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Abstract— The relative Newton algorithm, previously proposed (restoratior) kernel H that produces an estimageof S up to
for quasi maximum likelihood blind source separation and blind integer shift and scaling factat
deconvolution of one-dimensional signals is generalized for blind ~
deconvolution of images. Smooth approximation of the absolute Srn = ZHlemfk,nfl A C S Ay n—Ans
value is used in modelling the log probability density function, ol
which is suitable for sparse sources. In addition, we propose ’
a method of sparsification, which allows blind deconvolution of or equivalently, theglobal system responsould be
sources with arbitrary distribution, and show how to find optimal
sparsifying transformations by training. Gmn = (WHH)mn ¢ Om—Apn—Ans

Index Terms—blind deconvolution, quasi maximum likelihood, ~whered;; denotes the Kinecker delta (discrete impulse sig-
sparse representations, relative Newton optimization. nal).

B. Previous work

Various BD methods have been previously proposed. We
WO-dimensionalblind deconvolution(BD) is a special will only briefly outline the basic approaches (for a compre-
case of a more general problem iofiage restoration hensive comparison see e.g. [8]). Most of the BD approaches
The goal of BD is to reconstruct the original scene from acan be divided intgparametric and non-parametric In ap-
observation degraded by the action of a linear shift invariaplications where the form of the PSF can be assumed in
(LSI) system, when no or very little priori information advance (e.g. motion blur or defocus), it is possible to use
about the scene and the degradation process is available, henparametric model of the PSF and instead of finding the PSF
the term "blind”. BD is critical in many fields, including itself, one can try to estimate the parameters of its model.
astronomy [1], [2], remote sensing [3], biological and medicéh real applications it is often difficult to derive a good model
imaging [4], [5] and microscopy [6], [7]. Typically, the imagefor the PSF; the advantages are, obviously, in having a smaller
is degraded by imperfections of an optical system, and caomber of variables.
be presented in terms of convolution of the source imageBD approaches can be divided into those that estimate
with some blurring kernel or point spread functionPSF); the blurring kernel, those estimating the source image and
in such applications, the termieblurring is synonymous to the blurring kernel simulataneously, and those estimating the
deconvolution. restoration kernel. The first class includes the so-calied
priory blur identification methods, which first estimate the
blurring kernel and then employ a non-blind deconvolution
algorithm to find the source estimate [9]-[11].
In the general setup of 2D BD, the observed sensor imagelhe second class includes methods based on statistical or
X is created from thesource imageS passing through a deterministic priors of the source image, the blurring kernel

I. INTRODUCTION

A. Problem formulation

convolutive system defined by its impulse respoHse and the noise [12], [13]. Estimation of the source image is
performed by maximizing some optimality criterion, which

Kn = ZszSm—k,n—l + Unn, includes these priors. Since the variables in this problem are

k.l both the source image and the blurring kernel, the computa-

and is possibly contaminated by additive sensor ndise tional complexity is a major problem.
We assume that the action &F is invertible, at least ap- The third class of methods usually employs maximum likeli-
proximately. The aim of BD is to find sucHeconvolution hood (ML) estimators of the restoration kernel; such estimators
can incorporate priors on the image and the kernel. Since there
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referred to agquasi ML (QML). Such estimation techniqueswhere X is a positive smoothing parameter [15;(t) — |¢|

were successfully used in blind source separation (BSS) [14]s\ — 0. For convenience, we henceforth omitfrom our

[16]. The relative Newton quasi ML framework for BD ofnotation whenever possible, and referdg(-) without using

1D signals was introduced in [17]. Here, we extend it to thiae subscript.

2D case. In addition, we present a novel approach of usingYet another important advantage of working with super-
optimal sparse representation, which can be used for BD @Aussian sources is the fact that the asymptotic restoration er-

source images with arbitrary distributions. ror variance is significantly smaller compared to sub-Gaussian
sources, i.e., deconvolution is more accurate. This issue is
Il. QUASI ML BLIND DECONVOLUTION addressed in [18].

