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ABSTRACT

We present an efficient Newton-like algorithm for quasi-
maximum likelihood (QML) blind deconvolution of images.
This algorithm exploits the sparse structure of the Hessian.
An optimal distribution-shaping approach by means of spar-
sification allows one to use simple and convenient sparsity
prior for processing of a wide range of natural images. Sim-
ulation results demonstrate the efficiency of the proposed
method.

1. INTRODUCTION

Two-dimensionalblind deconvolution(BD) is a special case
of a more general problem ofimage restoration. The goal
of BD is to reconstruct the original scene from an observa-
tion degraded by the action of a linear shift invariant (LSI)
system, when no or very littlea priori information about
the scene and the degradation process is available, hence
the term ”blind”. BD is critical in many fields, including
astronomy, remote sensing, biological and medical imaging
and microscopy.

According to the convolution model, the observed sen-
sor imageX is created from thesource imageS passing
through an LSI system characterized by the point spread
functionW ,

X = W ∗ S. (1)

We assume that the action ofW is invertible (at least ap-
proximately), i.e. there exists some other kernelH such
thatW ∗H ≈ δ. This assumption holds well especially in
the case of blurring kernels resulting from scattering (such
kernels are usually Lorenzian-shaped and their inverse can
be approximated by small FIR kernels). The aim of BD
is to find such adeconvolution(restoration) kernelH that
produces an estimatẽS of S up to integer shift and scaling
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factor:

Ŝmn = (H ∗X)mn ≈ c · Sm−∆M ,n−∆N
. (2)

Unlike approaches estimating the image and the blur-
ring kernel, we estimate the restoration kernel only, which
results in a lower dimensionality of the problem [1]. Here
we present a QML BD algorithm, which generalizes the fast
relative Newton algorithm previously proposed for blind source
separation [2]. We also propose optimal distribution-shaping
approach (sparsification), which allows to use simple and
convenient sparsity prior for a wide class of images. For
technical details see [3, 4].

2. QML BLIND DECONVOLUTION

Denote byY = H ∗ X the source estimate and let us as-
sume thatS is zero-mean i.i.d. In the zero-noise case, the
normalized minus-log-likelihood function of the observed
signalX, given the restoration kernelH, is

`(X; H) = − 1
4π2

∫ π

−π

∫ π

−π

log |FH(ξ, η)| dξdη

+
1

MXNX

∑
m,n

ϕ(Ymn), (3)

whereϕ(s) = − log ps(s), ps(s) stands for the source prob-
ability density function (PDF),MX×NX is the observation
sample size, andFH(ξ, η) denotes the Fourier transform of
Hmn. We will henceforth assume thatH is a FIR, supported
on [−M, ..., M ]× [−N, ..., N ], and denoteKM = 2M +1,
KN = 2N + 1. Cost functions similar to (3) were also ob-
tained in the 1D case using negative joint entropy and infor-
mation maximization considerations [5].

2.1. The choice ofϕ(s)

Source images arising in most applications have usually multi-
modal non-log-concave distributions. These are difficult
to model and are not suitable for optimization. However,



consistent estimator ofS can be obtained by minimizing
`(X; H) even whenϕ(s) is not exactly equal to− log pS (·).
Suchquasi-ML estimationhas been shown to be practical
in instantaneous blind source separation [6, 2, 7] and blind
deconvolution of time signals [3]. For example, when the
source is super-Gaussian (sparse), a smooth approximation
of the absolute value function is a good choice forϕ(s)
[8, 9]. Although natural images are usually far from being
sparse, they can be transformed into a space of a sparse rep-
resentation. We will therefore focus our attention on mod-
elling super-Gaussian distributions using a family of convex
smooth functions

ϕλ(s) = |s| − λ log
(

1 +
|s|
λ

)
(4)

with λ being a positive smoothing parameter;ϕλ(s) → |s|
asλ → 0+.

2.2. Approximation of the log-likelihood function

In practice, it is difficult to evaluate the first term of`(X;H)
containing the integral. However, it can be approximated
with any desired accuracy by [3]

1
MF NF

MF∑

k=0

NF∑

l=0

log |Fkl| , (5)

whereFkl = FH
(

2πk
MF

, 2πl
NF

)
are the 2D DFT coefficients

of Hmn [3], zero-padded overMF ×NF . The approxima-
tion error vanishes asMF , NF grow to infinity. MF and
NF should be chosen as integer powers of 2 to allow using
FFT.

