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Abstract: In this chapter, we address the question of what are the facial measures one 
could use in order to distinguish between people. Our starting point is the fact 
that the expressions of our face can, in most cases, be modeled as isometries, 
which we validate empirically. Then, based on this observation, we introduce a 
technique that enables us to distinguish between people based on the intrinsic 
geometry of their faces. We provide empirical evidence that the proposed 
geometric measures are invariant to facial expressions and relate our findings 
to the broad context of biometric methods, ranging from modern face 
recognition technologies to fairy tales and biblical stories. 
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1. INTRODUCTION 

Most of us are familiar with the story of the handsome prince who 
declares that he will marry the girl whose foot fits into the glass slipper she 
lost at his palace. The prince finally finds Cinderella by matching the slipper 
to her foot, and they live happily ever after. This is how Charles Perrault’s 
story ends. One of the stepsisters of the German Cinderella, according to the 
Brothers Grimm version, succeeds in fitting her foot into the slipper by 
cutting off a toe, in an attempt to create a fake biometric signature. 
Cinderella’s stepsister was not the first – it appears that identity frauds date 
back to biblical times. In Genesis, Jacob stole his father’s blessing, the 
privilege of the elder, by pretending to be his firstborn brother Esau. By hand 
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scan Isaac wrongly verified his sons Esau’s identity, since smooth-skinned 
Jacob wrapped kidskin around his hands to pose as his brother. Face 
recognition, another biometric technology, Little Red Riding Hood make the 
unavoidable conclusion that it was the wolf she was talking to rather than her 
grandmother.  

With this example, we leave the fairy-tale world and enter into the realm 
of modern biometric technologies. In this chapter, we focus on the problem 
of three dimensional face recognition, though the approach we introduce is 
general and can be applied to any non-rigid surface comparison problems 
under reasonable assumptions. The main question we will try to answer is 
the facial measures we could use in order to distinguish between people.  

2. UBIQUITOUS ISOMETRIES 

Recently, a team of French surgeons has reconstructed the face of a 
woman by transplanting donor tissues. This remarkable operation raised 
controversial questions regarding the identity of the patient: will she recover 
the lost identity or look like the donor? Apparently, the lady’s face has 
preserved its original features: though the skin tone may have changed, the 
geometry of the patient’s face remained (at least partialluy) more or less 
intact. The reason is that the rigid structure of the scull was unaltered, which 
preserved the form of the overlaying tissues. Obviously, the geometry of the 
face reflects important information; uniquely describing our identity.  

At this point, the term “geometry” requires a more accurate definition. 
Due to the fact that Nature provides us with rich facial expressions, our face 
undergoes complicated non-rigid deformations. Emotions may drastically 
change the way the facial surface is embedded in the ambient three-
dimensional Euclidean space. Such changes are called extrinsic. Clearly, the 
extrinsic geometry is not preserved by facial expressions. Yet, if we restrict 
our measurements of distance to the facial surface, we notice that distances 
measured on the surface (that is, the lengths of the shortest paths on the 
surface, referred to as geodesic distances) remain almost unaltered. This 
happens due to the fact that our skin and underlying tissues exhibit only 
slight elasticity: they can be bent but not too much stretched.  

In order to validate this claim, we marked tens of fiducial points on a 
subject’s face and scanned its geometry under various, strong and weak, 
expressions (see Fig. 5-1). We then compared the absolute change in both 
geodesic and Euclidean distances between the points. Figure 5-2 
demonstrates the result of this experiment. Although there is some change in 
the geodesic distances between corresponding points in different 
expressions, considering the 3D scanner accuracy, these distances are 
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approximately preserved. Geodesic distances exhibit smaller variability 
compared to Euclidean ones, as depicted in Fig. 5-2.  

