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ABSTRACT
We address the problem of restoration of images obtained
through a scattering medium. We present an efficient quasi-
maximum likelihood blind deconvolution approach based
on the fast relative Newton algorithm and optimal distribution-
shaping approach (sparsification), which allows to use sim-
ple and convenient sparsity prior for a wide class of im-
ages. Simulation results prove the efficiency of the proposed
method.

1. INTRODUCTION

Imaging through scattering media plays an important role
in optical tomography [1] and other medical applications.
Multiple scattering results in image blurring, which can be
modelled as a result of convolution with and unknown ker-
nel. Many techniques are therefore based on blind decon-
volution are commonly used [1, 2]. The advantage of such
approaches is that they do not require expensive hardware
such as nanosecond gating devices.

According to the convolution model, the observed sen-
sor image X is created from the source image S passing
through a linear shift-invariant system described by the im-
pulse response W ,

X = (W ∗ S). (1)

We assume that the action of W is invertible (at least ap-
proximately), i.e. there exists some other kernel H such that
(W ∗H)mn ≈ δmn. This assumption holds well since blur-
ring kernels resulting from scattering are usually Lorenzian-
shaped and their inverse can be approximated by small FIR
kernels. The aim of blind deconvolution is to find such
deconvolution (restoration) kernel H that produces an es-
timate S̃ of S up to integer shift and scaling factor:

S̃mn = (H ∗X)mn ≈ c · Sm−∆M ,n−∆N
, (2)

or equivalently, the global system response should be

Gmn = (W ∗H)mn ≈ c · δm−∆M ,n−∆N
. (3)

This research has been supported by the HASSIP Research Network
Program HPRN-CT-2002-00285, sponsored by the European Commission.

Unlike approaches estimating the image and the blur-
ring kernel, we estimate the restoration kernel only, which
results in a much lower dimensionality of the problem. In
this work, we present a quasi-maximum likelihood blind de-
convolution algorithm, which generalizes the fast relative
Newton algorithm previously proposed for blind source sep-
aration [3]. We also propose optimal distribution-shaping
approach (sparsification), which allows to use simple and
convenient sparsity prior for a wide class of images. For
technical details see [4, 5].

2. QUASI-ML BLIND DECONVOLUTION

Denote by Y = H ∗ X the source estimate and let us as-
sume that S is zero-mean i.i.d. In the zero-noise case, the
normalized minus log likelihood function of the observed
signal X , given the restoration kernel H , is

L(H; X) = −MXNX
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where ϕ(·) = − log pS(·), pS(·) stands for the source prob-
ability density function (PDF), MXNX is the observation
sample size, and Ĥ(ξ, η) denotes the Fourier transform of
Hmn. We will henceforth assume that H is a FIR, supported
on [−M, ...,M ]× [−N, ..., N ] and denote KM = 2M +1,
KN = 2N + 1. Cost functions similar to (4) were also
obtained in the 1D case using negative joint entropy and in-
formation maximization considerations [6].

2.1. The choice of ϕ(·)
Source images arising in most applications usually have non-
log-concave, multi-modal distributions. These are difficult
to model and are not suitable for optimization. However,
consistent estimator of S can be obtained by minimizing
L(H; X) even when ϕ(·) is not exactly equal to− log pS (·).
Such quasi-ML estimation has been shown to be practical
in instantaneous blind source separation [7, 3, 8] and blind
deconvolution of time signals [4]. For example, when the
source is super-Gaussian (sparse), a smooth approximation



of the absolute value function is a good choice for ϕ(·)
[9, 10]. Although natural images are usually far from being
sparse, they can be transformed into a space of a sparse rep-
resentation. We will therefore focus our attention on mod-
elling super-Gaussian distributions using a family of convex
smooth functions

ϕλ(t) = |t| − λ log
(

1 +
|t|
λ

)
(5)

with λ a positive smoothing parameter; ϕλ(t) → |t| as λ →
0+.

