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Abstract—We propose a relative optimization framework for approximately a Konecker delta, up to scale factor and shift:
quasi maximum likelihood (QML) blind deconvolution and the
relative Newton method as its particular instance. Special Hessian g = (a*w), =c-dpn. (3)
structure allows fast Newton system construction and solution, . A L
resulting in a fast-convergent algorithm with iteration complexity A Commor_lly_used assumption is thﬁ'_s non_—G{_;lussmn i.i.d.
comparable to that of gradient methods. We also propose the ~ The majority of BD methods described in literature focus
use of rational IIR restoration kernels, which constitute a richer on estimating the impulse response of the convolution system
famlly of filters than the traditionally used FIR kernels. We A(Z) from the observed Signa] using a causal finite |ength

discuss dlfferent choices of non-llnear functions suitable for (FIR) model and then determining the source signals from
deconvolution of super- and sub-Gaussian sources, and formulate

the conditions, under which the QML estimation is stable. NS estimate [6], [8]-[11]. Many of these methods use batch
Simulation results demonstrate the efficiency of the proposed Mode calculations and usually suffer from high computational

methods. complexity.
Index Terms—blind deconvolution, Newton method, natural A wide class of the so-calleBussgangalgorithms estimate
gradient, maximum likelihood. directly the inverse kerelW (z) = A~1(z) by minimizing

some cost function using gradient descent iterations. The cost
function is usually based on high-order statistics or derived
from maximum likelihood or information maximization con-
LIND deconvolution (BD) appears in various applicationsiderations. These methods usually operate in the time domain
related to acoustics, optics, geophysics, communicatioasd the gradient is usually derived by applying some non-
control, etc. In communications, the tebtind channel equal- linearity to the correlation of the observed signal and the
izationis more common, as the main interest lies in retrievingstimated source. One of the most popular algorithms in this
the data transmitted over a dispersive communication chanaoklss is the constant modulus algorithm (CMA) proposed by
[1]-[4]. In control, BD is usually known aklind identification Godard [3]. A review of these algorithms can be found in [12].
since the main goal is to obtain a model of the system [5]-In their fundamental work, Amaret al. [13] introduced
[7], whereas in acoustics, optics and geophysics the bdimd  an iterative time-domain quasi maximum likelihood BD algo-
deconvolutionis more adequate, since the goal is to "undofithm based on natural gradient learning, which was originally
the influence of a system by finding its stable inverse. used in the context of blind source separation (BSS) [14]-
In the general setup of the single-channel BD, the observdd] and became very attractive due uoiform performance
sensor signalr is created from thesource signals passing [16], [17]. The natural gradient algorithm estimates directly

I. INTRODUCTION

through a causal convolutive system the restoration kernel and allows real-time processing. In [18],
oo a generalization of the algorithm for multichannel case was
r, = Zak St + Un, (1) Presented. Efficient frequency-domain implementations were

=0 derived in [19], [20].

The natural gradient algorithm demonstrates significantly
higher performance compared to standard gradient descent.
In this work, we present a BD algorithm based on the
fElative Newton method, which brings further acceleration.
Mhe relative Newton algorithm was originally proposed in

the context of BSS in [21], [22]. We utilize special Hessian

with impulse response and additive sensor noige The setup
is termedblind if only = is available, whereas, s and u
are unknown. BD aims to find such a deconvolution (restor
tion) kernelw, that produces a possibly delayed wavefor
preserving estimate of:

~ > structure to derive a fast version of the algorithm with iteration
Sp = Z Wk Tn—k R C* Sp—A, @) complexity comparable to that of gradient methods. Our
k=0 algorithm constructs an expanding restoration filter, permitting

where ¢ is an arbitrary scaling factor and is an integer to estimate long restoration kernels using cheap iterations.
shift. Equivalently, theglobal system responsshould be  The main focus of this work is a batch mode single-channel
BD algorithm with FIR restoration kernel; yet, we also outline
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Il. QML BLIND DECONVOLUTION 1) Start with initial estimates of the restoration kernéP)

Under the assumption that the restoration kerfié(z) and the source(® = w(® x .
is strictly stable, and the source signal is real and iid., 2) For&k=0,1,2,.., until convergence
the normalized minus-log-likelihood function of the observed 3) Start withw*+1) = 4. S _
signalz in the noise-free case is [13], [18], [23], [24] 4) Using an unconstrained optimization method, find
w1 such thatt(z®; w*+1) < £(2*); ).