Geometric quantities that can be expressed in terms of geodesic distances 
are referred to as the intrinsic geometry and appear to be insensitive to facial 
expressions. Consequently, facial expressions can be modeled as near-
isometric deformations of the face, i.e. such deformations that approximately 
preserve the distances on the surface. Stated differently, the intrinsic 
geometry reflects the subject’s identity, whereas the extrinsic geometry is the 
result of the facial expression. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5-1. Isometric model validation experiment. Left: facial image with the markers. 
Right: example of one moderate and two strong facial expressions with marked reference 

points. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5-2. Histogram of geodesic distance deviation from the isometric model (solid); for 

comparison, a histogram for the Euclidean distances is shown (dashed). 
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In order to compare between faces in a way insensitive to facial 

expressions, we have to find invariants that uniquely represent the intrinsic 
geometry of a surface, without being affected by its extrinsic geometry. We 
model the two faces that we would like to compare as smooth Riemannian 
surfaces S and Q, with the geodesic distances, dS and dQ, respectively. In 
what follows, we devise computational methods for the comparison of 
intrinsic geometric properties of two faces.  

3. FLAT EMBEDDING AND CANONICAL FORMS  

Our first attempt of expression-invariant face recognition was based on 
replacing the intrinsic geometry of the surface by a Euclidean one by a 
process known as isometric embedding. The first use of this ides in computer 
vision dates back to Schwartz et al.1, who tried to analyze the brain cortical 
surface by embedding it into the plane. Revisiting the ingredients of this 
method, Zigelman et al.2 introduced a texture mapping procedure, in which 
the geodesic distances are computed with a numerically consistent efficient 
scheme3.  

Embedding into the plane can be thought of as an invariant 
parameterization of the surface. However, in order to compare between 
intrinsic properties of two surfaces, the dimension of the embedding space 
has to be at least three, or, using a fancier terminology, the co-dimension has 
to be at least one. Elad and Kimmel4 proposed to embed the metric structure 
of the two dimensional surface  into S nR , where . Formally, we try to 
find a map , such that 

3≥n
nS R→:ϕ ( ) ( )( ) ( )2121 ,, ssdssd Sn =ϕϕ

R
 for every 

. Such a map is called isometric embedding. However, for a general 
non-flat surface, a truly isometric embedding usually does not exist; all we 
can find is a minimum-distortion embedding.  

Sss ∈21,

Practically, the surface is sampled at a set of m points { }mss ,...,1 , and we 
find a configuration of points { }  in mxx ,...,1

nR
 
by solving the following 

optimization problem,  

{ } .)),(),((minarg,..., 2
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Here, ( )ii sx ϕ=  are the images of the samples of  under the embedding S ϕ . 
We try to find such a configuration of points that the Euclidean distances 

 between each pair of image points is as close as possible to their 
corresponding original geodesic distances . A numerical procedure 

nd
R

Sd
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solving the above optimization problem is known as multidimensional 
scaling (MDS).  

{ mxx ,...,1  can be thought of as an approximation of the intrinsic 
properties of . We call it the canonical form of the surface. The 
comparison of canonical forms is a significantly simpler task than 
comparison of the intrinsic geometries of the non-rigid surfaces themselves. 
Indeed, for canonical forms there is no difference between extrinsic and 
intrinsic geometries. Unlike the rich class of non-rigid isometric 
deformations the original surfaces can undergo, the only degrees of freedom 
for the canonical forms are the rigid transformations (translation, rotation 
and reflection), which can be easily solved for using efficient rigid surface 
matching methods such as the iterative closest point (ICP) algorithm

S

6, 7 or 
moments signatures4,5. The latter method is especially attractive, since it 
produces a simple signature describing the geometry of the canonical form 
that can be efficiently compared to a large data base of signatures 
representing other faces. Canonical forms cast the original problem of non-
rigid surface matching to the simpler problem of rigid surface comparison. 
Figure 5-3 depicts faces with various expressions embedded into 3R

 
by the 

described procedure. Note how even strong expressions of the same subject 
have just little influence on the canonical forms.  

