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Abstract— The relative Newton algorithm, previously proposed
for quasi maximum likelihood blind source separation and blind
deconvolution of one-dimensional signals is generalized for blind
deconvolution of images. Smooth approximation of the absolute
value is used in modelling the log probability density function,
which is suitable for sparse sources. In addition, we propose
a method of sparsification, which allows blind deconvolution of
sources with arbitrary distribution, and show how to find optimal
sparsifying transformations by training.

Index Terms— blind deconvolution, quasi maximum likelihood,
sparse representations, relative Newton optimization.

I. I NTRODUCTION

T WO-dimensionalblind deconvolution(BD) is a special
case of a more general problem ofimage restoration.

The goal of BD is to reconstruct the original scene from an
observation degraded by the action of a linear shift invariant
(LSI) system, when no or very littlea priori information
about the scene and the degradation process is available, hence
the term ”blind”. BD is critical in many fields, including
astronomy [1], [2], remote sensing [3], biological and medical
imaging [4], [5] and microscopy [6], [7]. Typically, the image
is degraded by imperfections of an optical system, and can
be presented in terms of convolution of the source image
with some blurring kernel or point spread function(PSF);
in such applications, the termdeblurring is synonymous to
deconvolution.

A. Problem formulation

In the general setup of 2D BD, the observed sensor image
X is created from thesource imageS passing through a
convolutive system defined by its impulse responseW ,

Xmn =
∑

k,l

WklSm−k,n−l + Umn,

and is possibly contaminated by additive sensor noiseU .
We assume that the action ofW is invertible, at least ap-
proximately. The aim of BD is to find suchdeconvolution
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(restoration) kernelH that produces an estimatẽS of S up to
integer shift and scaling factorc:

S̃mn =
∑

k,l

HklXm−k,n−l ≈ c · Sm−∆M ,n−∆N
,

or equivalently, theglobal system responseshould be

Gmn = (W ∗H)mn ≈ c · δm−∆M ,n−∆N
,

whereδij denotes the Kr̈onecker delta (discrete impulse sig-
nal).

B. Previous work

Various BD methods have been previously proposed. We
will only briefly outline the basic approaches (for a compre-
hensive comparison see e.g. [8]). Most of the BD approaches
can be divided intoparametric and non-parametric. In ap-
plications where the form of the PSF can be assumed in
advance (e.g. motion blur or defocus), it is possible to use
a parametric model of the PSF and instead of finding the PSF
itself, one can try to estimate the parameters of its model.
In real applications it is often difficult to derive a good model
for the PSF; the advantages are, obviously, in having a smaller
number of variables.

BD approaches can be divided into those that estimate
the blurring kernel, those estimating the source image and
the blurring kernel simulataneously, and those estimating the
restoration kernel. The first class includes the so-calleda
priory blur identification methods, which first estimate the
blurring kernel and then employ a non-blind deconvolution
algorithm to find the source estimate [9]–[11].

The second class includes methods based on statistical or
deterministic priors of the source image, the blurring kernel
and the noise [12], [13]. Estimation of the source image is
performed by maximizing some optimality criterion, which
includes these priors. Since the variables in this problem are
both the source image and the blurring kernel, the computa-
tional complexity is a major problem.

The third class of methods usually employs maximum likeli-
hood (ML) estimators of the restoration kernel; such estimators
can incorporate priors on the image and the kernel. Since there
is no need to estimate the source image, these approaches
demand the solution of more modest optimization problems
and, consequently, are much more efficient. However, the exact
source distribution, required for the ML approach, is often
unknown.

A possible remedy is to use an approximate probability
density function; such a modified ML approach is usually
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referred to asquasi ML (QML). Such estimation techniques
were successfully used in blind source separation (BSS) [14]–
[16]. The relative Newton quasi ML framework for BD of
1D signals was introduced in [17]. Here, we extend it to the
2D case. In addition, we present a novel approach of using
optimal sparse representation, which can be used for BD of
source images with arbitrary distributions.