2.3. Gradient and Hessian of̀ (X; H)

The optimization algorithm discussed in Section 3 requires
knowledge of the gradient and the Hessian of`(X; H). The
gradient of̀ (X; H) w.r.t Hij is given by (for derivation see
[4]):

∂`

∂Hij
= −Q−i,−j +

1
MXNX

∑
m,n

ϕ′(Ymn) Xm−i,n−j , (6)

whereQmn is the inverse DFT ofF−1
kl . The Hessian of

`(X; H) is:

∂2`

∂Hij∂Hkl
=

1
MXNX

∑
m,n

ϕ′′(Ymn) xm−i,n−jxm−k,n−l

+R−(i+j),−(k+l), (7)

whereRmn is the inverse DFT ofF−2
kl . Both the gradient

and the Hessian can be evaluated efficiently using FFT.

3. THE RELATIVE NEWTON METHOD

A fast relative optimization algorithm for blind source sep-
aration, based on the Newton method was introduced in [2].
In [3] it was used for BD of 1D signals. Here we use the rel-
ative optimization framework for BD of images. The main
idea of relative optimization is to iteratively produce an es-
timate of the source signal and use it as the observed signal
at the subsequent iteration:

Relative optimization algorithm

1. Start with initial estimates of the restoration kernel
H(0) and the sourceX(0) = X.

2. Fork = 0, 1, 2, ..., until convergence

3. Start withX(k+1) = δ.

4. Using an unconstrained optimization method, findH(k+1)

such that̀ (X(k); H(k+1)) < `(X(k); δ).

5. Update source estimate:X(k+1) = H(k+1) ∗X(k).

6) End

The restoration kernel estimate atk-th iteration isĤ =
H(0) ∗ ... ∗ H(k), and the source estimate iŝS = X(k).
This method allows to construct large restoration kernels
growing at each iteration, using a set of relatively low-order
factors. It can be seen easily that the relative optimization
algorithm has uniform performance, i.e. its step at iteration
k depends only onW ∗H(0) ∗ ... ∗H(k−1).

Step 4 can be carried out using any unconstrained opti-
mization algorithm. Particulary, it was found that a single
Newton step can be used, yielding very fast convergence. In
the standard Newton method [10], the descent directiond at
each iteration is given by solution of the linear system

∇2` · d = −∇`. (8)

In order to guarantee descent direction, positive definiteness
of the Hessian is usually forced by using modified Cholesky
factorization, which requires aboutO (

1
6K3

MK3
N + K2

MK2
N

)
operations [10]. Having the directiond, the new iterate
H(k+1) is given by

H(k+1) = H(k) + αd,

whereα is the step size determined by either exact line
search or by backtracking line search, which guarantees mono-
tonic decrease of the objective function at every iteration.

Practical use of the relative Newton step is limited to
small values ofM,N andMX , NX due to the complexity
of Hessian construction, and solution of the Newton sys-
tem. However, this complexity can be significantly reduced



if special Hessian structure is exploited. Near the solution
point, X(k) ≈ cS, hence`(X; δ) evaluated at each rela-
tive Newton iteration becomes approximately`(cS; δ). For
a zero-mean i.i.d. source and sufficiently large sample size
(in practice,MXNX > 102), the following approximation
holds:

∂2`

∂Hij∂Hkl
≈ δi+j,k+l + c2 · IE {ϕ′′(cS00)SijSkl}

=





IE
{
ϕ′′(cS)(cS)2

}
+ 1 : (i, j) = (k, l) = 0,

IEϕ′′(cS) · IE(cS)2 : (i, j) = (k, l) 6= 0,
1 : (i, j) = −(k, l) 6= 0,
0 : otherwise.

Using this approximation, only the main diagonal of the
Hessian matrix has to be evaluated at each iteration, and
the solution of the Newton system (8) separates into the set
of 2× 2 systems of the form
(∇`−i,−j

∇`ij

)
= −

(∇2`−i,−j,−i,−j 1
1 ∇2`ijij

)(
d−i,−j

dij

)

for (i, j) 6= 0, and an additional equation

∇`00 = −∇2`0000 d00.

We will henceforth refer to this approximate Newton step
as to thefast relative Newton method, since its complexity
is of the same order as that of the gradient-based methods.

