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Abstract— In this note we consider the problem of MIMO quasi
maximum likelihood (QML) blind deconvolution. We examine two
classes of estimators, which are commonly believed to be suitable for
super- and sub-Gaussian sources. We state the consistency conditions
and demonstrate a distribution, for which the studied estimators are
unsuitable, in the sense that they are asymptotically unstable.

Index Terms— MIMO, blind deconvolution, blind source separation,
quasi maximum likelihood, consistency, super-Gaussian, sub-Gaussian,
kurtosis.

I. I NTRODUCTION

We consider the problem of MIMO blind deconvolution, in
which the observed vector-valued sensor time signalx(t) =
(x1(t), ..., xN (t))T is created from the vector-valuedsource signal
s(t) = (s1(t), ..., sN (t))T passing through a convolutive mixing
system defined by theN ×N matrix of impulse responsesaij(t),

xi(t) =

N∑
j=1

(aij ∗ sj) (t) =

N∑
j=1

∞∑
τ=−∞

aij(τ) si(t− τ).

The setup is termedblind when only x is accessible, whereas no
knowledge ona and s is available. The problem of blind deconvo-
lution aims to find such a deconvolution (or restoration) kernelwijt,
that produces a possibly delayed, scaled and permuted, waveform-
preserving estimate ofs:

ŝi(t) =

N∑
j=1

(wij ∗ xj) (t) ≈ ci · sπi(t−∆i),

where ci are scaling factors,πi is a permutation, and∆i are
integer shifts. A commonly used assumption is that sources are non-
Gaussian.

Let us denote byW (θ) the matrix of the discrete Fourier trans-
forms of wij(t), and assume thatdet W (θ) has no zeros on the
unit circle, and the source signals are pairwise independent, real and
i.i.d. Neglecting edge effects and assuming no noise, the normalized
log-likelihood function of the observed signalx is [1]–[3]

`(x; w) =

1

2π

∫ π

−π

log |det W (θ)| dθ − 1

T

N∑
i,j=1

T−1∑
t=0

ϕi ((wij ∗ xi)(t)) , (1)

whereT is the sample size, andϕi(s) = − log pi (s), wherepi(s)
is the probability density function (PDF) of thei-th source.

In the case of instantaneous (delay-less) mixture case, the normal-
ized log-likelihood function (1) becomes

`(x; w) = log |det W | −
N∑

i,j=1

ϕi (wijxi) , (2)
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and estimation of theunmixing matrixW is usually referred to as
blind source separation (BSS). In the case of single-channel (SISO)
case, where no cross-talk is present, (1) reduces to

`(x; w) =
1

2π

∫ π

−π

log |W (θ)| dθ − 1

T

T−1∑
t=0

ϕ ((w ∗ x)(t)) . (3)

A consistent estimator can be obtained by maximizing`(x; w)
even whenϕi(s) are not exactly equal to− log pi (s). Such QML
estimation has been shown to be practical in instantaneous blind
source separation [4]–[7] and blind deconvolution [2], [8], [9] when
the source PDF is unknown or not well-suited for optimization.
Generally,`(x; w) is maximized by gradient-based methods, hence,
the main concern is the choice ofϕ′(s).

It is commonly believed, that the knowledge of whether the source
is super- or sub-Gaussian (i.e., such that itskurtosis excessdefined
by

κ =
IEs4

IE2s2
− 3

is either positive or negative, respectively) is sufficient in order to
construct a consistent QML estimator. This belief leads to attributing
ϕ′(s) either to the class of functions suitable for estimation of super-
Gaussian sources, and not suitable for estimation of the sub-Gaussian
ones, or vice versa. For example, it is usually assumed (see e.g. [1],
[2], [10], [11]) that the choice of the smoothed sign function, e.g.,

ϕ′(s) = tanh(βs), (4)

for β ≥ 1, leads to a QML estimator suitable for super-Gaussian
sources. Another example is the family of functions

ϕ′(s) = |s|µsign(s) (5)

with the parameterµ > 1, which is believed to be suitable for sub-
Gaussian sources.

In this note, we state the conditions, under which a QML estimator
is consistent, and show that generally there is no connection between
the sign of kurtosis excess and consistency. We study the estimators
obtained from (4), (5), for sources obeying the generalized Cauchy
distribution.