II. QUASI ML BLIND DECONVOLUTION

The convolution operationH ∗ X can be thought of as
application of an infinite Toeplitz block-Toeplitz operatorH,
defined by the impulse responseHmn. Denoting the source
estimate byY = H ∗ X and assuming thatS is i.i.d., the
following minus-log likelihood function of the observed signal
X, given the restoration kernelH is obtained in the case of
zero noise [18]:

L(H;X) =

−MXNX

4π2

∫ π

−π

∫ π

−π

log
∣∣∣Ĥ(ξ, η)

∣∣∣ dξdη +
∑
m,n

ϕ(Ymn), (1)

where MXNX is the observation sample size,
ϕ(·) = − log pS(·), andpS(·) stands for the source probability
density function (PDF).

Ĥ(ξ, η) =
∑
m,n

Hmn e−i(mξ+nη)

denotes the Fourier transform ofHmn. We will henceforth
assume thatHmn has finite impulse response (FIR), supported
on [−M, ...,M ]× [−N, ..., N ]. We will useKM = 2M + 1
andKN = 2N +1 to denote the dimensions of the restoration
kernel.

A. The choice ofϕ(·)
Natural images encountered in most applications are usually

characterized by non-log-concave, multi-modal distributions,
which are difficult to model and are not well-suited for opti-
mization1. However, consistent estimator ofS can be obtained
by minimizing L(H; X) even whenϕ(·) is not exactly equal
to − log pS (·). Such quasi ML estimation has been shown to
be practical in instantaneous BSS [14], [16], [19] and BD of
1D signals [17], [20]. For example, when the source is super-
Gaussian2 (e.g. it is sparse or sparsely representable), a smooth
approximation of the absolute value function is a good choice
for ϕ(·) [17], [19], [21]. Although natural images are usually
far from being sparse, they can be sparsely represented by
a proper transformation [16], [22]. (In Section IV, we will
show how to transform general classes of natural images into
sparse ones.) We therefore focus our attention on modelling
super-Gaussian distributions using a family of convex smooth
functions

ϕλ(t) = |t| − λ log
(

1 +
|t|
λ

)
, (2)

1Non-log-concave distributions lead to non-convex prior term in the minus
log-likelihood function.

2Super-Gaussian sources are defined as signals possessing positive kurtosis
excess IEx4/IE2x2 − 3. Sub-Gaussian sources have negative kurtosis excess.

whereλ is a positive smoothing parameter [15];ϕλ(t) → |t|
asλ → 0+. For convenience, we henceforth omitλ from our
notation whenever possible, and refer toϕλ(·) without using
the subscript.

Yet another important advantage of working with super-
Gaussian sources is the fact that the asymptotic restoration er-
ror variance is significantly smaller compared to sub-Gaussian
sources, i.e., deconvolution is more accurate. This issue is
addressed in [18].

B. Approximation of the log-likelihood function using FFT

In practice, the first term ofL(H;X), containing the inte-
gral, is difficult to evaluate. It can, however, be approximated
with any desired accuracy by [17]

1
4π2

∫ π

−π

∫ π

−π

log
∣∣∣Ĥ(ξ, η)

∣∣∣ dξdη ≈

1
MF NF

MF∑

k=0

NF∑

l=0

log
∣∣∣Ĥkl

∣∣∣ ,

where

Ĥkl = FMF ,NF
{Hmn}kl = Ĥ

(
2πk

MF
,
2πl

NF

)
(3)

are the 2D DFT coefficients ofHmn, zero-padded to the
support MF × NF . F denotes the 2D FFT operator. The
approximation error vanishes asMF , NF grow to infinity.
ChoosingMF andNF as integer powers of 2, allows to use
2D FFT. For convenience, we denote

f1 =
MF∑

k=0

NF∑

l=0

log
∣∣∣Ĥkl

∣∣∣
2

(4)

f2 =
∑
m,n

ϕ(Ymn), (5)

and define the approximate normalized minus-log likelihood
function as

L(H;X) = − 1
2MF NF

f1(H) +
1

MXNX
f2(Y ). (6)