4. SPARSIFICATION

The sparsity prior used in the QML function (3) is valid for
sparse sources and not valid for natural images in their na-
tive space. On the other hand, it is especially convenient
for the underlying optimization problem due to its convex-
ity. Moreover, deconvolution of sparse sources is especially
accurate. While it is difficult to model actual distributions
of natural images, it is much easier to transform an image
in such a way that it fits the sparsity prior. This idea was
previously exploited successfully in blind source separation
[8, 9, 11].

Let us assume that there exist asparsifying transforma-
tion TS , which yields a sparse representation of the source
S, such that our algorithm is likely to produce in such a case
a good source estimate of the restoration kernelH. The
problem is that in the BD setting,S is not available, and we
can applyTS to the observationX only. Hence, it is neces-
sary that the sparsifying transformation commute with the
convolution operation, i.e.

(TSS) ∗W = TS(S ∗W ) = TSX, (9)

such that applyingTS to X is equivalent to applying it to
S. It is obvious thatTS must be a shift-invariant (SI) trans-
formation. For simplicity, we limit our attention to linear

shift-invariant (LSI) transformations, i.e.T that can be rep-
resented by convolution with asparsifying kernelT S =
T ∗ S. An example of a source image sparsified by using
the corner-detecting kernel is presented in Figure 1.

The sparsifying kernel can be constructed based ona
priori information about the source image, such as image
structure, whether it has sharp edges, corners, etc. Alterna-
tively, the sparsifying kernel can be obtained fromtraining,
minimizing some sparsity criterion over a representative set
of source images

{
S(k)

}
. The latter can be achieved by

solving, for example, the following problem [4]

min
T

∑

m,n,k

∣∣∣
(
T ∗ S(k)

)
mn

∣∣∣ : ‖T‖ = 1.

5. SIMULATION RESULTS

We demonstrate the performance of the fast relative Newton
algorithm in a simulation. A100×100 aerial image (Fig. 1,
left) was blurred by a Lorenzian-shaped kernel, approximat-
ing a typical point spread function of scattering medium
(Fig. 2, left). In this case, image restoration can be well
accomplished by the proposed method, since the blurring
kernel can be inverted by a relatively short FIR restoration
filter. Here we present the noiseless case; for examples of
deconvolution in the presence of noise see [4].

Blind deconvolution was performed with a3 × 3 FIR
kernel. A2 × 2 corner detector was used as the sparsify-
ing kernel. The smoothing parameter was set toλ = 10−2.
The iterative optimization algorithm was terminated when
‖∇`‖ fell below 10−10. In a typical case of application of
our algorithm, convergence is obtained in 10-20 iterations,
requiring about 0.1 sec per iteration on a PC workstation.
Restoration results are depicted in Figure 2 (right). Restora-
tion quality of SIR = 17.04 dB and SIR∞ = 23.55 dB is
achieved. SIR refers to the interference energy, whereas
SIR∞ to the maximum interference. Additional examples
are presented in [4].

Convergence of the fast relative Newton method has been
compared with that obtained using the standard Newton method,
with restoration kernels of different sizes, used directly for
minimization of`(X; H). An i.i.d. sparse image was used
as the source. The proposed method demonstrates a signifi-
cantly faster convergence (Fig. 3).

6. CONCLUSIONS

The proposed Newton-like QML BD algorithm, based on
the sparsity prior and the special Hessian structure, is com-
putationally efficient. It is applicable to a wide class of
images, which can be represented sparsely by application
of a shift-invariant transformation. In cases where some
prior knowledge regarding the structure of the image and/or



Source image Sparsified source

Fig. 1. The source image – an aerial photo (left), and its
sparsified version, obtained by using a corner-detecting ker-
nel (right).

Observed image Restoration result

Fig. 2. An image, created by blurring the source shown in
Fig. 1 by convolving it with a kernel simulating scattering
medium (left). Restoration result obtained by using the fast
relative Newton method applied to the sparsified observed
image (right).

the physics of the imaging conditions is available, a bet-
ter choice of the proper sparsifying transformation can be
made. Otherwise, such a transformation can be found by
training. Good performance was achieved on simulated data
in moderate noise conditions. Possible applications are mi-
croscopy, optical tomography,in vivooptical imaging, etc.
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