Based on this approach, we built a prototype face recognition system that 
achieved sufficient accuracy to tell apart identical twins, even in the 
presence of extreme facial expressions8. Nevertheless, the canonical form 
approach is limited in two aspects. First, the inevitable distortion introduced 
by the embedding sets an artificial threshold to the sensitivity of the method. 
Second, in order to perform an accurate matching, the support of the surfaces 

 and Q  must be the same. For that purpose, a pre-processing by means of 
a consistent cropping of  and  is required. Changing the surface support 
regions would generally yield different canonical forms, an undesired 
property, since in many practical applications, matching of partially missing 
or partially overlapping surfaces is required. 

S
S Q

4. SPHERICAL CANONICAL FORMS 

In order to reduce the distortion of embedding facial surfaces into a 
Euclidean space, we should search for better spaces than the Euclidean ones. 
A simple space with non-Euclidean geometry, in which the geodesic 
distances are given analytically is the n-dimensional sphere . There exist 
almost straightforward generalizations of the MDS methods suitable for 
embedding into . Given the control over the sphere radius 

nS

nS R , the 
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spherical geometry constitutes a richer choice, since it includes the 
Euclidean case at the limit . Once embedded into a sphere, the 
spherical canonical forms have to be matched. For that goal we developed 
various tools that can be found in Bronstein et al.

∞→R

9  
 

 
 

Figure 5-3. Facial expressions and the corresponding canonical forms. 
 

Figure 5-4 demonstrates that embedding into spherical spaces has smaller 
distortions for some range of radii similar to the radius of an average human 
face. Moreover, the recognition rates exhibit a clear correlation with the 
embedding distortion: the lower is the distortion; the more accurate is the 
recognition. This gives an empirical justification to the pursuit of better 
embedding spaces.  

Although there is an improvement in the recognition rates, the spherical 
embedding is not the end of our journey. We are still occupied with the 
problem of partial matching and that of the unavoidable embedding 
distortions even when selecting a somewhat more favorable embedding 
space. 

5. GENERALIZED MULTIDIMENSIONAL 
SCALING 

Replacing the Euclidean geometry of the embedding space by the 
spherical one usually leads to smaller metric distortions and, consequently, 
to better isometry-invariant representation of surfaces, while maintaining 
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practically the same computational complexity compared to the Euclidean 
MDS algorithm. Nevertheless, spherical embedding cannot completely avoid 
the distortion.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 5-4. First row: embedding error versus the embedding sphere radius for four different 
subjects (colors denote different subjects, dashed lines indicate 95% confidence intervals). 
Second row: Equal-error and rank-1 error rates versus the embedding sphere radius. The 

asymptote R →∞
 

corresponds to embedding into . nS

It is, however, possible to completely avoid the need of intermediate space 
by choosing one of the surfaces, say Q , as the embedding space. In other 
words, we would like to embed  directly into . The embedding can be 
achieved by solving an MDS-like problem,  

S Q
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that we term the generalized multidimensional scaling or GMDS for short 10, 

11. As in the standard MDS procedure, we find a configuration of points 
 on the surface Q that represent the intrinsic geometry of S as 

accurately as possible. The points i  are the images of i  under the 
embedding 

{ ,,...,1 mqq
q s

QS →:ϕ . The minimum achievable value of the cost function in 
(2) quantifies how much the metric of  has to be distorted in order to fit 
into . If the two surfaces are isometric, such an embedding will be 
distortion-less; otherwise, the distortion will measure the dissimilarity 
between  and . This dissimilarity is related to the Gromov-Hausdorff 
distance, first used in the context of the surface matching problem by 
Mémoli and Sapiro

S
Q

S Q

12. 
So far, the embedding distortion has been an enemy that was likely to 

lower the sensitivity of the canonical form method; now it has become a 
friend that tells us how different the surfaces are. For this reason, GMDS is 
essentially the best non-Euclidean embedding, in the sense that it allows to 
completely avoid unnecessary representation errors stemming from 
embedding into an intermediate space. Strictly speaking, we do not use 
canonical forms anymore; the measure of similarity between two surfaces is 
obtained from the solution of the embedding problem itself.  