C. Gradient and Hessian ofL(H;X)
Optimization algorithms discussed in Section III-C require

the knowledge of the gradient and the Hessian ofL(H; X).
Since the optimization variableH is a KM × KN matrix,
the gradient∇L is also aKM × KN matrix, whereas the
Hessian∇2L is aKM ×KN ×KM ×KN fourth-order tensor.
For convenience, we parse the variables column-wise into a
KMKN × 1 vector

vec(H) =
[

H−M,−N , ..., HM,−N , ..., HM,N

]T
,

and define the gradient and the Hessian ofL(H;X) as a
KMKN × 1 vector and aKMKN ×KMKN matrix, respec-
tively.

The gradient off1 is given by

∇f1 = vec (Q′kl + Q′∗kl) ,

and thei-th row of the Hessian off1 is
(∇2f1

)
i

= vec
(
Q′′

k+k′,l+l′ + Q′′∗
k+k′,l+l′

)
, (7)
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where

Q′kl = FMF ,NF

{
Ĥ−1

mn

}
kl

Q′′
k+k′,l+l′ = −FMF ,NF

{
Ĥ−2

mn

}
k+k′,l+l′

,

and k′ = (i − 1) mod KM −M and l′ = b i−1
KM

c − N . The
gradient and thei-th row of the Hessian off2 are given by

∇f2 = vec ((Φ′ ∗ JX)kl) ,

(∇2f2

)
i

= vec
((

Ak′l′ ∗ JX
)

kl

)
, (8)

respectively, where Φ′mn = ϕ′(Ymn), Ak′l′
mn =

ϕ′′(Ymn) · Xm−k′,n−l′ , (JX)mn = XMX−m,NX−n,
k′ = (i− 1) mod KM −M , and l′ = b i−1

KM
c −N .

(For derivation see [18].) Computational complexity
of the target function L and its gradient is
O(MF NF log2 MF NF + MXNX log2 MXNX);
whereas evaluation of the Hessian requires
O(MF NF log2 MF NF + MNMXNX log2 MXNX)
operations.

III. R ELATIVE NEWTON ALGORITHM

A fast relative optimization algorithm for BSS, based on the
Newton method, was introduced in [15] as a modification of
the approach presented in [14]. This method was extended in
[17] to BD of time series. Here, we extend these results to
BD of images.

A. Relative optimization algorithm

The main idea of relative optimization is to iteratively
produce source estimate and use it as the current observation.
This yields the following algorithm:

Relative optimization algorithm

1) Start withH(0), and withX(0) = X.
2) For k = 1, 2, ..., until convergence
3) Compute current source estimate:X(k) = H(k−1) ∗X.
4) Starting with V

(k)
mn = δmn, compute coefficients

of the restoration kernel, which sufficiently decrease
L(H = V (k);X(k)).

5) H(k) = V (k) ∗H(k−1).
6) End For

This method allows to construct large restoration kernels of
the form

H = H(0) ∗H(1) ∗ ... ∗H(K−1) (9)

using a set of low-order factors (K denotes the number
of relative optimization iterations). The algorithm assumes
infinite memory and produces a restoration kernel of order
growing at each iteration. In real applications it might be
necessary to limit the support of the restoration kernel. This
can be done by cropping the kernel obtained in Step 5.

Another remarkable property of the relative optimization
algorithm is its equivariance: the relative optimization algo-
rithm is equivariant, i.e. its step at iterationk depends only

on G(k−1) = W ∗H(k−1). This property follows in a straight-
forward manner from the definition of the relative optimization
algorithm. Equivariance implies that for any invertible kernel
A, the estimatorH̃(X) of the restoration kernelH given the
observationX, obtained by minimization of the target function
L(H;X) obeys [18]

H̃(A ∗X) = A−1 ∗ H̃(X),

i.e., the parameters to be estimated (in our case, coefficients
Hmn of the restoration kernel) form a group. This is indeed the
case for invertible kernels with the convolution operation. It
must be noted, however, that when the restoration filter support
is limited by cropping, equivariance holds only approximately.