II. CONSISTENCY CONDITIONS

For a general choice ofϕ′i(s)’s, the corresponding QML estimator
is (asymptotically) consistent if the following conditions hold [12]:
there exist a set of positive scaling factorsci obeying

IEϕ′i(cisi)cisi = 1 (6)

and

IEϕ′′i (si) > 0 (7)

IEϕ′′i (si)IEϕ′′j (sj)IE(cisi)
2IE(cjsj)

2 > 1 (8)

IEϕ′′i (cisi)(cisi)
2 + 1 > 0, (9)

for i, j = 1, ..., N . These conditions are valid when the expected
values IEϕ′′(s), IEϕ′′(s)s2, IEϕ′(s), and IEs2 exist and are bounded.
Similar consistency conditions exist in the particular cases of instan-
taneous blind source separation [13], [14] and SISO blind deconvolu-
tion [9]. For derivations and important statistical properties of QML
estimators, the reader is referred to the above cited references as well
as [14]–[18]. Although QML estimators include no noise model and
the consistency conditions are derived assuming the noiseless case,
practice shows that QML blind deconvolution and source separation
are quite robust to noise [2], [8]–[11].

Observe that under mild assumptions on the source distribution,
conditions (7) and (9) are satisfied ifϕi(s) is convex, due to the
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fact that ϕ′′i (s) > 0. Demanding convexity ofϕi(s) is not very
restrictive, since maximization of̀(x; w) with non-convexϕi(s)’s
is usually impractical. The essential set of conditions for consistency
of the QML estimator can be therefore divided into thesingle-channel
terms

IE2ϕ′′i (si)IE
2(cisi)

2 > 1 (10)

and thecross-talkterms

IEϕ′′i (si)IEϕ′′j (sj)IE(cisi)
2IE(cjsj)

2 > 1, (11)

wherei = 1, ..., N andj 6= i. The former are required for consistent
estimation ofwii, whereas the latter are necessary for consistent
estimation of the cross-talk kernelswij .1

We will henceforth focus our attention on the case where all the
sources are identically distributed and the same (convex)ϕ(s) is used
for all sources. The underlying QML estimator is consistent if

IE2ϕ′′(si)IE
2(cs)2 > 1. (12)

In the more general case, the cross-talk consistency conditions impose
additional restriction on consistency of the QML estimator.

We will now examine the consistency conditions of the estimators
obtained by choosingϕ(s) according to (4) and (5). Whenϕ′(s) =
|s|µsign(s), it can be shown that

c =
(
(µ + 1) · IE|s|µ+1)−1/(µ+1)

IEϕ′′(s)(cs)2 = µ(µ + 1)cµ+1 · IE|s|µ+1

IEϕ′′(s) = µ(µ + 1)cµ−1 · IE|s|µ−1.

For µ > 1, consistency condition (12) yields

∆s =
IE|s|µ+1

IEs2 IE|s|µ−1
− µ < 0. (13)

In the particular case whenµ = 3, the latter condition becomes∆s =
κ < 0, meaning that the estimator is consistent for sub-Gaussian
sources, and inconsistent for the super-Gaussian ones.

Whenϕ′(s) = tanh(βs), the consistency condition (12) becomes

∆s = 1− IEϕ′′(s) · IE(cs)2 < 0. (14)

In the case of a generalβ, derivation of analytic expression of∆s is
complicated. However, in the limitβ → ∞, ϕ′(s) → sign(s), and
ϕ′′(s) → 2δ(s). Hence, for a largeβ,

IEϕ′′(s)(cs)2 = IEϕ′′(s)(cs)2 ≈ c2β

∫ +1/β

−1/β

sp(s) ds ≈ 0

IEϕ′′(s) = IEϕ′′(s) ≈ β

∫ +1/β

−1/β

p(s) ds ≈ 2p(0),

where c is obtained by substitutingϕ′(cs)cs ≈ sign(cs)cs into
equation (6):

c ≈ 1

IE|s| .

Therefore, the estimator is consistent if

∆s ≈ IE|s|
2p(0)σ2

− 1 < 0. (15)

In the limit β →∞, the latter condition is exact.