T-1 .
N i 1 5) Update source estimate*+1) = w(*+1) 4 z(k),
) =5 [ ToglWEO @04 73 0t @ g ey

whereT is the sample sizey = w % z is a source estimate, The restoration kernel estimate ak-th iteration is
¢(s) = —log p (s), andp(s) is the probability density function @ = w” * ... xw*), and the source estimate is= z¥.
(PDF) of the sources. We assume that is an FIR kernel This method allows to construct large restoration kernels
supported om = —N, ..., N, and denote its length b = growing at each iteration, using a set of relatively low-order
2N +1. We will also assume thatis zero-mean. Cost function factors. An arbitrary restoration kernel can be constructed in

(4) can be also derived using negative joint entropy [13], [1gpis manner. In real application, it might be necessary to limit
and information maximization [25] considerations. the filter length to some maximum order, which can be done
Consistent estimator can be obtained by minimiziag w) Py croppingw after each update. The relative optimization
even whenp(s) is not exactly equal te- log p (s). Suchquasi algorithm has uniform performance, i.e. its step at iteration

ML (QML) estimation has been shown to be practical i depends only og*~1 = axw(® ...+ w* =1, since the

instantaneous BSS when the source PDF is unknown or K@date in Step 5 does not depend explicitly @rbut on the

well-suited for optimization [21]. The choice qf(s) and the current global system response only. o

stability conditions of the QML estimator are discussed in When the input signal is very long, it is reasonable to

Section IV. partition the input into blocks and estimate the restoration
In practice, the first term of(z; w) containing the integral kernel for the current block using the data of the previous

is difficult to evaluate; however, it can be approximated to af§ock and the previous restoration kernel estimate. We refer
desired accuracy by to this method at to thelock relative optimization algorithm

It might also be useful in cases when the input signdk

Np—l . -
1 (™ 0 1 produced as a result of passing through a slowly varying
o _Wlog (W(e)| do =~ Ny ’;J log|Wil, (3 convolution system.
whereW,, are the DFT coefficients ab zero-padded tdVx. A. Relative Newton method
The approximation error vanishes &% grows to infinity. It is A Newton iteration can be used in Step 4 of the relative
convenient to choos#' - to be an integer power of 2, to allow optimization algorithm, yielding very fast convergence. In the
the use of FFT for efficient computation. For convenience, wgandard Newton method (see e.g. [27], [28]), the descent
will henceforth refer to the approximate target function as igirectiond at each iteration is given by solution of the linear
Ux;w). _ o system
The gradient off(z; w) w.r.t. w; is given by Hd = —g, ®)
ot n 1 Til (yn) s ©6) whereg = V,,f andH = V2 ¢ are the gradient and Hessian of
ow; T 4 £ n) In=i, {(z;w), respectively. In order to guarantee descent direction,
_ _ ) _ positive definiteness of the Hessian is usually forced by using
whereg,, is the inverse DFT ofV/,"". The Hessian of(z;w) modified Cholesky factorization, which requires abdut® +

=0

is given by K? operations [27]. Having the Newton directiafi*), the
020 LT new iteratew* 1) is given by
/!
i n<i+]~)+f?;<p (Un) Tn—iTnjy (7) WD = (B (k) gk

_ _ o whereq is the step size determined by either exact line search
wherer, is the inverse DFT oV, 2 (for derivation see [26]).

Both the gradient and the Hessian can be evaluated efficiently o = argmin ((z;w™*) + oM d),
using FFT. or by backtracking line search [22], [27]-[29] (the latter was
used in our implementation). The use of line search guarantees
[1l. RELATIVE OPTIMIZATION monotonic decrease of the objective function at every iteration.

