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Abstract—We construct an extension of spectral and diffusion geometry to multiple modalities through simultaneous diagonalization
of Laplacian matrices. This naturally extends classical data analysis tools based on spectral geometry, such as diffusion maps and
spectral clustering. We provide several synthetic and real examples of manifold learning, object classification, and clustering, showing
that the joint spectral geometry better captures the inherent structure of multi-modal data. We also show the relation of many previous

approaches for multimodal manifold analysis to our framework.
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1 INTRODUCTION

The Laplacian operator and related constructions play a
pivotal role in a wide range of applications in machine
learning, pattern recognition, and computer vision. It
has been shown that many problems in these fields boil
down to finding a few smallest/largest eigenvectors and
eigenvalues of a Laplacian constructed on some high-
dimensional data. Important examples include spectral
clustering [1] where clusters are determined by the first
eigenvectors of the Laplacian; eigenmaps [2] and more
generally diffusion maps [3], where one tries to find a low-
dimensional manifold structure using the first smallest
eigenvectors of the Laplacian; and diffusion metrics [4]
measuring the “connectivity” of points on a manifold
and expressed through the eigenvalues and eigenvectors
of the Laplacian. Other applications heavily relying on
the properties of the Laplacian include spectral graph par-
titioning [5], spectral hashing [6], spectral correspondence,
image segmentation [7], and spectral shape analysis [8],
[9], [10], [11]. Because of the intimate relation between
the Laplacian operator, Riemannian geometry, and dif-
fusion processes [12], it is common to encounter the
umbrella term spectral or diffusion geometry in relation to
the above problems.

These applications have been considered mostly in
the context of uni-modal data, i.e., a single data space.
However, many applications involve observations and
measurements of data done using different modalities,
such as multimedia documents [13], [14], [15], audio and
video [16], [17], or medical imaging modalities like PET
and CT [18]. Such problems of multimodal (or multi-
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view) data analysis have gained increasing interest in the
computer vision and pattern recognition communities,
however there have been only few attempts extending
the powerful spectral methods to such settings.

In this paper, we propose a general framework allow-
ing to extend different diffusion and spectral methods to
the multimodal setting by finding a common eigenbasis
of multiple Laplacians. Numerically, this problem is
posed as simultaneous diagonalization. Such methods
have received limited attention in the numerical math-
ematics community [19] and in blind source separation
applications [20], [21], [22], [23].

In [24], [11], we showed the application of simulta-
neous diagonalization to the construction of compatible
quasi-harmonic bases in shape analysis and manifold
learning applications. The present paper is an extension
of this line of works, focused on the application of
simultaneous diagonalization of graph Laplacians for di-
mensionality reduction, manifold alignment, multimodal
clustering, and object classification.

The paper is organized as follows: In Section 2, we
overview the basic notions in spectral geometry of man-
ifolds and graphs. In Section 3.1 we outline our frame-
work and show two optimization problems (joint diago-
nalization, Section 3.2, and coupled diagonalization, Sec-
tion 3.3) for simultaneous diagonalization of Laplacians.
Besides providing a principled approach to data fusion,
this approach gives a theoretical explanation to existing
methods for multimodal data analysis. In Section 4, we
show that many recent works on multi-view clustering
[25], [26], [27], [28], [29] and manifold alignment [30],
[31] can be considered as particular instances of our
framework. Section 5 presents experimental results on
synthetic and real datasets, and Section 6 concludes the

paper.
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2 BACKGROUND

We assume that our data is represented as a k-
dimensional compact manifold X C R4, embedded into
a d-dimensional Euclidean space. In many applications
d is very large while the intrinsic dimension of the data
k is small, and one tries to study the structure of the
manifold rather than its d-dimensional embedding. Such
a structure can be characterized by means of the Laplace-
Beltrami operator A, defined axiomatically through the
Stokes identity! as

| sandn = [ (v5.Vhan

where f,h: X — R are smooth scalar fields on the man-
ifold, dps is a volume element, V is the intrinsic gradient,
and (-, -) is the Riemannian metric (inner product on the
tangent space).