B. Newton method

Newton method is often used for unconstrained optimiza-
tion, since it provides a very fast (quadratic) rate of conver-
gence. In this approach, the directiond at each iteration is
given by solution of the linear system [23]

∇2L · d = −∇L. (10)

Since the objective function is non-convex, in order to guar-
antee descent direction, positive definiteness of the Hessian is
forced by using modified Cholessky factorization [23]. Having
the directiond, the new iterateh(k+1) is given by

h(k+1) = h(k) + α(k)d,

whereα(k) is the step size determined, e.g., by backtracking
line search restricted to the subspace where the inverse of the
restoration kernel is stable, i.e.log | detH| > −∞ [18].

Newton method is used in Step 4 of the relative optimization
algorithm [15], [17]; such an optimization algorithm will be
referred to as therelative Newtonmethod. Apart from gradient
and Hessian evaluation, required at each relative Newton
iteration, additionalO( 1

6K3
MK3

N + K2
MK2

N ) operations are
required for solution of the Newton system (10) using modified
Cholessky factorization [23].

C. Fast relative Newton step

Practical use of the relative Newton step is limited to
cases of smallM, N, MX , NX , due to the complexity of
Hessian construction and solution of the Newton system. This
complexity can be significantly reduced if special Hessian
structure at the minimum is exploited.

SubstitutingHmn = δmn to (7) yieldsĤ ≡ 1, from where

∂2f1

∂Hkl∂Hk′l′

∣∣∣∣
Hmn=δmn

=

−F
{

Ĥ−2
mn

}
k+k′,l+l′

−F∗
{

Ĥ−2
mn

}
k+k′,l+l′

= −2MF NF δk+k′,l+l′ .

It can be easily seen that∇2f1 is a constant anti-diagonal
matrix with−2MF NF on the secondary diagonal. Therefore,
f1 contributes a unit anti-diagonal to∇2L.
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For Hmn = δmn and X = c · S, one obtainsY = c · S.
Substituting to (8) yields

∂2f2

∂Hkl∂Hk′l′
=

c2 ·
∑
m,n

ϕ′′(c · Smn) Sm−k,n−l Sm−k′,n−l′ .

For sufficiently largeMX , NX ,

∂2f2

∂Hkl∂Hk′l′
≈

c2MXNX · IE {ϕ′′(c · Smn) Sm−k,n−l Sm−k′,n−l′} .

Without loss of generality, let us assume thatSmn is zero-
mean. SinceS is i.i.d.,

∂2f2

∂Hkl∂Hk′l′
≈

MXNX ·




αc2 : k = k′ = l = l′ = 0
γσ′2 : k = k′ 6= 0, l = l′ 6= 0
0 : otherwise,

whereα = c2 · IEϕ′′(c · S)S2, γ = IEϕ′′(c · S), σ2 = IES2,
and σ′ = cσ. We conclude that∇2L(H = δmn; c ·X)
has an approximate diagonal-anti-diagonal form. When
γσ′2 À 1, ∇2L(H = δmn; c ·X) is approximately diagonal.
When γσ′2 ¿ 1, ∇2L(H = δmn; c ·X) has an approximate
anti-diagonal form. Hessian structure is visualized in Figure 1
for different ranges ofγσ′2. Whenγ2σ′4 < 1, the Hessian at
the solution point is not positive-definite, which means that
the QML estimator isasymptotically unstable. This issue is
addressed in depth in [18].

Using the diagonal approximation, which is valid for
γσ′2 À 1, the Newton system (10) can be solved as a set
of KMKN independent linear equations

dk = − (∇L)k

(∇2L)kk

,

for k = 1, ..., KMKN . In order to guarantee decent direction
and avoid saddle points, we force positive definiteness of the
Hessian by forcing small diagonal elements to be above some
positive threshold.