The convolution operatior/ + X can be thought of as g Approximation of the log-likelihood function using FFT
application of an infinite Toeplitz block-Toeplitz operathf, In practice, the first term of.(H; X), containing the inte-

ggilrzea(iebg t}f:elmguls; r;rs]:go:jin%.mDetr;gén?s tihie dsotlhrge gral, is difficult to evaluate. It can, however, be approximated
yr = 9 U ith any desired accuracy by [17]

following minus-log likelihood function of the observed signaYV

X, given the restoration kerndf is obtained in the case of 1 /’r /” ‘ . ‘ N

zero noise [18]: el _ﬂlog H(& )| d&dn ~
Mg Np

L(H;X) = 1 ’ > ‘
' log |Hy |,
MxNx [" [" 1oe| it d¢d Y, 1 MFNFI;J; e
—— og [f1(¢,m)| dédn+ " ¢(Yin), (@) =01=
T m,n where
where MxNx is the observation sample size, - B 27k 2m
¢(-) = —logps(-), andps(-) stands for the source probability Hy = Fupnp Hmn}yy = H Mp’ Np ©)
density function (PDF). are the 2D DFT coefficients of,,,, zero-padded to the
g(&n) — ZHmn e~ H(mé&+nn) support Mr x Ng. F denotes the 2D FFT operator. The
mon approximation error vanishes a¥r, Ny grow to infinity.

ChoosingM g and N as integer powers of 2, allows to use

denotes the Fourier transform d@f,,,,. We will henceforth i
mn aD FFT. For convenience, we denote

assume thatf,,,, has finite impulse response (FIR), supporte

on[-M,...,M] x [-N, ..., N]. We will use Kp; = 2M + 1 Mr Nr 2
andKy = 2N +1 to denote the dimensions of the restoration A=) ) log Hkl‘ (4)
kernel. k=01=0

fa = Z‘P(Ymn)a )

A. The choice of(-)

Natural images encountered in most applications are usuﬂ?ﬁj
characterized by non-log-concave, multi-modal distributions, ¢
which are difficult to model and are not well-suited for opti- LH;X) = — 1 FL(H)
mizatiort. However, consistent estimator 8fcan be obtained 2MpNp
by minimizing L(H; X) even wheny(-) is not exactly equal C. Gradient and Hessian dt(H; X)
to —logps (). Such quasi ML estimation has been shown to L ] S , ) ,
be practical in instantaneous BSS [14], [16], [19] and BD of Optimization algorithms Q|scussed in Sectlpn I1I-C require
1D signals [17], [20]. For example, when the source is supdfl® knowledge of the gradient and the HessianLofl; X).
Gaussiah (e.g. it is sparse or sparsely representable), a smogih'Ce the optimization variablél is a Ky x Ky matrix,
approximation of the absolute value function is a good choit&® g_rad|e2nt_VL Is also aky x Ky matrix, whereas the
for o(-) [17], [19], [21]. Although natural images are usually1€SSIanV=L is a Ky x Ky x Ky x Ky fourth-order tensor.
far from being sparse, they can be sparsely representedFl.%V convenience, we parse the variables column-wise into a
a proper transformation [16], [22]. (In Section IV, we will /£ fn x 1 vector
show how to transform general classes of natural images into yec(H)
sparse ones.) We therefore focus our attention on modelling
super-Gaussian distributions using a family of convex smood define the gradient and the HessianIg#l; X) as a
functions Ky Ky x 1 vector and al, Ky x K Ky matrix, respec-

1] tively.

ox(t) = |t] — Alog (1 + /\) , (2) The gradient off; is given by

/ /
Vi = vec(Qy+ Q)
INon-log-concave distributions lead to non-convex prior term in the minus ) )
log-likelihood function. and thei-th row of the Hessian of; is
2Super-Gaussian sources are defined as signals possessing positive kurtosis 9 // //
excess E*/E2z? — 3. Sub-Gaussian sources have negative kurtosis excess. (V fl)7 = vec (QkJrk/’lH, + Qkik,,lﬂ,) , @)

define the approximate normalized minus-log likelihood
tion as

1
k) ©)