2.2. Approximation of the log-likelihood function

In practice it is difficult to evaluate the first term of L(H; X)
containing the integral; however, it can be approximated
with any desired accuracy by [4]
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∣∣∣Ĥ(ξ, η)

∣∣∣ dξdη ≈

1
MF NF

MF∑

k=0

NF∑

l=0

log
∣∣∣Ĥkl
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where Ĥkl = Ĥ
(

2πk
MF

, 2πl
NF

)
are the 2D DFT coefficients of

Hmn [4], zero-padded to MF × NF . The approximation
error vanishes as MF , NF grow to infinity. MF and NF

should be chosen as integer powers of 2, which allows the
use of FFT. For convenience, we will denote
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MF∑
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log
∣∣∣Ĥkl
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2

(7)

f2(Y ) =
∑
m,n

ϕ(Ymn), (8)

and, accordingly, the approximate normalized minus-log like-
lihood function becomes

L(H; X) = − f1(H)
2MF NF

+
f2(Y )

MXNX
. (9)

2.3. Gradient and Hessian of L(H; X)

The optimization algorithm discussed in Section 2.4 requires
knowledge of the gradient and the Hessian of L(H; X). For
convenience, we will parse the variables column-wise into
a KMKN × 1 vector h = vec(H), and define the gradient
and the Hessian of L(H;X) as a KMKN × 1 vector and a
KMKN ×KMKN matrix, respectively. The gradient of f1

is

∇f1 = vec (Q′kl + Q′∗kl) , (10)

and the i-th row of the Hessian of f1 is given by [5]
(∇2f1

)
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)
, (11)
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and k′ = (i−1) mod KM −M and l′ = b i−1
KM

c−N . The
gradient of f2 is given by

∇f2 = vec ((Φ′ ∗ JX)kl) (13)

and the i-th row of the Hessian of f2 is given by [5]

(∇2f2

)
i

= vec
((

Ak′l′ ∗ JX
)

kl

)
, (14)

where Φ′mn = ϕ′(Ymn), Ak′l′
mn = ϕ′′(Ymn) · Xm−k′,n−l′ ,

(JX)mn = XMX−m,NX−n, k′ = (i− 1) mod (KM )−M ,
and l′ = b i−1

KM
c −N . Computational complexity of f1,∇f1

and ∇2f1 is O (MF NF log MF NF ); complexity of f2 and
∇f2 is O (MXNX log MXNX), and complexity of ∇2f2

is O (MNMXNX log MXNX).

2.4. Minimization of L(H; X)

For minimization of L(H; X), we use the Newton method,
which often provides very fast (quadratic) rate of conver-
gence. In the standard Newton approach [11], the direction
d at each iteration is given by solution of the linear system

∇2L · d = −∇L. (15)

Since the objective function is non-convex, in order to guar-
antee descent direction, positive definiteness of the Hessian
is forced by using modified Cholesky factorization, which
requires about 1

6K3
MK3

N + K2
MK2

N operations [11]. We
find a new iterate by performing backtracking linesearch in
the direction d, which guarantees monotonic decrease of the
objective function at every iteration. We restrict the search
to a subspace of all kernels H that possess a stable inverse
[4].

It is also possible to use the fast relative Newton method,
based on sparse approximation of the Hessian, which re-
sults in a very efficient algorithm with fast convergence and
computational complexity per iteration compared to that of
gradient methods [3, 5].

3. OPTIMAL SPARSE REPRESENTATIONS

The sparsity prior used in the quasi-ML function (9) is valid
for sparse sources and not valid for natural images in their
native space. On the other hand, it is especially convenient
for the underlying optimization problem due to its convex-
ity; moreover, deconvolution of sparse sources is especially
accurate. While it is difficult to model actual distributions



of natural images, it is much easier to transform an image
in such a way that it fits the sparsity prior. This idea was
previously successfully exploited in blind source separation
[9, 10, 12].

Let us assume that there exist a sparsifying transforma-
tion TS , which makes the source S sparse, such that our
algorithm is likely to produce a good source estimate of the
restoration kernel H . The problem is that in the blind de-
convolution setting, S is not available, and we can apply TS

to the observation X only. Hence, it is necessary that the
sparsifying transformation commute with the convolution
operation, i.e.

(TSS) ∗W = TS(S ∗W ) = TSX, (16)

such that applying TS to X is equivalent to applying it to S.
It is obvious that TS must be a shift-invariant (SI) transfor-
mation. We will use X ′, S′ to denote TSX and TSS, respec-
tively; the subindex ”S” in TS will be omitted for brevity.
For simplicity, we limit our attention to linear shift-invariant
(LSI) transformations, i.e. T that can be represented by con-
volution with a sparsifying kernel T S = T ∗ S.