For γσ′2 ∼ 1, the diagonal-anti-diagonal approximation of
the Hessian should be used, which allows to reduce Newton
system solution to regularized solution of a set of2×2 systems
of the form

Dk · dk =
( − (∇L)k

− (∇L)K−k

)
, (11)

and an additional1× 1 system
(∇2L

)
K
2
· dK

2
= − (∇L)K

2
.

Regularization is performed by forcing positive definiteness of
each of the2×2 submatricesDk in (11) by inverting the sign
of negative eigenvalues and forcing small eigenvalues to be
larger than some positive threshold.

When the diagonal or the diagonal-anti-diagonal
approximations are used, fast relative Newton algorithm
requires about(k′′ + 1)MXNX + 4MXNX log2 MXNX

1 4 7

1

4

7

(a)
1 4 7

1

4

7

(b)
1 4 7

1

4

7

(c)

Fig. 1. Hessian structure forHmn = δmm with M = N = 1 (3 × 3
kernel): (a) diagonal-anti-diagonal form forγσ′2 ≈ 10; (b) anti-diagonal
form for γσ′2 ≈ 10−6; (c) diagonal form forγσ′2 ≈ 106. White stands for
near-zero elements of the matrix.

operations for approximate Hessian construction, which is of
the same order as gradient computation. AdditionalKMKN

operations are required for approximate Hessian inversion in
case of diagonal approximation, and slightly more in case of
the diagonal-anti-diagonal approximation. This is compared
to k′′MXNX + KMKN [4MXNX log2 MXNX + MXNX ]
operations for exact Hessian evaluation and additional
1
6 (KMKN )3 + (KMKN )2 computations for exact Newton
system solution required for the full relative Newton step.

IV. OPTIMAL SPARSE REPRESENTATIONS OF IMAGES

The QML framework presented in Section II is valid for
sparse sources; this type of a prior of source distribution is
especially convenient for the underlying optimization problem
due to its convexity, and results in very accurate deconvolu-
tion. However, natural images arising in the majority of BD
applications can by no means be considered to be sparse in
their native space of representation (usually, they are sub-
Gaussian), and thus such a prior is not valid for ”real-life”
sources. On the other hand, it is very difficult to model actual
distributions of natural images, which are often multi-modal
and non-log-concave. This apparent gap between a simple
model and the real world calls for an alternative approach.
In this section, we show how to overcome this problem using
sparse representation.

A. Sparsification

While it is difficult to derive a prior suitable for natural
images, it is much easier to transform an image is such a
way that it fits some universal prior. In this study, we limit
our attention to the sparsity prior, and thus discuss sparsifying
transformations, though the idea is general and is suitable for
other priors as well.

The idea of sparsification was successfully exploited in
BSS [16], [22], [24], [25]. It was shown in [22] that even
such simple transformation as a discrete derivative can make
the image sparse. However, most of these transformations
were derived from empirical considerations. Here we present
a criterion for finding optimal sparsifying transformations.

Let assume that there exists asparsifying transformation
TS , which makes the sourceS sparse (wherever possible, the
subscriptS in TS will be omitted for brevity). In this case,
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Fig. 2. Scheme of blind deconvolution using sparsification.

our algorithm is likely to produce a good estimate of the
restoration kernelH since the source properties are in accord
with the sparsity prior. The problem is, however, that in the
BD setting,S is not available, andT can be applied only to
the observationX. Hence, it is necessary that the sparsifying
transformation commute with the convolution operation, i.e.

(T S) ∗W = T (S ∗W ) = T X, (12)

such that applyingT to X is equivalent to applying it toS.
Obviously,T must be a shift-invariant (SI) transformation.3

Using the most general nonlinear form ofT , we have a wide
class of sparsifying transformations. An important example is
a family of SI transformations of the following form:

(T S)mn =
√

(T1 ∗ S)2mn + (T2 ∗ S)2mn, (13)

where T1, T2 are some convolution kernels. After sparsifi-
cation with T , the prior termf2 of the likelihood function
becomes

∑
m,n

|(T Y )mn| =
∑

n

√
(T1 ∗ Y )2mn + (T2 ∗ Y )2mn, (14)

which is a generalization of the 2Dtotal-variation (TV) norm.
The TV norm, which has been found to be a successful
prior in numerous studies related to signal restoration and
denoising [26]–[28], and was also used by Chan and Wong
as a regularization in BD [29], is obtained whenT1, T2 are
chosen to be discretex- andy-directional derivatives.