1For example, the single-channel condition is responsible for the incon-
sistency when the sources are Gaussian. In the latter case, (11) holds with
equality for everyϕ(s) [12], leading to the well-known fact that Gaussian
sources can be restored up to a rotation matrix and an all-pass term.
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Fig. 1. PDF of the generalized Cauchy distribution forr = 1, a = 1.5
(solid), a = 2.5 (dashed), anda = 10 (dotted).

III. T HE GENERALIZED CAUCHY DISTRIBUTION

Let us consider a parametric family of distributions with the
parametersa, r > 0, described by the following PDF:

p(s) =
ar1− 1

2a sin
(

π
2a

)

π (|s|2a + r)

(see Figure 1). The parameterr influences the variance ofs. For
a = 1, one gets the Cauchy distribution; for this reason, this family of
distributions will be henceforth referred to as the generalized Cauchy
distribution.

It can be shown that thep-th moment of|s| exists fora > p+1
2

,
and is given by

IE|s|p = r
p
2a · csc

(
(p + 1)π

2a

)
sin

( π

2a

)
,

where

csc x =
1

sin x

is the cosecant function. Particularly, the fourth order moment exists
for a > 2.5 and the kurtosis excess is given by

κ(a) = csc
( π

2a

)
csc

(
5π

2a

)
sin2

(
3π

2a

)
− 3.

κ(a) is monotonically decreasing as a function ofa and crosses zero
for a ≈ 3.3567 (see Figure 2, solid). This means that the source is
super-Gaussian for2.5 < a < 3.3567, and sub-Gaussian fora >
3.3567.

For ϕ′(s) = tanh(βs), in the limit β → ∞, the consistency
condition is given by

∆s =
IE|s|

2p(0)σ2
− 1

=
π

2a
csc

( π

2a

)
csc

(π

a

)
sin

(
3π

2a

)
− 1 < 0,

and is valid fora > 1.5. Observe that

d∆s

da
=

π

4a2

(
2 + cos

(π

a

))
csc2

( π

2a

)
sec2

( π

2a

)
,

where

sec x =
1

cos x

is the secant function. Since the derivative of∆s w.r.t. a is strictly
positive,∆s is monotonically increasing witha. ∆s crosses zero at
a ≈ 2.3379 (see Figure 2, dashed). This means that the corresponding
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Fig. 2. The value of ∆s as a function of a for different
QML estimators:ϕ′(s) = sign(s) (dashed),ϕ′(s) = |s|2sign(s) (dotted),
ϕ′(s) = |s|3sign(s) (solid), andϕ′(s) = |s|4sign(s) (dash-dotted). Kurtosis
excessκ corresponds to∆s is the caseϕ′(s) = |s|3sign(s). The estimator
is consistent for∆s < 0.

TABLE I
CONSISTENCY REGIONS OF DIFFERENTQML ESTIMATORS

ϕ′(s) Consistency region

tanh(s) 1.5 < a < 1.8666
tanh(10s) 1.5 < a < 1.9344
tanh(βs), β →∞ 1.5 < a < 2.3379

|s|2 sign(s) a > 3

|s|3 sign(s) a > 3.3567

|s|4 sign(s) a > 3.7352

QML estimator is inconsistent fora > 2.3379, particularly, the
estimator is asymptotically inconsistent for both super- and sub-
Gaussian sources.∆s was also evaluated numerically forβ = 1, 10
(see Figure 3). Consistency regions of the estimators are presented
in Table I.

For ϕ′(s) = |s|µsign(s), the consistency condition is given by

∆s =
IE|s|µ+1

IEs2 IE|s|µ−1
− µ =

(
1 + 2 cos

(π

a

))
·

csc

(
π(µ + 2)

2a

)
sin

(πµ

2a

)
− µ < 0,

and is valid fora > 1 + µ/2. Observe that

d∆s

da
=

π

2a2
csc

(
π(µ + 2)

2a

) (
2 + cos

(
2π

a

)
csc

(
2π

a

)
−

−µ
(
1 + 2 cos

(π

a

))
csc

(
π(µ + 2)

2a

)
sin

(π

a

))

is negative fora > 1+µ/2 > 1.5 for everyµ > 1, and consequently,
∆s is monotonically decreasing, with zero crossing depending onµ.
Consistency regions for some values ofµ are summarized in Table I,
and the values of∆s are plotted as a function ofa in Figure 2. Note
that forµ = 3, consistency is fully determined by the sign of kurtosis
excess. However, this is not true for other values ofµ.