. . N It should be noted that when the gradient norm becomes very
Here we introduce a relative optimization framework for 5 . : .
small (say, belowl0~°), computational inaccuracies make the

BD. The main idea of relative optimization is to |terat|vely“n8 search inefficient. For this reason, we used the Newton

produce source signal estimate and use it as the Obser\iﬁection as is (i.e. chosa = 1) when the gradient norm

signal at the next iteration. Similar approach was explore fopped belowl0-5. Relative optimization algorithm using

in [22] in the context of BSS. the Newton step will be termed henceforth as teétive
Relative optimization algorithm Newtonmethod.
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Fig. 1.
kernel with N = 3 (left) and IIR restoration kernel witth.-= M =L =3
(right). White represents near-zero elements.

B. Fast relative Newton step

Practical use of the relative Newton step is limited to
small values ofN and T, due to the complexity of Hessian
construction, and solution of the Newton system. However

this complexity can be significantly reduced if special Hessi

structure is exploited. In the proximity of the solution point,
evaluated at each relative Newton

) x ¢s, henceV2((z; §)
iteration becomes approximately?¢(cs; §). For a sufficiently
large sample size (in practicd] > 10?), the following
approximation holds:

Proposition 1: The Hessian{(cs;d) has an approximate
diagonal-anti-diagonal structure, with unit anti-diagonal.

Proof. Substitutingw = §, z = cs andy = d xz = cs

into ¢(z;w) in (7), one obtains

o%¢ T—1
m = §i+j + T ;@//(Csn) CSp—i CSp—j.

For a large sample siZE, the sum approaches the correspond-

ing expectation value. Invoking the assumption thé zero-
mean i.i.d., one obtains

Ol by T E{e (e50) csni csny)
(911}1'(911}.7‘ ~ 1+7 @ (CSn) CSn—; CS'IL—]
Ey”(cs)(cs)? + 1 i=37=0,
_ ) Eg(es)-Ees? i i=j#0,
R i=—j#0,
0 otherwise,

where E denotes the expectation operator.

Typical Hessian structure is depicted in Figure 1 (Ieftj.
Under this approximation, the Newton system (8) separatgs

to K systems of linear equations of si2ex 2

H  p 1 d_g 9—k

=— 9
() (a ) (a) e
for k =1,..., K, and an additional equation

Hoo do = —go- (10)

In order to guarantee descent direction and avoid saddle points, ,
we force positive definiteness of the Hessian by inverting t78 &P (s)

sign of negative eigenvalues, \? in system (9) and forcing

small eigenvalues to be above some positive threshold, Sgg,,ssible choices argy

e = 1078 - max {|\;|,|A\?|}. Computation of the Hessian

approximation involves evaluation of its main diagonal only,

which is of the same order of complexity as gradient compu-
tation. Approximate solution of the Newton system requires
O (N) operations.

Due to the separable structure of the problem, the fast
relative Newton step can be performed by updating each time
a different triplet of coordinates_g, wqg, wy in the vector
of optimization variablesv. This implies solution of a small
problem with3 optimization variables, using the fast relative

Structure of the Hessian at the solution point for FIR restoratid€Wton method. This idea can be simply generalized for more

general symmetric blocks of coordinates of the veatorA
similar block-coordinate update has been successfully used in
QML BSS [29].

IV. THE CHOICE OFy(s)

The choice ofy(s) is limited first of all by the QML
estimator stability conditions. Here we addressymptotic
stability only. In order to obtain an asymptotically stable
eStimator of the restoration kernel, w = § must be a strict

arn.

minimum point of¢(cs; w) in the limit T — oo.