The eigenfunctions w; of the Laplacian satisfying
Awu; = \ju; are often referred to as manifold harmonics and
are analogous to the Fourier harmonics (which, in the 1D
case, can be considered as a particular setting thereof
being the eigenfunctions of the second-order derivative
operator, %eﬂ” = —w?e™“?). The eigenvalues play
the role of “frequency” of the corresponding harmon-
ics. Low-frequency harmonics (smallest eigenfunctions)
capture the high-level structure of the manifold, while
the high-frequency ones capture the “details”. Manifold
harmonics allow to extend standard harmonic analysis to
manifolds. A real square-integrable function f € L?*(X)
can be represented as the Fourier series

)

o= (fuid e, )
i>1
where (f,9)r2(x) = [y fgdp is the standard inner

product on the space of real functions defined on the
manifold.

In the discrete setting, the manifold is often repre-
sented by a weighted graph with vertices {x1,...,x,} C
X and edge weights w;; = k(x;,x;) representing lo-
cal connectivity using e.g. Gaussian kernel [32]. The
Laplace-Beltrami operator can be discretized? as an nxn
matrix L = D™Y?(D — W)D'/2, where W = (wij)
and D = diag(}_;; wi;). Such a discretization is often
referred to as symmetric normalized L%placian and admits
a unitary diagonalization L = UAU', U'U = I where
U = (uy,...,u,) is the matrix of column eigenvectors
and A = diag(Ay,...,\,) is the diagonal matrix of
corresponding eigenvalues Ay = 0 < Ay < ... < A,
The eigenvectors u; of the matrix L can be considered
as a discretization of eigenfunctions u; of the continuous
operator A; it can be shown that under certain conditions
on the discretization of the Laplacian, they converge to
the continuous counterparts [33].

1. Note that we define the Laplacian as a positive-semidefinite
operator unlike the convention in physics.

2. There exist many different constructions of the discrete Laplacian.
For the sake of simplicity, we adopt the symmetric Laplacian. Our
framework is applicable to other discretizations as well.

Geometric constructions associated with eigenvectors
and eigenvalues of the Laplacian play an important role
in manifold analysis, since several archetypical problems
can be formulated in these terms. We list three classical
examples below.

2.1

Non-linear dimensionality reduction methods try to cap-
ture the intrinsic low-dimensional structure of the man-
ifold X. Belkin and Niyogi [2] showed that finding a
neighborhood-preserving k-dimensional embedding of
X can be posed as the minimum eigenvalue problem,

Eigenmaps

min tr(® L&) st. &' =1, 3)
BERn Xk
which has an analytic solution ® = (ui,...,uk) con-

taining the first & eigenvectors of L, thus effectively
embedding the data by means of the eigenvectors of
the Laplacian operator (the constant eigenvectors corre-
sponding to the zero eigenvalues are usually discarded).
Such an embedding is referred to as Laplacian eigen-
map [2]. The neighborhood-preserving property of the
eigenmaps is related to the fact the the smallest “low-
frequency” eigenvectors of the Laplacian vary smoothly
on the manifold.

More generally, a diffusion map is given as a mapping
of the form ¥ = (K (\y)ug, ..., K(A\x)uy), where K()) is
some transfer function acting as a “low-pass filter” on
eigenvalues A [4], [3].

2.2 Diffusion distances

Coifman et al. [4], [3], [12] related the eigenmaps to
heat diffusion and random processes on manifolds and
defined a family of diffusion metrics that in the most
general setting can be written as

(i x7) = S0 KO (i) = [¥(x) — ()3 (@)
l

Particular choice of K(\) = e~ gives the heat diffusion
distance, related to the connectivity of points x;,x; on the
manifold by means of diffusion process of length ¢. Such
distances are intrinsic and thus invariant to manifold
embedding and are robust to topological noise.