IV. CONCLUSION

An important element of an efficient QML blind deconvolution is
the choice of the non linear functionsϕi(s), which is conditioned,
among all, by consistency criteria. It is commonly believed that the
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Fig. 3. The value of∆s as a function ofa for the QML estimator
ϕ′(s) = tanh(βs): β = 1 (dashed),β = 10 (dotted), andβ → ∞ (solid).
The estimator is consistent for∆s < 0.

knowledge of whether the sources are super- or sub-Gaussian is
sufficient for construction of a consistent QML estimator.

We have examined the consistency conditions for two classes
of QML estimators, commonly used for super- and sub-Gaussian
sources in blind source separation and deconvolution problems.
The particular case of the generalized Cauchy distribution was
examined. It can be concluded that consistency does not always
correspond to the sign of kurtosis excess, which determines whether
the source is super- or sub-Gaussian. For example, the choice
ϕ′(s) = tanh(βs), which is commonly believed to be suitable
for super-Gaussian sources, is inconsistent for such sources. The
choiceϕ′(s) = |s|2sign(s), which is known to be suitable for sub-
Gaussian sources, is also suitable for some super-Gaussian sources
(wherein a > 3). The choiceϕ′(s) = |s|4sign(s), known to be
suitable for sub-Gaussian sources, is inconsistent for some of such
sources (wherein3.3567 < a < 3.7352). With the only exception of
ϕ′(s) = |s|3sign(s), whose consistency is always determined by the
sign of kurtosis excess, other QML estimators require more delicate
analysis in order to determine whether they are suitable or not for
estimation of super- or sub-Gaussian sources. Generally, the answer
is distribution-dependent. The main conclusion from this note is that
the non linear functionsϕi(s) should be chosen with more caution.

ACKNOWLEDGEMENT

The authors are grateful to the anonymous referees for their
constructive critics and valuable comments.

REFERENCES

[1] S.-I. Amari, A. Cichocki, and H. H. Yang, “Novel online adaptive
learning algorithms for blind deconvolution using the natural gradient
approach,” inProc. SYSID, July 1997, pp. 1057–1062.

[2] S.-I. Amari, S. C. Douglas, A. Cichocki, and H. H. Yang, “Multichannel
blind deconvolution and equalization using the natural gradient,” inProc.
SPAWC, April 1997, pp. 101–104.

[3] E. Moulines, J.-F. Cardoso, and E. Gassiat, “Maximum likelihood for
blind separation and deconvolution of noisy signals using mixture
models,” 1997.

[4] D. Pham and P. Garrat, “Blind separation of a mixture of independent
sources through a quasi-maximum likelihood approach,”IEEE Trans.
Sig. Proc., vol. 45, pp. 1712–1725, 1997.

[5] M. Zibulevsky, B. A. Pearlmutter, P. Bofill, and P. Kisilev, “Blind
source separation by sparse decomposition,” inIndependent Components
Analysis: Principles and Practice, S. J. Roberts and R. M. Everson, Eds.
Cambridge University Press, 2001.



T-SP-01965-2003.R1 – ACCEPTED TO IEEE TRANSACTIONS ON SIGNAL PROCESSING 4

[6] M. Zibulevsky, P. Kisilev, Y. Y. Zeevi, and B. A. Pearlmutter, “Blind
source separation via multinode sparse representation,” inProc. NIPS.
MIT Press, 2002.

[7] P. Kisilev, M. Zibulevsky, and Y. Zeevi, “Multiscale framework for blind
source separation,”JMLR, 2003, in press.

[8] A. M. Bronstein, M. M. Bronstein, and M. Zibulevsky, “Blind
deconvolution with relative Newton method,” Technion, Israel, Tech.
Rep. 444, October 2003. [Online]. Available: http://visl.technion.ac.il/
bron/alex

[9] A. M. Bronstein, M. Bronstein, M. Zibulevsky, and Y. Y. Zeevi,
“Quasi-maximum likelihood blind deconvolution of images using
sparse representations,” Technion, Israel, Tech. Rep., 2003. [Online].
Available: http://visl.technion.ac.il/bron/alex

[10] H. Mathis, M. Joho, and S. Moschytz, “A simple threshold nonlinearity
for blind source separation of sub-gaussian signals,” inProc. ISCAS,
2000, pp. 489–492.