Another important advantage of GMDS is that it allows for local 
distortion analysis. Indeed, defining the local distortion as  

                          ( ) ( ) ,,,
2

∑ −=
j

jiQjiSi qqdssdσ   (3) 

we create a map QS →:σ  quantifying the magnitude of the change the 
metric of  undergoes in every point in order to be embedded into Q  
(Figure 5-5). Practically, it allows us to determine how much two faces are 
dissimilar, and also identify the regions with the largest dissimilarities. Last, 
GMDS enables partial matching between non-rigid surfaces, that is, 
matching a part of  to Q . Partial matching is of paramount importance in 
practical applications, where due to the limitations of physical acquisition 
devices, parts of the facial surface may be occluded. 

S

S

Although GMDS looks like a powerful instrument for isometry-invariant 
surface matching, there is some cost for its advantages. First, unlike the 
Euclidean or the spherical cases, we gave up the luxury of computing the 
distance in the embedding space analytically. Nevertheless, geodesic 
distances on arbitrarily complex surfaces can be efficiently approximated.10, 

11 The overall complexity of GMDS is comparable to that of the standard 
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MDS algorithms. Another, shortcoming stems from the fact that every time 
we need to compare between two faces, we have to solve a new embedding 
problem. This makes one-to-many comparison scenarios with large 
databases improbable. An hierarchical matching strategy or a combination of 
GMDS with the canonical form approach provide some remedy to this 
difficulty. 

 
 
 
 

 

 

Although GMDS looks like a powerful instrument for isometry-invariant 
surface matching, there is some cost for its advantages. First, unlike the  

 
 

Figure 5-5. Local distortion map obtained by embedding two faces of two different subjects 
into a face of a reference subject. 

6. COMPARISON OF PHOTOMETRIC 
PROPERTIES 

So far, we focused our attention on the recognition of the intrinsic facial 
geometry that appeared to be insensitive to expressions. However, our face is 
also endowed with photometric characteristics that provide additional useful 
information for the recognition task. A somewhat simplified model 
incorporating both geometric and photometric properties of the face consists 
of a non-rigid surface  and a scalar field S [ ]1,0: →Sρ  associated with it. 
The scalar field ρ  measures the reflectance coefficient or albedo at each 
point on the surface, that is, the fraction of the incident light reflected by the 
surface. If the acquisition device is capable of sensing multiple color 
channels, ρ  can be replaced by a vector field (for example, [ ]31,0: →Sρ  in 
case of a standard tri-chromatic camera) measuring the reflectance 
coefficient for different light wave lengths. Using the computer graphics 
jargon, ρ  is the texture of . S
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In practice, the albedo cannot be directly measured by a camera; what 
we observe is the brightness of the surface, or, in simple words, the amount 
of radiation scattered from it in the camera direction. However, it appears 
that our skin behaves approximately like a diffusive reflector, which means 
that its apparent brightness is roughly the same regardless of the observer’s 
viewing direction. This fact allows using the Lambertian reflection law to 
estimate the reflectance coefficient ρ  given the surface normal field. 
Clearly, such information is unavailable in two-dimensional face recognition 
methods, which are based on the brightness image of the face.  

In this setting, the problem of expression-invariant face recognition aims 
at measuring the similarity of two faces, based on the similarity of their 
intrinsic geometries  and ( SdS , ) ( )QdQ, , and their photometric properties, Sρ  
and . However, in order to be able to compare between Qρ Sρ  and , we 
have to bring them first to some common coordinates system, in which the 
facial features coincide.  