2.3 Spectral clustering

Ng et al. [1] showed a very efficient and robust clustering
approach based on the observation that the multiplicity
of the null eigenvalue of L is equal to the number of
connected components of X. The corresponding eigen-
vectors act as indicator functions of these components.
Embedding the data using the null eigenvectors and then
applying some standard clustering algorithm such as K-
means was shown to produce significantly better results
than clustering the high-dimensional data directly. Spec-
tral clustering can also be considered as a relaxation of
the normalized cut method of Shi and Malik [7].
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Fig. 1. Top: the first few Laplacian eigenvectors u;; and
ug, k= 2,...,5of two Swiss rolls (first and second rows)
with slightly different connectivity (shown with lines). The
difference in the connectivity results in different behav-
ior of the eigenvectors (e.g. the third and the second
eigenvectors are swapped). Bottom: joint approximate
eigenvectors v, computed on the same datasets using
JADE behave in the same way. (Hot colors represent
positive values; cold colors represent negative values).

3 MULTIMODAL MANIFOLD ANALYSIS BY SI-
MULTANEOUS DIAGONALIZATION

Recently, we witness increasing popularity of attempts
to analyze different “views” or modalities of data.
Such data can be modeled as m different manifolds
X1 c R, ... X™ C R, which can have embeddings
of different dimensionality (di,...,d;) and sometimes
different structure. Taking as example the multimedia
retrieval application where one tries to find images
matching to text tags or vice versa, different structure
of the image and text tags manifolds can stem from
ambiguities: e.g. “Cayenne” can refer to a city (capital
of French Guiana), a plant (Cayenne pepper), or a car
(Porsche Cayenne). We are interested in analyzing these
manifolds simultaneously in order to extract their joint
intrinsic structure.

We assume that we are given n; samples
{(xi,...,x5 ) C R%}™, on the manifolds and can
construct the Laplacian matrices {L; € R™*™}™  as
described in Section 2. Trying to use the eigenbases
Uy,...,U,, of the Laplacian matrices Li,...,L,,
to represent the data from different modalities in
a common space is problematic since they do not
“speak the same language”: even if the manifolds

are isometric (have the same intrinsic structure) and
have simple spectrum (the Laplacian eigenvalues have
no multiplicity), the corresponding eigenvectors may
differ up to a sign. For an eigenvalue of multiplicity p,
any basis spanning the p-dimensional subspace of the
eigenspace constitutes a valid set of eigenvectors. More
generally, for non-isometric manifolds (which is usually
the case in real applications), the Laplacian eigenvectors
can differ dramatically (Figure 1, top), making the data
from different modalities mutually incomparable.

3.1

The key idea of our paper in addressing this problem
is to try to find the eigenbases of the Laplacians si-
multaneously. If the Laplacians Ly, ... ,L,, are of equal
size n; = n and commute (L;L; = L,L; for i,j =
1,...,m), they are jointly diagonalizable in the sense that
there exists a single set of orthonormal vectors V (joint
eigenvectors) such that VILV=A,= diag(Nit, -5 Ainy)
are diagonal matrices of the eigenvalues of L;. Joint
diagonalization allows to remove the ambiguities and
incompatibilities between different modalities (Figure 1,
bottom). It also allows us to naturally extend the spectral
geometric methods discussed in Section 2 (eigenmaps,
diffusion distances, spectral clustering, etc.) to the mul-
timodal setting by simply replacing the eigenvalues and
eigenvectors of a single Laplacian by the joint ones
obtained from multiple Laplacians (in the following,
we denote by U the eigenvectors and by V the joint
eigenvectors, respectively).

In practice, however, due to differences between the
modalities, the presence of noise, and possibly different
number of samples, the Laplacian matrices Ly,...,L,,
are not jointly diagonalizable. We thus need to look for

Main idea

bases V1,...,V,, approximately satisfying the following
properties:

Diagonalization: the basis V; diagonalizes the
Laplacian L; for ¢ = 1,...,m, ie, V;rLiVi =
diag(Ai1,. .., Ain,)- In this case, the eigenvalues
Ait, ..., Ain, can be regarded as “frequencies” and
the columns of V; = (v1,...,Vin,) as an analogy of

the harmonic (Fourier) basis. Using the first k£ (low
frequency) eigenvectors of L; to embed the samples
of X ensures that the embedding preserves well the
neighborhood structures [2].

Orthogonality: V;V,; = I This ensures that the
dimensions of the embedding are uncorrelated and thus
the embedding is “efficient”.