For simplicity, we limit our attention in this study to
linear shift-invariant (LSI) transformations, i.e.T that can be
represented by convolution with asparsifying kernel

T S = T ∗ S. (15)

Thus, we obtain a general BD algorithm, which is not
limited to sparse sources. We first sparsify the observation
dataX by convolving it withT (which has to be found in a
way described in Section IV-C), and then apply the sparse BD
algorithm on the resultX ∗T . The obtained restoration kernel
H is then applied toX to produce the source estimate.

B. The sparsifying kernel

An important practical issue is how to find the kernelT .
By definition T must produce a sparse representation of the

3In BSS problems, the sparsifying transformation needs to be linear and not
necessarily shift-invariant, e.g. wavelet packets were used for sparsification in
[16], [24].
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Fig. 3. A 1D example of optimal sparsification: (a) image, (b) a 1D signal
(line 140 from the image), (c) optimal sparsifying kernel (d) sparsified signal

source; it is obvious thatT would usually depend onS, and
also,T does not necessarily have to be stable, since we use
it as a pre-processing of the data and hence never need its
inverse.

Let assume that the sourceS is given (this is, of course,
impossible in reality; the issue of what to use instead of
S will be addressed in Section IV-C). It is desired that the
unity restoration kernelδmn be a local minimizer of the
QML function (6), given the transformed sourceS ∗ T as an
observation, i.e.:

∇L(δmn;S ∗ T ) = 0. (16)

Informally, this means thatS ∗ T optimally fits the sparsity
prior (at least in local sense). Due to the equivariance property,
(16) is equivalent to

∇L(T ;S) = 0.

In other words, we can define the following optimization
problem:

min
T

L(T ; S), (17)

whose solution is the optimal sparsifying kernel forS. This
problem is equivalent to the problem of

min
H

L(H; S) s.t. H is stable,

solved for deconvolution itself, with the exception of the
stability condition, which is not needed here sinceT is not
necessarily invertible. The termf1(T ) in L(T ; S) defined in
(4) eliminates the trivial solutionT = 0.

Figures 3 and 4 show examples of optimal sparsifying
transformations of 1D and 2D signals. In the 1D case, a row
from a natrual image was taken; the optimal sparsifying kernel
is a discrete derivative. In the 2D case of a block signal, as
expected intuitively, the optimal sparsifying kernel is a corner
detector.
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Fig. 4. Optimal sparsification of a block image: (a) original image, (b)
sparsified image, (c) optimal sparsifying kernel

C. Finding the sparsifying kernel by training

Since the source imageS is not available, computation
of the sparsifying kernel by the procedure described in Sec-
tion IV-B is possible only theoretically. However, empirical
results indicate that for images belonging to the same class,
the proper sparsifying kernels are sufficiently similar.

Let C1 denote a class of images, e.g. human faces, and
assume that the unknown sourceS belongs toC1. We can find
imagesS(1), S(2), ..., S(NT ) ∈ C1 and use them to find the
optimal sparsifying kernel ofS. Optimization problem (17)
becomes in this case

min
T

{
−f1(T )
2MF NF

+
1

MXNX
· 1
NT

NT∑
n=1

f2(S(i) ∗ T )

}
, (18)

i.e. T is required to be the optimal sparsifying ker-
nel for all S(1), S(2), ..., S(NT ) simultaneously. The images
S(1), S(2), ..., S(NT ) constitute atraining set, and the process
of finding such T as training. Given that the images in
the training set are ”sufficiently similar” toS, the optimal
sparsifying kernel obtained from (18) is similar enough toTS .