= [ H-m-n, o Hy-n, ... Hun ]T

)
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where onG¥=Y = W x H*=1_ This property follows in a straight-
p fq forward manner from the definition of the relative optimization
Qu = Fup.ne {Hm”}kl algorithm. Equivariance implies that for any invertible kernel
Qlow iy = —Farene {]:[_2} A, the estimatorH (X) of the restoration kernell given the
’ ’ T ek a4 observationX, obtained by minimization of the target function
andk’ = (i — 1) mod Ky — M andl’ = [izL| — N. The L(H;X) obeys [18]
gradient and the-th row of the Hessian of, are given by HAxX) = A 'sH(X),
Vi = vec((® *ITX)y), i.e., the parameters to be estimated (in our case, coefficients
H,,, of the restoration kernel) form a group. This is indeed the
(V2f2), = vec ((AW * jx) ) , (8) case for invertible kernels with the convolution operation. It
kil must be noted, however, that when the restoration filter support
respectively, where @ =~ = ¢ (Yinn), Afn'ln = is limited by cropping, equivariance holds only approximately.
(p//(Ymn) . mek’,nfl’y (jX)mn = XMXfm,Nxfnv
K =(¢—-1) mod Ky — M, and l’:L%J—N.

(For derivation see [18].) Computational complexityB. Newton method
of the target function L. and its gradient is
O(MFNF 10g2 MpNp 4+ MxNx 10g2 MXN)();

whereas evaluation of the Hessian requir
O(MFNF10g2 MFNF + MNMXNX 1Og2 ]\/fox)
operations.

Newton method is often used for unconstrained optimiza-
etgon, since it provides a very fast (quadratic) rate of conver-
gence. In this approach, the directidnat each iteration is
given by solution of the linear system [23]

V2L -d= -VL. (10)

I1l. RELATIVE NEWTON ALGORITHM . I Lo .
Since the objective function is non-convex, in order to guar-

A fast relative optimization algorithm for BSS, based on thgntee descent direction, positive definiteness of the Hessian is
Newton method, was introduced in [15] as a modification @brced by using modified Cholessky factorization [23]. Having
the approach presented in [14]. This method was extended@ directiond, the new iteratéi*t1) is given by
[17] to BD of time series. Here, we extend these results to (kt1) *) )
BD of images. h = A" +ad,

wherea(®) is the step size determined, e.g., by backtracking
A. Relative optimization algorithm line search restricted to the subspace where the inverse of the

The main idea of relative optimization is to iterativelfes‘toratlon kernel is stable, i.ag|det 7| > —oo [18].

produce source estimate and use it as the current observatinlll\.IeWton method is used in Step 4 of the relative optimization
This yields the following algorithm: algorithm [15], [17]; such an optimization algorithm will be

referred to as theelative Newtormethod. Apart from gradient

Relative optimization algorithm and Hessian evaluation, required at each relative Newton
1) Start with (), and with X () = X iteration, additionalO(; K3, K3 + K3,K%) operations are
2) For k =1,2,..., until convergence required for solution of the Newton system (10) using modified
3) Compute current source estimafét®*) = H(*~1) « X, Cholessky factorization [23].
4) Starting with Vn(ﬁl) = dmn, Compute coefficients

of the restoration kernel, which sufficiently decrease

L(H =Vv®,; x k), C. Fast relative Newton step
5) HF) =y k) y gk-1)

Practical use of the relative Newton step is limited to
cases of smalldM, N, Mx, Nx, due to the complexity of
This method allows to construct large restoration kernels bfessian construction and solution of the Newton system. This
the form complexity can be significantly reduced if special Hessian
structure at the minimum is exploited.

SubstitutingH,,,,, = 0, to (7) yields H = 1, from where
using a set of low-order factorsk( denotes the number 9%,
of relative optimization iterations). The algorithm assumes OHO0Hwy
infinite memory and produces a restoration kernel of order .
growing at each iteration. In real applications it might be —]—"{H;Lfb}
necessary to limit the support of the restoration kernel. This
can be done by cropping the kernel obtained in Step 5.

Another remarkable property of the relative optimizatioft can be easily seen thaf?f; is a constant anti-diagonal
algorithm is its equivariance: the relative optimization alganatrix with —2Mr N on the secondary diagonal. Therefore,
rithm is equivariant i.e. its step at iteratio depends only f; contributes a unit anti-diagonal §62L.