Coupling: all the bases V; behave consistently. In the
most general setting, this consistency can be defined as
follows: given a set of vectors F; = (f;1,...,f;,) on X!
and a set of corresponding vectors F; = (f;1,...,f;,) on
X7, their Fourier coefficients in the respective basis must
coincide, Fj V= FjTVj. We refer to this formulation as
Fourier coupling. For example, the columns of F; and F;
can be indicator functions of subsets (“blobs”) on X* and
X7,
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A particular setting of the above is when the blobs
are of single vertex size: given a set of ¢ corresponding
samples k;i,...,k;q and kji,...,kj, in modalities i and
Jj, respectively, the column f;; of F; contains one at the
index k;; and zeros elsewhere; the corresponding column
f;; of F; contains one at the index kj;;. This setting is
referred to as point-wise or sparse coupling.

Finally, the simplest case of coupling is when the
manifolds are sampled at equal number of points and the
samples are ordered in the same way in all modalities:
ni=n,qg=n,and F; =1 forall ¢ = 1,...,m. In this
case, referred to as full coupling, we simply have a single
basis V; = V for all modalities.

In this section, we present several approaches for an
approximate solution of the simultaneous diagonaliza-
tion problem. We start with the problem of joint approxi-
mate diagonalization, in which full coupling is assumed
and the optimization is performed over a single ap-
proximate eigenbasis V for all the Laplacians. Then, we
present a more generic problem of coupled diagonalization,
in which we are looking for m approximate eigenbases
Vi,...,V,, with Fourier or point-wise sparse coupling.

3.2 Joint diagonalization with generalized Jacobi
method

Recall that the eigendecomposition problem (3) can be
formulated as the minimization of the off-diagonal ele-
ments of the matrix U’ LU over the space of orthonor-
mal matrices U,

min  off(UTLU) 5)
UTU=I

where off(X) is some off-diagonality criterion, e.g. the
sum of squared off-diagonal elements, off(X) = ||X —
Diag(X)||%, where Diag(X) denotes a diagonal matrix
containing only the diagonal values of X. For a sym-
metric matrix L, optimization (5) achieves the minimum
value of zero, with a minimizer U being the eigenvectors
of L.

This type of optimization lies in the heart of a class
of eigensolvers based on the Jacobi iteration [34]. One can
observe that if Ry is a rotation matrix by angle ¢ in the
plane ij, then I = Ry LRy is similar to L (i.e., both
matrices have the same eigenvalues) and ||L||r = ||L||¢.

1, 2
However, we can choose 6 = tan~! (7~=7) which results
27

in Lj; = 0. This way, we find the angle ¢ minimizing
off(Ry LRg) which means that by applying such rotation
Ry we reduce the off-diagonal elements of L. Also note
that since L’ has only the ith and jth rows and columns
different from L, the rotation can be applied “in-place”
and does not require matrix multiplication.

The idea of the Jacobi method for eigenvalue calcula-
tion is to construct U as a sequence of plane rotations
U =...RyR; in order to sequentially minimize the off-
diagonal elements in (5). Being a product of rotations,
the matrix U is orthonormal by construction.

JADE method. The same idea can be extended to
finding the approximate joint eigenvectors of a few

matrices in the full coupling setting [19], [20], [21], by
solving the optimization problem

min off(V'L;V) (6)

VTv=14~

In this case, the minimum of zero is achieved iff
Li,...,L,, commute. The generalized Jacobi method (re-
ferred to as JADE [21]) follows the standard Jacobi
method, with the exception that in JADE the rota-
tions are aprphed to reduce the off-diagonality criterion
SO off(Ry L;Ry) in each step rather than off(Rj LRy)
used in the standard Jacobi iteration. Cardoso and
Soloumiac [21] show that for a rotation matrix Ry the
rotation angle # minimizing ", off(R, L;Rg) can be
computed as follows: Let G = Zm h(L;)h(L;)T, where
hL) = (I — 5, L5 + lﬂ) , and let a = g11 — goo and
B = g12+ g22. Then, 0 = £ tan™*(B8/(a+ v/a? + 32)). The
complexity of JADE is akin to that of the standard Jacobi
iteration.