V. SIMULATION RESULTS

The QML-based deconvolution approach was tested in
three experiments under zero-noise conditions. In the first
experiment, the goal was to compare between the performance
of fast relative Newton and full relative Newton algorithms.
The purpose of the second experiment was to demonstrate
the utility of the training approach for finding optimal sparse
representations. In the second experiment, we used the sparsi-
fication approach to perform deconvolution of natural images.
As a criterion for evaluation of the reconstruction quality,
we used the signal-to-interference-ratio (SIR) in sense of the
L2, L∞ norms, and the peak SIR (PSIR) in dB units [18].

A. Deconvolution of sparse images

An 101 × 101 Gauss-Bernoully i.i.d. image withρ = 0.2
[18] was used as the source in the first experiment. The
image was convolved with a3× 3 FIR kernel with a slowly-
decaying inverse (see Figure 6). Full Newton and fast relative
Newton (with a diagonal Hessian approximation) were used
to estimate the inverse kernel.3× 3, 5× 5, 7× 7, and9× 9
restoration kernels were used. The smoothing parameter was
set toλ = 10−2. Optimization was terminated when‖∇L‖

(a) (b) (c)

(d) (e) (f)

Fig. 5. (a) training synthetic image, (b) source aerial imageS, (c) blurred
imageS ∗W , (d) sparsified training image, (e) sparsified source, (f) restored
image.

reached10−10. Gradient norms, SIR and SIR∞ were measured
as a function of CPU time4 and iteration number.

The experiments indicate convergence of both algorithms
(Figure 6). The fast relative Newton converged about10 times
faster in terms of SIR, compared with the full Newton step.
For the same values ofM, N , the obtained restoration quality
of the fast relative Newton algorithm, compared to the full
Newton step, was better by about 2–5 dB (in terms of SIR
and SIR∞), since the effective restoration kernel was of higher
order.

B. Training

In the second experiment, a real aerial photo of a factory
was used as the source image, and a synthetic one (drawn
using PhotoShop) as the training image (Figure 5). A3 × 3
sparsifying kernel is found by training on a single image, then
the same kernel is used as a pre-processing for BD applied
to a different blurred source image from the same class of
images. The source image was convolved with a symmetric
FIR 31× 31 Lorenzian-shaped blurring kernel. Deconvolution
kernel was of size3× 3.

The sparsifying kernel obtained by training was very close
to a corner detector. The signal-to-interference ratio in the
deconvolution result wasSIR = 20.1561 dB, SIR∞ =
25.7228 dB.

C. Deconvolution of natural images

In the second experiment, four natural source images were
used:S1 (Susy),S2 (Aerial),S3 (Gabby) andS4 (Hubble). The
images are presented in Figure 7. Nearly-stable Lorenzian-
shaped kernels were applied to the corresponding sources.
This type of kernels characterizes scattering media, such as
biological fluids and aerosoles found in the atmosphere [30].
The observed images are depicted in Figure 8. Quality of the

4All algorithms were implemented in MATLAB and executed on an ASUS
portable computer with Intel Pentium IV Mobile processor and 640MB RAM.
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TABLE I

SIR, SIR∞ AND PSIROF THE OBSERVED IMAGES.

Source SIR [dB] SIR∞ [dB] PSIR [dB]

S1 Susy -1.4648 7.8416 -16.1491

S2 Aerial -1.4648 7.8416 -19.9403

S3 Gabby 4.9018 11.5504 -1.6315

S4 Hubble 3.3969 10.6454 -0.7940

TABLE II

SIR, SIR∞ AND PSIROF THE RESTORED IMAGES.

Source SIR [dB] SIR∞ [dB] PSIR [dB]

S1 Susy 17.7994 22.2092 22.6132

S2 Aerial 17.0368 23.5482 9.6673

S3 Gabby 19.3249 23.8109 29.8316

S4 Hubble 14.5152 17.1552 19.8083

degraded images in terms of SIR, SIR∞ and PSIR is presented
in Table I.