Proposition 2: The QML estimator of the restoration kernel
w obtained by minimization of(z; w) is asymptotically stable
if [30]

E¢'(cs)(cs)* +1 > 0 (11)
E¢”’(cs) > 0 12)
Ey”(cs)-E(es)? > 1, (13)
where the scaling factar obeys the equation
Ey¢'(cs)es = 1. (14)

Remark: that the expectations are evaluated w.r.t. the true
source PDF.
Proof: w = ¢ is a strict minimum point of(cs; w) in the
limit 7" — oo if the asymptotic gradient E/¢(cs; §) vanishes
and the asymptotic HessianVE/(cs; ) from Proposition 1
is positive definite. The former holds trivially when (14) is
satisfied, whereas the latter holds if conditions (11)-(13) are
satisfied. ]
Note that anyconvex(s) satisfies conditions (11) and
(12) under mild assumptions on the source PDF, hence,
(13) becomes essentially the only stability condition. In this
paper we discuss three choices of conygx): the smoothed
absolute value, the power function and the smoothed deadzone
inear function.

Smoothed absolute value

When the source is super-Gaussian, e.g. sparse (sources
common in seismology), or sparsely representable, a smooth
approximation of the absolute value function usually obeys the
asymptotic stability conditions [31]-[33]. The typical choice
of (s) in this case is

S

(s) —% log (tanh2 (}\) - 1) ,

= tanh (s/)\). The scalar\ acts as a smoothing
(s) — |s]in the limit \ — 0. Other

(s) = Vs?+ A% and [22]
(s) = |s|—Alog (1 + |i|)

ABS
12\

parameter, yielding3 B8
ABS

ABS

P (15)
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(see Figure 2, left). The latter choice was found esp8ince ¢’(s) is monotonic andy’(s) — p for s — oo, one
cially suitable for Newton-based optimization due toslf- obtainsu > p~!. For example, if the source is a symmetric
concordanceup to a factor [28], [34]. It can be shown thatN-level pulse amplitude modulation (PAM) signal, > %

in the limit A — 0™, the asymptotical stability condition (13)must hold.

reduces to For a sufficiently small\,
E|s| < 2p(0)Es® / ~ M | CSext —1
@' (CSext) 5 + N Josem — 1|
i A
B. Power function _ o 0" (CSext) M . (19)
In case of sub-Gaussian sources, common in digital com- 2(A+ |esext — 1)
munications, the family of power functions Substitutingp - ¢’ (csext) ~ 1 and expressings” in terms
! \si 2 ~ _ 2 2
<,05WR(S) = |s* (16) of ¢’ yields " (csext) ~ 2max { (up — 1)%,1} /2 pp?, from

where, using:sq.y; =~ 1, the asymptotic stability condition can
with the parametep, > 2 is usually a good choice for thebe derived:
non-llnea_rlty (see_l_zlgure 2_,_center). It can be shown that the I < E(cs)E(es)? ~ p o (csens) - 2 Es?
asymptotical stability conditions reduce to

202 max {(up —1)%,1}

42 2 ~
Els/*? < (u+1)Es” Els]", 2

which for the particular choice oft = 4 corresponds to V. SUPEREFEICIENT ESTIMATION
negative kurtosis excess. An increase ;ofusually yields
better performance; for example, when sources are uniforml|
distributed, ¢, "V* (s) approaches the minus log-PDF in thé
limit © — oco. However, it is obvious that large values pf varAw, =

imply high sensitivity to outliers due to the high powers. (E¢'2(cs) (E%”(cs)EZ(cs)? + 1) — 2E<p"(cs)) E(cs)?

T (E*¢" (cs)E(cs)? + 1)2

(20)

In [33], it was shown that in the noise-free case, the
gymptotic variance of the estimation errdtv is given by