6) End For

H = H9O%gWy s« gE-D

Hyn=0mn

rr—2
mn

sk
kt-k! I+1 { }k+k’,l+l/

= —2MpNF Opqn 41 -
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For H,,,, = 0, and X = ¢ - S, one obtainsy = c¢- S. 1 ‘
Substituting to (8) yields A
Pfr
OHuOHy ! ] )
62 : Z SDH(C : Smn) Smfk,nfl Smfk/,nfl“
(@) (b) (c)

For sufficiently largeM x, Nx,

82
# ~ Fig. 1. Hessian structure fak,,, = dmm With M = N =1 (3 x 3
OHp OHyy kernel): (a) diagonal-anti-diagonal form foro’? ~ 10; (b) anti-diagonal
AMxNx -E {¢" (¢ Smn) Sm—km—1 Sm—k'm—1r} - form for yo'? ~ 10~5; (c) diagonal form foryo’? a2 105. White stands for

near-zero elements of the matrix.
Without loss of generality, let us assume that,, is zero-
mean. Sinces is i.i.d.,

0% fa operations for approximate Hessian construction, which is of
OH 0H ~ the same order as gradient computation. AdditioRa} K

a - k=K —=1=1=0 operations are required for approximate Hessian inversion in

MxNx-{ ~vo? : k=K #£01=1#0 case of diagonal approximation, and slightly more in case of

the diagonal-anti-diagonal approximation. This is compared
to k‘”MxNX+KMKN[4Mxle0g2A/[)(NX+MxNx]
wherea = ¢ - E¢”(c- S)S?, v = E¢”(c- S), 0> = ES®, operations for exact Hessian evaluation and additional
and o' = co. We conclude thatV?L(H = dmnic-X) 1(K, Ky)? + (KyKy)® computations for exact Newton
has an approximate diagonal-anti-diagonal form. Whejystem solution required for the full relative Newton step.
v0'? > 1, V2L(H = 6,,n; ¢+ X) is approximately diagonal.
When vo'? < 1, V2L(H = 6,,n; ¢+ X) has an approximate
anti-diagonal form. Hessian structure is visualized in Figure 1
for different ranges ofo’2. When~20'4 < 1, the Hessian at The QML framework presented in Section Il is valid for
the solution point is not positive-definite, which means th&Parse sources; this type of a prior of source distribution is

the QML estimator isasymptotically unstableThis issue is ©specially convenient for the underlying optimization problem
addressed in depth in [18]. due to its convexity, and results in very accurate deconvolu-
Using the diagonal approximation, which is valid fOIIion._Hoyvever, natural images arising in. the majority of BD .
4™ > 1, the Newton system (10) can be solved as a a p_Ilcatlt_)ns can by no means be_ considered to be sparse in
of K Ky independent linear equations their native space of representation (usually, they are sub-

Gaussian), and thus such a prior is not valid for "real-life”

(VL) sources. On the other hand, it is very difficult to model actual

dy = —=5— L ; . .
g (V2L),,.’ distributions of natural images, which are often multi-modal

for k= 1,..., Ky K. In order to guarantee decent directiond non-log-concave. This apparent gap between a simple

and avoid saddle points, we force positive definiteness of tide! and the real world calls for an alternative approach.
Hessian by forcing small diagonal elements to be above soffd!iS Section, we show how to overcome this problem using
positive threshold, sparse representation.

For vo'? ~ 1, the diagonal-anti-diagonal approximation of
the Hessian should be used, which allows to reduce NewtBn Sparsification
system solution to regularized solution of a se2ef2 systems  while it is difficult to derive a prior suitable for natural