Qρ

Following the steps we took for comparing the intrinsic geometry, let us 
briefly go through the same evolution for the texture. Common coordinates 
can first be found by a common parameterization of  and  into some 
planar domain. Such a parameterization should be invariant to facial 
expressions, which according to our isometric model is not influenced by the 
extrinsic geometry of the surface. After the surfaces  and  are re-
parameterized, 

S Q

S Q

Sρ  and Qρ  can be represented in the common 
parameterization domain that makes the comparison trivial using standard 
image matching techniques. Expression-invariant comparison of the 
photometric properties of the faces therefore reduces to finding an isometry-
invariant “canonical” parameterization of the facial surfaces.  

The simplest way to construct such a parameterization is by embedding 
the surface into 2R  

 
using an MDS algorithm. The problem is very similar to 

the computation of the canonical form, except that now the embedding 
space, serving as the parameterization domain, is restricted to be two-
dimensional. We refer to such an embedding as zero co-dimensional. As the 
embedding is based on the intrinsic geometry only, such a parameterization 
will be invariant to isometries, and consequently, the reflectance image in 
the embedding space will be insensitive to facial expressions. We term such 
an image the canonical image of the face. However, recall that the 
embedding into 2R  is defined up to rigid isometry, implying that the 
canonical images can be computed up to planar rotation, translation and 
reflection, which has to be resolved. Also, the inevitable distortion of the 
metric introduced by the embedding into a plane makes the canonical image 
only approximately invariant.  
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A partial fix for the latter problem comes from non-Euclidean 
embedding, for example, into the two-dimensional sphere . Since a face is 
more similar to a sphere than to a plane, spherical embedding produces 
canonical images with lower distortion. A clear relation between better 
representation and better recognition is observed again

2S

11. Another advantage 
of the spherical embedding is that the obtained spherical canonical images 
(Figure 5-6) can be represented using a signature of the spherical harmonic 
coefficients, that are known to be invariant to rigid isometries on . A 
property analogous to the translation invariance of the magnitude in the 
Fourier transform.  

2S

 
 
 
 
 
 
 
 
 
 

Figure 5-6. Canonical images of a face in  with different radii. 2S
 
 
All the approaches described so far provide only approximate isometry-

invariance, since a fixed embedding space implies necessarily embedding 
distortion. As an alternative, we can resort yet again to using the GMDS for 
embedding  into . In addition to quantifying the similarity of the two 
intrinsic geometries, the minimum-distortion embedding 

S Q
QS →:ϕ  would 

also bring Sρ  and Qρ  to the same coordinates system in Q . The photometric 
distance between  and Qρ ϕρ oS , measured either locally or globally, 
provides additional information about the similarity of the two faces. Such 
an approach is inherently metric distortion-free and naturally allows for 
partial comparison of both photometric and geometric information.  

7. CONCLUSIONS 

We started with fairy tales, and like most fairy-tales, we are at the happy 
ending part of our story. We hope the reader found the plot illuminating and 
rewarding. We first claimed that our face can be described by the isometric 
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model and validated this claim empirically. We studied a simple isometry 
invariant signature obtained by replacing the intrinsic geometry by a 
Euclidean one. We applied this process in a prototype face recognition 
system, which was able to distinguish between identical twins (the first two 
authors).  

This was just the beginning of the journey for us. Soon after, we noted 
that embedding into non-Euclidean spaces provides smaller embedding 
errors and consequently better recognition rates. In both cases, the numerical 
tools we used for the embedding are members of the well known family of 
multidimensional scaling algorithms. The next step was to eliminate the 
embedding error altogether by actually harnessing it to our goal. We utilized 
the minimal distortion of embedding one surface into another as a measure 
of similarity between the two surfaces. The new numerical tool, used for 
solving the embedding problem, is a generalized MDS procedure.  

In this chapter, we looked through a keyhole to the world of metric 
geometry, where objects are non-rigid and isometries introduce new 
challenges into our life. This is a new playground for engineers and it 
conceals numerous enigmae and problems waiting to be solved. Our goal 
was to let the reader touch some of these problems. The methods we 
discussed could one day help each of us could find his own Cinderella, or at 
least buy slippers of the right shape...  
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