C. Smoothed deadzone linear function
for k # 0, and

As a remedy to the sensitivity to outliers, we propose to i )
replace the power function with ttgeeadzone lineafunction varAw, A E¢™(cs)(cs)? — 1 .
of the form T(E¢"(cs)(cs)? +1)2
DZ/ N Let us now consider the particular case of strictlyarse
#p(5) = p-max{]s| = 1,0}, (7 sources, i.e. such sources that take the value of zero with
which is often used in regression, data fitting and estimati@@me non-zero probability > 0. An example of such dis-
[28]. This function has linear increase with controllable slopgibution is the Gauss-Bernoully (sparse normal) distribution
w, and is known to have low sensitivity to outliers compared 33]. Wheny(s) is chosen according to (15)) (s) — sign(s)
the power function. Up to an additive constant, the deadzoard/ (s) — 24(s) ash — 0*. Hence, for a sufficiently small

linear function can be smoothly approximated by A,
DZ _ Ko ABS, . ABS 1 [HMe
oxuls) = 9 (P (s =1 +ex™ (s +1)) (18) Eo/(cs) ~ X/ p(s) ds ~ g,
(see Figure 2, right), where the parametercontrols the e
smoothness.

o . . wh 2 d bounded. C tly, fo
In the limit A — 01, the smoothed deadzone linear functloxv ereas B (cs) andc are bounde onsequently, for~ 0

. . . 2
(18) yields an asymptotically stable QML estimator for |y 7. varAw, < Eo"™(cs) < const - A2,
satisfying the following coupled equation and inequality w.rt. 7—oo E*p(cs)E(cs)?
pandc: whereplim denotes the probability limit. Observe that
T 1 lim plim T -varAw, < lim const- A2 =0,
2¢-Es?2 (p(c V) +p(—c1)) A—0T T—oo A—0+
1 = e 15| p(s)ds that is, the QML estimator isuper-efficientin the limit
- A les|>1 b ' A — 07, assuming absence of noise.

In the particular case of sources with compactly supportetdS'm”arly’ for sources whose PDF is compactly supported,

L L : ; it can be shown that the choice of the power function (16)
PDF (e.g. digital communication signals), which take the . ) .
. - ._gr the smoothed deadzone linear function (18) yields a super-
extreme values with non-zero probability, a more explicl

condition can be obtained. Let us denotedyy; the extreme efficient esnmator in the limitu — oo. When in addmc_m
; : the source signal takes the values at the extremal points of

?he interval with some non-zero probability, the use of
the smoothed deadzone linear function (18) with— 0T
and finite u > p~! vyields a super-efficient estimator, since
1 = E¢'(cs)es = p- @' (CSext)- ¢ (csext) N (19) grows to infinity as\ approaches zero.

case when the distribution is symmetric), anddet P(|s| =
sext). Then, for a sufficiently smalk, (14) becomes
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Fig. 2. Different choices of(s): smoothed absolute value (15) (left), power function (16) (center), and the smoothed deadzone linear function (18) up to
an additive constant (right), for different values »ofand .

Sequential optimization determinant of the Toeplitz matrices associated witth and

For extremely small values of or extremely large values [ 28], [33]. ) ] )
of 11, optimization of the objective functiof(z;w) becomes ~ 1N€ asymptotic Hessian 6fx; b, b, f) with respect to these
numerically difficult. To avoid this problem, one can starpoefficients, evaluated at = ¢ (i.e., all the coefﬁmems, except
with a relatively large value oh (or small value ofu) and o = 1 are set to zero) and = cs has the following sparse
gradually reduce (or increase) it on each iteration of tHgructure:
relative optimization algorithm. Thisequential optimization 92¢ B 9%¢ N E¢”(cs)-E(cs)? : i=j,
algorithm has been previously used in the BSS problergbiabj ~ 0fi0f, {
wherein it has demonstrated very high accuracy [22]. As an
alternative, the smoothing method of multipliers proposed in
[35] can be used.