0 . otherwise,

IV. OPTIMAL SPARSE REPRESENTATIONS OF IMAGES

of the form images, it is much easier to transform an image is such a
—(VL), way that it fits some universal prior. In this study, we limit
Dy - dk ~ (VL) 1. )’ 1) our attention to the sparsity prior, and thus discuss sparsifying

transformations, though the idea is general and is suitable for
other priors as well.
(V2L)K dxe = —(VLD)x . The idea ofsparsificationwas successfully exploited in
2 : BSS [16], [22], [24], [25]. It was shown in [22] that even
Regularization is performed by forcing positive definiteness @fich simple transformation as a discrete derivative can make
each of the2 x 2 submatricesDy, in (11) by inverting the sign the image sparse. However, most of these transformations
of negative eigenvalues and forcing small eigenvalues to RRre derived from empirical considerations. Here we present
larger than some positive threshold. a criterion for finding optimal sparsifying transformations.
When the diagonal or the diagonal-anti-diagonal Let assume that there existssparsifying transformation
approximations are used, fast relative Newton algorithfy, which makes the sourcg sparse (wherever possible, the
requires about(k” + 1)MxNx + 4MxNxlog, MxNx subscriptS in 7g will be omitted for brevity). In this case,

and an additional x 1 system
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sparsification
TX
]
U A
S W 3 X R H Y
’ A ’
| ¥
unknown convolution system deconvolution system

Fig. 2. Scheme of blind deconvolution using sparsification.

our algorithm is likely to produce a good estimate of th”
restoration kerneH since the source properties are in accor-
with the sparsity prior. The problem is, however, that in th” . ‘
BD setting, S is not available, and” can be applied only to '(C) )
the observationX. Hence, it is necessary that the sparsifying

transformation commute with the convolution operation, i.eFig. 3. A 1D example of optimal sparsification: (a) image, (b) a 1D signal
(line 140 from the image), (c) optimal sparsifying kernel (d) sparsified signal
(TS)«W =T(S«W)=TX, (12)

such that applyingl to X is equivalent to applying it tc5.
Obviously, 7 must be a shift-invariant (Sl) transformatidn.

Using the most general nonlinear formbf we have a wide
class of sparsifying transformations. An important example
a family of Sl transformations of the following form:

source; it is obvious thal” would usually depend o, and
also, T' does not necessarily have to be stable, since we use
iCas a pre-processing of the data and hence never need its
inverse.

(TS)mn =/ (T1 % S)2,, + (T2 5)2,,, (13) Let assume that the sourceis given (this is, of course,

. .impossible in reality; the issue of what to use instead of

where Ty, T, are some convolution kernels. After sparsifi-, | . . . : .
) . . Lo ) S will be addressed in Section IV-C). It is desired that the

cation with 7', the prior termf, of the likelihood function . . L

becomes unity restoration kerneb,,,, be a local minimizer of the

QML function (6), given the transformed souréex 7' as an
S UTY )in| =D V(@1 %Y, + (T2 +Y)2,,, (14) observation, i.e.:
e " VL(6pn;: S*T)=0. (16)

which is a generalization of the 2@tal-variation (TV) norm.
The TV norm, which has been found to be a successfifformally, this means that' « 7" optimally fits the sparsity
prior in numerous studies related to signal restoration aRHOr (atleastin local sense). Due to the equivariance property,
denoising [26]-[28], and was also used by Chan and Wokgf) is equivalent to
as a regularization in BD [29], is obtained whé&h, T, are VL(T; S) = 0.
chosen to be discrete- and y-directional derivatives.

For simplicity, we limit our attention in this study toln other words, we can define the following optimization
linear shift-invariant (LSI) transformations, i.&. that can be problem:
represented by convolution withsparsifying kernel

mTin L(T;S), a7)
TS=TxS. (15)

whose solution is the optimal sparsifying kernel f8r This
Thus, we obtain a general BD algorithm, which is noproblem is equivalent to the problem of
limited to sparse sources. We first sparsify the observation ) )
data X by convolving it with 7' (which has to be found in a min L(H; 5)  s.t. His stable

way Qescribed in Section IV-C), and then apply th? sparse B eq for deconvolution itself, with the exception of the
algorithm on the resulk = 7. The obtained restoration kemelstability condition. which is not needed here sirifeis not

H is then applied toX to produce the source estimate. necessarily invertible. The terrfy (7') in L(T;S) defined in
(4) eliminates the trivial solutiod” = 0.