[11] M. Joho and P. Schniter, “Frequency domain realization of a multichan-
nel blind deconvolution algorithm based on the natural gradient,” inProc.
ICA2003, April 2003.

[12] A. M. Bronstein, M. M. Bronstein, M. Zibulevsky, and Y. Y. Zeevi,
“Asymptotic performance analysis of MIMO blind deconvolution,”
Technion, Israel, Tech. Rep., January 2004. [Online]. Available:
http://visl.technion.ac.il/bron/alex

[13] S.-I. Amari, T.-P. Chen, and A. Cichocki, “Stability analysis of learning
algorithms for blind source separation,”Neural Networks, vol. 10, no. 8,
pp. 1345–1351, 1997.

[14] J.-F. Cardoso, “Blind signal separation statistical principles,”Proc. IEEE.
Special issue on blind source separation, vol. 9, no. 10, pp. 2009–2025,
1998.

[15] Y. Bresler and A. Macovski, “Exact maximum likelihood parameter
estimation of superimposed exponential signals in noise,”IEEE Trans.
on Ac., Speech and Sig. Proc., vol. 34, no. 6, pp. 1081–1089, 1986.

[16] A. Gorokhov and J.-F. Cardoso, “Equivariant blind deconvolution of
MIMO-FIR channels,” inProc. SPAWC, 1997, pp. 489–492.

[17] P. Stoica, J. Li, and T. Soederstroem, “On the inconsistency of iqml,”
Sig. Proc., vol. 56, no. 2, pp. 185–190, 1997.

[18] J.-F. Cardoso, “On the stability of source separation algorithms,”J. VLSI
Sig. Proc. Sys., vol. 26, no. 1/2, pp. 7–14, 2000.

 

Alexander M. Bronstein (M’02) was born in Russia
in 1980. He received the B.Sc. (2002) and the M.Sc.
(2005) degrees (both summa cum laude) from the
Department of Electrical Engineering, Technion – Is-
rael Institute of Technology. He is currently a Ph.D.
student at the Department of Computer Science,
Technion. His main research interests include blind
inverse problems and 3D face recognition.

Alexander Bronstein received the Technion Hu-
manities and Arts Department prize (2001), the
Kasher prize (2002), the Thomas Schwartz award

(2002), the Hershel Rich Technion Innovation award and the Counter Ter-
rorism prize (2003) and the Copper Mountain Conference on Multigrid
Methods Best Paper Award (2005). He was a honorary student delegate
to the International Achievement Summit of the Academy of Achievement
(Washington D.C.) in May 2003. Alexander Bronstein is a member of the
3DFACE research project, which was featured in the CNN news.

 

Michael M. Bronstein (M’02) was born in Rus-
sia in 1980. He received the B.Sc. in Electrical
Engineering (summa cum laude) in 2002 and the
M.Sc. in Computer Science (summa cum laude)
in 2005, both from the Technion – Israel Institute
of Technology. He is currently pursuing the Ph.D.
degree in Computer Science. His main research in-
terests include 3D face recognition and blind inverse
problems.

Michael Bronstein is a recipient of the Technion
Humanities and Arts Department prize (2001), the

Kasher prize (2002), the Thomas Schwartz award (2002), the Hershel Rich
Technion Innovation award and the Counter Terrorism prize (2003) and the
Copper Mountain Conference on Multigrid Methods Best Paper Award (2005).
He was a honorary student delegate to the International Achievement Summit
of the Academy of Achievement (Washington D.C.) in May 2003. Michael
Bronstein is involved in the 3DFACE research project, which was featured in
the CNN news.

 

Michael Zibulevsky received the M.Sc. degree in
Electrical Engineering from MIIT, Moscow, and
the Ph.D. degree in Operation Research (Nonlinear
Optimization) from the Technion – Israel Institute
of Technology. Currently he is with the Depart-
ment of Electrical Engineering at the Technion.
His area of interests includes nonlinear optimization
and inverse problems in signal/image reconstruction
(blind source separation, deconvolution, tomogra-
phy, EEG/MEG).