0 . otherwise,

P [ EPles)es) ¢ i=],
ob;0f; - 0 . otherwise,

VI. GENERALIZATIONS
and
. . . . . . . 82( aQ(
For consistency of relative optimization, it is favorable tha;%ah, = of,0h_; ~
the restoration kernel for a group, such that the action of o Eot ' _I]E 2 Eu i
can be undone by**!. This may be satisfied with rational ¢"(cs) - E(cs)” + E¢'(es)(cs) = i=j=0,

A. IR restoration kernels

/! . 2 . .
IIR restoration filters of the form E<P/ (cs) - E(cs) =92 0,
Ey'(cs)(cs) i =—j>0,
honzN + . +hyz N 0 : otherwise,

Wi(z) = ,
(2) (T4+biz7t+ ..+ byz=M) (14 frz+ ... + fr2l)

parameterized by the ARMA coefficients v, ..., hy, Where the ;r;?icesi,j are in the appropgi%te ranges. The
bi,...,ba and fi, ..., fr. Additional advantage of using anderivative 5;7;~ has the same form ag =~ in Propo-

ARMA parametrization ofw appears when the convolutionsition 1. Typical Hessian structure is depicted in Figure 1
systema has zeros close to the unit circle, and the restoratiéfight). Approximate Newton system solution can be carried

kernelw has to be long in order to achieve good restoratid?t using an analytical expression for the regularized inverse of

quality. the structured Hessian. Another possibility is to consider tech-
Restoration kernel produced at theth iteration of the niques for solution of sparse symmetric systems. For example,
relative Newton algorithm is of the following form: one can use sparse modified Cholesky factorization for direct
solution, or alternatively, conjugate gradient-type methods,

W(z) _ HO(z) ... H¥ (z) ' possibly preconditioned by incomplete Cholesky factor, for
BO)(z)-...- B®) . FO)(2).... Fk) iterative solution. In both cases, Cholesky factor is often

Since the kernels found at first iterations can be arbitrary,n tas sparse as the ong_mal _matrlx,_ but it becomes Sparsef,
when appropriate reordering is applied before factorization.

necessary condition that the zeros and the pole®df (=) Approximate Hessian evaluation and Newton system solution
can be cancelled by the poles and the zeros of the subﬁg-p i X on Sy:
ave the complexity of a gradient descent iteration.

quent factors. This implies that the kerndl*)(z) has to
be invertible for everyk, i.e. H¥)(z), B*)(z) and F*)(z)
have no roots outside the unit circ;‘}((a.) Whén= M = N, B. The MIMO case
the subspace of filters of the forlEE(Z)F(Z) W!th stable non- In the MIMO case, the multichannel convolution model
zero H(z), B(z) and F(z) form a convolutional group. In .
- X . . involves crosstalk
order to force stability of the restoration kernel in the relative
optimization algorithm, line search should be restricted to Tin = Zaijksj,nfk;
7.k

its stability region, e.g. by checking the value of the log
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where z;, is the i-th observed channel ang;, is the j-th natural gradient-based algorithm [20] (in both cases, the power
source. Restoration is performed using a matrix of filieys,: function was used withy = 4) and to CMA withp = 2.
Figure 3 (top) presents the restoration SIR averaged over 10
Yin = Zwijkl’jmfb independent Monte-Carlo runs, as a function of the input SNR.
ik For SNR higher than 20 dB, the block relative Newton algo-
The normalized minus log likelihood function becomes [13]fithm demonstrates an improvement of about 4 dB compared
- to other methods. Good restoration quality is obtained for SNR
Uz;w) = _i/ log |det W(ei‘g)\ do + 1 Z @i (yin), starting from 10 dB. In absence of noise, the relative Newton
21 ) x T in algorithm performs very close to the theoretical SIR bound of
- . 30.51 dB, achieving SIR of about 29 dB. Figure 4 (top) depicts
whereW (e™) is a matrix of the DFTs ofv;;). taken w.r.t. the 6 convergence of the compared algorithms, averaged over 10
index k. _ _independent runs with input SNR set to 20 dB. In Figure 5
In [30], it was shown that in the MIMO case, the Hessiafqp) the average convergence time (time in samples required
of £(z;w) for z; = ¢is; andwiji, = 6,50, has the following o, the SIR to achieve 90% of its final value) is depicted
approximate sparse structure: for different algorithms. The block relative Newton algorithm
o2y converges in average about 10 times faster compared to FDBD
~ and CMA.
In our MATLAB implementation on a 700MHz Pentium
" 1l PC, the block fast relative Newton algorithm requires about
0.6354+0.0431 msec per input sample, compared)t6438+
0.0435 msec/sample for the FDBD algorithm afdi605 +
0.0298 msec/sample for CMA.
Due to this sparse structure, the use of the fast relative Newton
method is feasible. The block-coordinate update might be alBe The deadzone linear function vs. the power function
done by updating each time the symmetric sets of coefficientsThe use of the power function (16) with different values
Wij—k, Wji,—k, Wijk, Wjik, OF more general blocks containingof 1, and the smoothed deadzone linear function (18) was