B. Thg sparsifying kefrnel. _ _ Figures 3 and 4 show examples of optimal sparsifying
An important practical issue is how to find the kerfel transformations of 1D and 2D signals. In the 1D case, a row
By definition 7' must produce a sparse representation of th&m a natrual image was taken; the optimal sparsifying kernel

3 o _ _ is a discrete derivative. In the 2D case of a block signal, as
In BSS problems, the sparsifying transformation needs to be linear and not

necessarily shift-invariant, e.g. wavelet packets were used for sparsificatior?i)ﬁpeCted intuitively, the optimal sparsifying kernel is a corner
[16], [24]. detector.
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(b) (©)

(@)

Fig. 4. Optimal sparsification of a block image: (a) original image, (b
sparsified image, (c) optimal sparsifying kernel

C. Finding the sparsifying kernel by training

Since the source imagé is not available, computation :
of the sparsifying kernel by the procedure described in Sec-  (d) (e)
tion IV'_B I_S possible onl_y theoretlca"y'_ However, emplrlcalFig. 5. (a) training synthetic image, (b) source aerial imag€c) blurred
results indicate that for images belonging to the same clasgages W, (d) sparsified training image, () sparsified source, (f) restored
the proper sparsifying kernels are sufficiently similar. image.

Let C; denote a class of images, e.g. human faces, and
assume that the unknown sourgéelongs taC; . We can find
images SV, S, ..., SN1) ¢ ¢; and use them to find the reached 0. Gradient norms, SIR and SIRwere measured
optimal sparsifying kernel of5. Optimization problem (17) as a function of CPU tinfeand iteration number.
becomes in this case The experiments indicate convergence of both algorithms

— (T 1 1 Nz 4 (Figure_ 6). The fast relative Newton c_onverged abbutimes
min { T Ty v Z f2(S@) s T)} ., (18) faster in terms of SIR, compared with the full Newton step.
FAF XX AT T For the same values dff, N, the obtained restoration quality

i.e. T is required to be the optimal sparsifying kerof the fast relative Newton algorithm, compared to the full
nel for all S, 52 . §(N7) simultaneously. The imagesNewton step, was better by about 2-5 dB (in terms of SIR
s 5@ §(NT) constitute araining set and the process and SIR.), since the effective restoration kernel was of higher
of finding such7 as training. Given that the images in order.
the training set are "sufficiently similar” t&, the optimal
sparsifying kernel obtained from (18) is similar enougl{t0 B, Training

In the second experiment, a real aerial photo of a factory
V. SIMULATION RESULTS was used as the source image, and a synthetic one (drawn
using PhotoShop) as the training image (Figure 5)3 A 3
The QML-based deconvolution approach was tested &parsifying kernel is found by training on a single image, then
thl’ee eXperimentS Under Zero-noise Conditions. In the f”tﬁb same kernel is used as a pre-processing for BD app“ed
experiment, the goal was to compare between the performaggey different blurred source image from the same class of
of fast relative Newton and full relative Newton algoritthimages_ The source image was convolved with a Symmetric
The purpose of the second experiment was to demonstrgif 31 x 31 Lorenzian-shaped blurring kernel. Deconvolution
the utility of the training approach for finding optimal spars@ernel was of size$ x 3.
representations. In the second experiment, we used the sparsthe sparsifying kernel obtained by training was very close
fication approach to perform deconvolution of natural imageg a corner detector. The signal-to-interference ratio in the

As a criterion for evaluation of the reconstruction qualitygeconvolution result wasSIR = 20.1561 dB, SIR. =
we used the signal-to-interference-ratio (SIR) in sense of the 7998 dB.

Lo, Lo, norms, and the peak SIR (PSIR) in dB units [18].

C. Deconvolution of natural images

A. Deconvolution of sparse images In the second experiment, four natural source images were

used:S; (Susy),S, (Aerial), S3 (Gabby) andS, (Hubble). The

[18] was used as the source in the first experiment. Thrgages are presented in Elgure 7. Nearly—stable_ Lorenzian-
shaped kernels were applied to the corresponding sources.

image was convolved with & x 3 FIR kernel with a slowly- i . . .
decaying inverse (see Figure 6). Full Newton and fast relati%-fvDls type of kernels characterizes scattering media, such as

. : ; S iological fluids and aerosoles found in the atmosphere [30].
Newton (with & diagonal Hessian approximation) were us e observed images are depicted in Figure 8. Quality of the
to estimate the inverse kern@.x 3, 5 x 5, 7 x 7, and9 x 9 9 P 9 ’ y
restoration kernels were u§ed. The smqothlng parameter Was aigorithms were implemented in MATLAB and executed on an ASUS
set toA = 1072, Optimization was terminated wheV L||  portable computer with Intel Pentium IV Mobile processor and 640MB RAM.