Thus, we obtain a general blind deconvolution algorithm,
which is not limited to sparse sources. We first sparsify the
observation data X by convolving it with T , and then apply
the sparse blind deconvolution algorithm on X ′. The ob-
tained restoration kernel H is then applied to Y to produce
the source estimate.

3.1. Optimal sparsifying kernels

Assume that the source S is given. It is desired that the
unity restoration kernel δmn (up to a scaling factor) be a
local minimizer of the quasi-maximum likelihood given the
transformed source S ∗ T as an observation, i.e.:

∇L(δmn; S ∗ T ) = 0. (17)

Informally, this means that S ∗ T optimally fits the sparsity
prior (at least in local sense). Due to equivariance [6, 4],
(17) is equivalent to∇L(T ; S) = 0. In other words, we can
define the following optimization problem:

min
T

L(T ;S) (18)

whose solution is the ”most sparsifying kernel” for S. This
problem is equivalent to the deconvolution problem itself,
with the exception of the stability condition, which is not
needed here since T is not necessarily invertible.

Unfortunately, since the source image S itself is not
available, computation of the sparsifying kernel TS is pos-
sible only theoretically. However, for images belonging to
the same class, the sparsifying kernels are likely to be suffi-
ciently similar. Let C1 denote a class of images, and assume
that the unknown source S belongs to C1. We can find find

Fig. 1. Source image.

a training set of images S(1), S(2), ..., S(NT ) ∈ C1 and use
them to find the optimal sparsifying kernel of S. Optimiza-
tion problem (18) becomes in this case

min
T

{
−f1(T )
2MF NF

+
1

MXNXNT

NT∑
n=1

f2(S(i) ∗ T )

}
, (19)

i.e. T is required to be the optimum sparsifying kernel for
all S(1), S(2), ..., S(NT ) simultaneously. Given that the im-
ages in the training set are ”sufficiently similar” to S, the
optimum sparsifying kernel obtained from (19) will be sim-
ilar enough to TS .

4. SIMULATION RESULTS

The point spread function of the scattering medium was
obtained in a Monte-Carlo simulation of radiative transfer,
performed according to the optical model of biological tis-
sues presented in [13]. An normally incident laser beam
was used to illuminate a 20 mm×20 mm×10 mm scattering
medium, in which the mean free path was set to 0.5 mm.
107 photons were generated, of which 4 × 106 were col-
lected by a detector with 31× 31 bins, and the rest was ab-
sorbed by the medium. The obtained PSF had a Lorenzian
shape (Figure 4a), characteristic to PSFs of scattering media
[13, 1]. The PSF obtained from simulation was convolved
with a 100 × 100 phantom image (Figure 1) in zero-noise
conditions. Figure 2 depicts the observed image.

Blind deconvolution was performed with a 3 × 3 FIR
kernel (Figure 4b). A 2× 2 corner detector was used as the
sparsifying kernel (Figure 4d). Fast relative Newton method
was used to minimize L(H;X), in which the smoothing pa-
rameter was set to λ = 10−2. Optimization was terminated
when ‖∇L‖ fell below 10−10. Generally, convergence was
obtained in 10-20 iterations, requiring about 0.1 sec per iter-
ation on a PC workstation. Restoration results are depicted
in Figure 3.

Restoration quality of SIR = 20.57 dB and SIR∞ = 35.06
dB was achieved. SIR refers to the interference energy,
whereas SIR∞ to the maximum interference.



Fig. 2. Observed image.

Fig. 3. Restored image.

5. CONCLUSIONS

We have presented a quasi-ML blind deconvolution algo-
rithm for restoration of images obtained through a scattering
medium. The source sparsity prior was assumed. We have
also shown that the method is applicable for a wider class
of images, which can be represented as sparse ones by a
shift-invariant transformation, and presented a way of find-
ing such transformations by training. Good performance
was achieved on simulated data in moderate noise condi-
tions. Possible applications are microscopy, optical tomog-
raphy, in vivo optical imaging, etc.
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