8w¢jk8wi/j/k/ -
Eg/(cisi)(cisi)? +1 @ i=i'=j=j k=K =0
E(p;’(cis,;) . E(Cij)2 . 1= i/,j = j/7 k = k, 7é 0,
1 Coi=4 =1 k=—Fk,
0 : otherwise.

them. compared for deconvolution of a 2000 samples long 2-level
PAM source, degraded by the channel from the previous ex-
C. The 2D case periment. The comparison was performed both in the absence

. . of noise, and in the presence of shot noise (sparse normal noise
The fast relative Newton method can be generalized f@fi .19 density, which introduced outliers into the signal).
deconvolution of images (see [33]). Direct estimation of thleigure 6 shows the SIR, averaged over 20 independent Monte-
restoration kernel is especially advantageous for blurs arisay|o runs. for different choices of(s). In the noiseless case,
ing from scattering, whose point spread functions can Bg jncrease ofs leads to better performance, as expected.
inverted using a small FIR restoration kernel. It must bgqyever, in the presence of shot noise, the performance drops
noted, however, that unlike the 1D case, an arbitrary 2Ramatically for largey’s due to sensitivity to outliers. The
kernel can npt be generally factorized into smal'ler.ZD .kem%?oposed smoothed deadzone linear function appears to yield
as the relative Newton method suggests. This implies thabnher performance in the noiseless case and demonstrates

the restoration kernel obtained using relative optimization Kegligible sensitivity to outliers (Figure 6, rightmost bars).
usually suboptimal to the restoration kernel of the same size

obtained using standard optimization methods. However, @ Deconvolution of a sparse source

practice, the achieved performance is very good. The previous experiment was repeated fot0d4 samples

long i.i.d. sparse normal source with 20% density of the non-
VIl. NUMERICAL RESULTS zero samples. The block fast relative Newton algorithm was

Simulation results are presented to evaluate the performa@&Pared to the FDBD algorithm. In ”12 first caggs) was
of the proposed algorithms. Signal-to-interference ratio (SIRjiosen according to (15) with = 107<, whereas in the

is used as the restoration quality measure. Additional resu#@cond the exact absolute value was used. Figure 3 (bottom)
can be found in [26], [33]. presents the average restoration SIR as a function of the

input SNR. For SNR higher than 20 dB, the block relative
Newton algorithm demonstrates an improvement of about 7
dB compared to other methods. Good restoration quality is
The source signal waslé* samples long i.i.d. 2-level PAM obtained for SNR starting from 10 dB. Figure 4 (bottom)
process. The empirically measured digital microwave chanrdspicts the convergence of the compared algorithms, averaged
impulse response from [36] was used to model the convolutiomer 10 independent runs, with input SNR set to 20 dB. In
system. Input SNRs of 10, 20, 30, 40 and 100 dB were usddgure 5 (bottom), the average convergence time is depicted
FIR restoration kernel with 33 coefficients was adapted for different algorithms. The block relative Newton algorithm
a block-wise manner, using blocks of length 33. The bloatonverges in average about 5-10 times faster compared to
fast relative Newton algorithm was compared to Joho’s FDBEDBD.