An 101 x 101 Gauss-Bernoully i.i.d. image witph = 0.2
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TABLE |
SIR, SIR, AND PSIROF THE OBSERVED IMAGES
Source SIR [dB] SIR,, [dB] PSIR [dB «’ 1
S1  Susy -1.4648 7.8416 -16.1¢
Sy Aerial -1.4648 7.8416 -19.945*
S;  Gabby 4.9018 11.5504 -1.63] i
Si;  Hubble 3.3969 10.6454 0.79 !
TABLE II
SIR, SIRx, AND PSIROF THE RESTORED IMAGES
Source SIR [dB] SIR,, [dB]
S1  Susy 17.7994 22.2092
S, Aerial 17.0368 23.5482
S3  Gabby 19.3249 23.8109
S;  Hubble 14,5152 17.1552 19.80¢ C Y .

=25

degraded images in terms of SIR, SIRnd PSIR is presented z%zo
in Table I. 15

Fast relative Newton step with kernel size seBte 3 was  *
used in this experiment. The smoothing parameter was :
to A = 1072, Corner detector was used as the sparsifyir T .
kernel. Optimization was terminated when the gradient norm
reached 0—1°. Convergence was achievedlif—20 iterations Fig. 6. Convergence of the Newton method (solid) and of the fast relative
(about 19 sec). The restore_d images are depicted in Flguréglrgvtvr:gnprgg)h'od (dashed), for various sizes of the restoration kernel (indicated
Restoration quality results in terms of SIR, SIRand PSIR
are presented in Table II.

Time (sec)

VI. CONCLUSION

The QML framework, recently presented in the context of
1D deconvolution [17] is also attractive for BD of images. We
presented an extension of the relative optimization approach
to QML BD in the 2D case and studied the relative Newton
method as its special case.

Similarly to previous works addressing deconvolution in
other spaces (e.g. [31]) and our studies of using spars
representation in the context of BBS, in BD the sparse prior
appears very efficient as well. We showed a training approach
for finding optimal sparse representations, in order to yield (Susy) S,  (Aerial)
a general-purpose BD method. A particular class of LSI lH—-JU 1
sparsifying transformations generalizes some previous results !
such as the total variation prior [26]-[28]. We also showed how
optimal sparsifying transformations can be found by training.

Simulation results demonstrated the efficiency of the pro-
posed methods. Although we have limited our attention to
noiseless BD, it is important to emphasize that the sparsifica-
tion framework is applicable to the noisy case as well. Spar-
sifying kernels are typically high-pass filters, since by their
very nature sparse signals have high-frequency components. ©3  (Gabby) S1 (Hubble)
Such kernels have the property of amplifying noise — thus ifly. 7. source images, S, S5 and S used in the simulations.
case when the signal is contaminated by additive noise, using
such kernels is undesired. To cope with the problem of noise,
the signal should be smoothed with a low-pass filkeand
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Fig. 8. Observed (blurred) images. 8]
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. [15]
| [16]
1 [17]

S;  (Gabby) S, (Hubble)
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Fig. 9. Restoration results using the quasi ML deconvolution approach.

[19]
afterwards the sparsifying kern@l should be applied. Due to
commutativity of the convolution, it is equivalent to carrying
out the sparsification with a smoothed kerfiek F'. [20]

Potential applications of our approach are in optics, re-
mote sensing, microscopy and biomedical imaging, especi Y]
where the SNR is moderate. This approach is especially
accurate and efficient in problems involving slowly-decayin@?!
(e.g. Lorenzian-shaped) kernels, which can be approximatféxo(]
inverted using a kernel with small support. Such kernels are
typical of imaging through scattering media. [24]

[25]
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