Fast relative Newton step with kernel size set to3× 3 was
used in this experiment. The smoothing parameter was set
to λ = 10−2. Corner detector was used as the sparsifying
kernel. Optimization was terminated when the gradient norm
reached10−10. Convergence was achieved in10−20 iterations
(about 10 sec). The restored images are depicted in Figure 9.
Restoration quality results in terms of SIR, SIR∞ and PSIR
are presented in Table II.

VI. CONCLUSION

The QML framework, recently presented in the context of
1D deconvolution [17] is also attractive for BD of images. We
presented an extension of the relative optimization approach
to QML BD in the 2D case and studied the relative Newton
method as its special case.

Similarly to previous works addressing deconvolution in
other spaces (e.g. [31]) and our studies of using sparse
representation in the context of BBS, in BD the sparse prior
appears very efficient as well. We showed a training approach
for finding optimal sparse representations, in order to yield
a general-purpose BD method. A particular class of LSI
sparsifying transformations generalizes some previous results
such as the total variation prior [26]–[28]. We also showed how
optimal sparsifying transformations can be found by training.

Simulation results demonstrated the efficiency of the pro-
posed methods. Although we have limited our attention to
noiseless BD, it is important to emphasize that the sparsifica-
tion framework is applicable to the noisy case as well. Spar-
sifying kernels are typically high-pass filters, since by their
very nature sparse signals have high-frequency components.
Such kernels have the property of amplifying noise – thus in
case when the signal is contaminated by additive noise, using
such kernels is undesired. To cope with the problem of noise,
the signal should be smoothed with a low-pass filterF and

10 20 30 40 50

10
−10

10
−5

10
0

Iteration

G
ra

di
en

t n
or

m

10
0

10
1

10
2

10
−10

10
−5

10
0

Time (sec)

G
ra

di
en

t n
or

m

3×3
5×5

7×7

9×9

3×3

5×5

7×7

9×9

3×3

5×5

7×7

9×9
3×3 5×5 7×7

9×9

5 10 15 20 25

0

5

10

15

20

25

Iteration

S
IR

 [d
B

]

10
0

10
1

10
2

0

5

10

15

20

25

Time (sec)

S
IR

 [d
B

]

3×3

5×5
7×7

9×9

3×3

5×5

7×7

9×9

3×3

5×5

7×7

9×9

3×3

5×5

7×7
9×9

5 10 15 20 25
0

5

10

15

20

25

30

35

40

Iteration

S
IR

∞
 [d

B
]

10
0

10
1

10
2

0

5

10

15

20

25

30

35

40

45

Time (sec)

S
IR

∞
 [d

B
]

3×3

5×5 7×7 9×9

3×3

5×5

7×7

9×9

3×3

5×5

7×79×9

3×3

5×5

7×7
9×9

Fig. 6. Convergence of the Newton method (solid) and of the fast relative
Newton method (dashed), for various sizes of the restoration kernel (indicated
on the plots).

S1 (Susy) S2 (Aerial)

S3 (Gabby) S4 (Hubble)

Fig. 7. Source imagesS1, S2, S3 andS4 used in the simulations.
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X1 (Susy) X2 (Aerial)

X3 (Gabby) X4 (Hubble)

Fig. 8. Observed (blurred) images.

S̃1 (Susy) S̃2 (Aerial)

S̃3 (Gabby) S̃4 (Hubble)

Fig. 9. Restoration results using the quasi ML deconvolution approach.

afterwards the sparsifying kernelT should be applied. Due to
commutativity of the convolution, it is equivalent to carrying
out the sparsification with a smoothed kernelT ∗ F .

Potential applications of our approach are in optics, re-
mote sensing, microscopy and biomedical imaging, especially
where the SNR is moderate. This approach is especially
accurate and efficient in problems involving slowly-decaying
(e.g. Lorenzian-shaped) kernels, which can be approximately
inverted using a kernel with small support. Such kernels are
typical of imaging through scattering media.
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