A. Deconvolution of a PAM source



T-SP-01661-2003.R1 — ACCEPTED TO IEEE TRANSACTIONS ON SIGNAL PROCESSING 7

30T T

R N R AN
e o

SN TN
PR s
e [
’ o

1 — Relative Newton
rd - - FDBD
-+ CMA

—a— Relative Newton | | 5
-¥- FDBD
5 o CMA li
102 . . . . . . | 7 0 ! ! ! ! ! !
10 20 30 20 50 60 70 80 % 100 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

SNR [dB] Sample

357 30

N v
A N R N N L NIV

1
1
l
|
l
l
l
l
1
1
1
1
1
1
1
1
|
1
1
<
SIR [dB]

. 7 — Relative Newton
—=— Relative Newton — - FDBD
-v- FDBD L L L L L
L L L [¢] 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

60 70 80 90 100 Sample
SNR [dB]

Average convergence (in terms of SIR) as a function of time in
mples for the 2-level PAM source (top) and the sparse source (bottom).
put SNR is set to 20 dB.

Fig. 3. Average restoration quality (in terms of SIR) as a function of mpd:
SNR for the 2-level PAM source (top) and the sparse source (bottom). 9
confidence intervals are indicated.
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Advantages of an IIR restoration kernel are demonstrated £ s E

the following experiment. Input signal was generated by fi ;;ggg ]
tering a 1000 samples long sparse normal i.i.d. process by £ 20t 1
kernel from the previous experiments. Sequential optimizatic® ' |
algorithm was used with decreasing from to 10~1° with the 108 2008 o8 “0ds 100 dB

rate of 0.1 per iteration. Three restoration kernel configuratio
were tested: FIR (numerator only), causal all-pole IIR (caus _**
denominatorb only) and a rational kernel with equal Iength S 4000} L roso :

numerator and causal denominator. Figure 7 depicts the S2_ |
averaged over 10 Monte-Carlo runs, as a function of ttE
number optimization variables for different assignments w weer
the degrees of freedom to restoration kernel numerator a: =1°°°*
denominator. SIR higher than 20 dB was obtained for the a o
10 dB 20dB 30 dB 40 dB 100 dB

pole 1IR kernel starting front degrees of freedom, for the SNR

rational kernel starting from 8 degrees of freedom, and for
Fig. 5. Average convergence time in samples as a function of input SNR for

the FIR kernel starting only from 16 degrees of freedom. {he 2-level PAM source (top) and the sparse source (bottom). 95% confidence
practically ideal SIR was achieved by the all-pole IR kernettervals are indicated.

starting from 8 degrees of freedom.

outliers than the commonly used non-linearities, and achieves
super-efficient estimation in the absence of noise.

We have presented a relative optimization framework for Relative Newton method appears to be effective for decon-
QML single channel BD and studied the relative Newtowolution of sparse signals, when the smoothed absolute value
method as its particular instance. Expanding kernel permftsction is used. Despite the natural signals and images are
construction of long restoration kernels with cheap iterationsften not sparse, they can be brought to a sparse form by
Diagonal- anti-diagonal structure of the Hessian in the proxirmeans of sparsifying transformation [33]. Such a transforma-
ity of the solution allows to derive a fast version of the relativéon can be constructed either from knowledge of the source
Newton algorithm, with iteration complexity comparable tamature, or by means of learning on a set of representative
that of gradient methods. Additionally, we introduced rationalources. Similar sparsifying approach based on wavelet-type
restoration kernels, which constitute a richer and more flexiblepresentations was succesfully used in BSS [32].
family of filters than the traditionally used FIR kernels, and In simulation studies with super- and sub-Gaussian sources,
often allow to reduce the optimization problem size. Wthe proposed methods exhibited very fast convergence and
also proposed the use of the deadzone linear function fugher accuracy compared to the state-of-the-art approaches
sub-Gaussian sources, which is significantly less sensitivestach as CMA and natural gradient-based QML algorithms. Our

VIII. CONCLUSION
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algorithm yields plausible restoration quality in low to mediunes3]
noise conditions. Possible applications are in acoustics and
communications, especially where high accuracy and fast ¢

vergence are required. We are currently working on extending
the presented approach to the muluchannel and Complex Caé@;A Bell and T. SejnOWSki, “An information maximization approach to
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