. The block relative Newton algorithm
converges in average about 5-10 times faster compared to
FDBD.
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Fig. 3. Average restoration quality (in terms of SIR) as a function of input
SNR for the 2-level PAM source (top) and the sparse source (bottom). 95%
confidence intervals are indicated.

D. Rational restoration kernel

Advantages of an IIR restoration kernel are demonstrated in
the following experiment. Input signal was generated by fil-
tering a 1000 samples long sparse normal i.i.d. process by the
kernel from the previous experiments. Sequential optimization
algorithm was used withλ decreasing from1 to 10−10 with the
rate of 0.1 per iteration. Three restoration kernel configurations
were tested: FIR (numerator only), causal all-pole IIR (causal
denominatorb only) and a rational kernel with equal length
numerator and causal denominator. Figure 7 depicts the SIR,
averaged over 10 Monte-Carlo runs, as a function of the
number optimization variables for different assignments of
the degrees of freedom to restoration kernel numerator and
denominator. SIR higher than 20 dB was obtained for the all-
pole IIR kernel starting from6 degrees of freedom, for the
rational kernel starting from 8 degrees of freedom, and for
the FIR kernel starting only from 16 degrees of freedom. A
practically ideal SIR was achieved by the all-pole IIR kernel
starting from 8 degrees of freedom.

VIII. C ONCLUSION

We have presented a relative optimization framework for
QML single channel BD and studied the relative Newton
method as its particular instance. Expanding kernel permits
construction of long restoration kernels with cheap iterations.
Diagonal- anti-diagonal structure of the Hessian in the proxim-
ity of the solution allows to derive a fast version of the relative
Newton algorithm, with iteration complexity comparable to
that of gradient methods. Additionally, we introduced rational
restoration kernels, which constitute a richer and more flexible
family of filters than the traditionally used FIR kernels, and
often allow to reduce the optimization problem size. We
also proposed the use of the deadzone linear function for
sub-Gaussian sources, which is significantly less sensitive to
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Fig. 4. Average convergence (in terms of SIR) as a function of time in
samples for the 2-level PAM source (top) and the sparse source (bottom).
Input SNR is set to 20 dB.
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Fig. 5. Average convergence time in samples as a function of input SNR for
the 2-level PAM source (top) and the sparse source (bottom). 95% confidence
intervals are indicated.

outliers than the commonly used non-linearities, and achieves
super-efficient estimation in the absence of noise.

Relative Newton method appears to be effective for decon-
volution of sparse signals, when the smoothed absolute value
function is used. Despite the natural signals and images are
often not sparse, they can be brought to a sparse form by
means of sparsifying transformation [33]. Such a transforma-
tion can be constructed either from knowledge of the source
nature, or by means of learning on a set of representative
sources. Similar sparsifying approach based on wavelet-type
representations was succesfully used in BSS [32].

In simulation studies with super- and sub-Gaussian sources,
the proposed methods exhibited very fast convergence and
higher accuracy compared to the state-of-the-art approaches
such as CMA and natural gradient-based QML algorithms. Our
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Fig. 7. SIR as a function of degrees of freedom for different restoration
kernel configurations. 95% Confidence intervals are shown.

algorithm yields plausible restoration quality in low to medium
noise conditions. Possible applications are in acoustics and
communications, especially where high accuracy and fast con-
vergence are required. We are currently working on extending
the presented approach to the multichannel and complex cases.
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