Perturbation analysis of JADE. The joint approximate
eigenvectors obtained as the solution of problem (6) are
related to the eigenvectors of the Laplacian matrices by
the following

Theorem 3.1: Let Ly = UAU' have a simple 7-
separated spectrum |\; — A;| > 7 for all i # j, and let

= UAU  +€R be a perturbation of L;. Then (ignoring
permutation of eigenfunctions and sign flips), the joint
approximate eigenbasis can be written as the first-order
perturbation
v, = u;+e¢ Z aijuj + O(€?), (7)
j#i
where «;; = u Ru;/2()\; — \;). For proof, we refer the
reader to [35], [11].

3.3 Coupled diagonalization

The notable drawback of the joint diagonalization prob-
lem (6) is the full coupling assumption, requiring an
equal number of data points in all the modalities and bi-
jective correspondence between them. In many settings,
this assumption could be too restrictive: for example, in
multimedia retrieval applications, establishing the cor-
respondence between images and annotations requires
some human intelligence (tagging the images).
Coupling and decoupling. In a more general setting
of the problem to which we refer as coupled diagonaliza-
tion (CD), we use sparse point-wise (or, more generally,
Fourier) coupling by means of a set of matrices {F; €
R7*4} | containing as columns corresponding vectors
in the respective modalities. We are looking for a set of
co¥pled bases {V; € R**"% : VIV, = I})" | such that
L;V; are approximately dlagonal fori=1,...,m.To
ensure that the bases Vi,...,V,, behave consmtently,
we introduce coupling constmints: given a vector f* on
manifold X’ and a corresponding vector f/ on manifold
X7, we require that their Fourier coefficients in the
respective bases coincide, Vi = ijj. Note that such
coupling does not necessarily require the knowledge of
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corresponding points, but rather of corresponding vectors
£ 87 [11]. Similarly, we can introduce a decoupling term
on different vectors g’, g/, requiring their respective
Fourier coefficients to be as different as possible. We can
write the coupled diagonalization problem as

m m

min Y off (VL Vi) + py | [F] V= F] V|3
Vi visl o i,j=1
—pnay_ |G Vi— GV, 8)

ij=1

Because we have to look for a basis for each modality
rather than for a single common basis, the number of
variables in problem (8) is }..", n?, compared to n?
variables in problem (6). In the case n; =n=g¢q, F; =1,
e — o0, and pg = 0, the coupled diagonalization
problem (8) boils down to the joint diagonalization prob-
lem (6). Corresponding vectors can be delta functions
(representing sparse point-wise correspondence between
the manifolds), blobs (e.g. if one has information about
corresponding sets of points), distance functions, etc.

Finding first £ joint eigenvectors. One drawback
of the JADE problem (6) is that it looks for all the
joint approximate eigenvectors of the Laplacians. Since
in most applications we do not need the n; x n; full basis
but rather the first k£ coupled eigenvectors, we can solve
a smaller problem over the matrices Vi= (Vit,--,Vir)
of size n; x k. Note that since any subset of columns of
V; will approximately diagonalize L;, when using the off
penalty like in (8), any k approximate joint eigenvectors
would be a solution, not necessarily the first ones. For
this reason, in order to find the smallest approximate
joint eigenvectors, we resort to a different off-diagonality
penalty similar to one used in [22],

m m
. FTr X < 3
Jmn > IViLiVi— Al + pey | IIF] Vi —F] V|7
i@ ViTh =1

ij=1

*Mdz 1G] Vi — G, V|2 )

ij=1

where A; = diag(\i1, ..., \ix) denotes the diagonal ma-
trix containing the first £ eigenvalues of L;. The number
of variables in problem (9) is > .~ n;k.

Subspace parametrization. By virtue of Theorem 3.1,
we have that for approximately jointly diagonalizable
Laplacians, span{v;1,..., v} ~ span{u;,...,u;,}. We
can thus approximate the first k vectors of the cou-
pled bases as a linear combination of the first &' > k
eigenvectors of L;, denoted by U; = (w1,...,u;). We
parametrize the coupled basis of modality i as V; =
U,;A;, where A, is the k¥’ x k matrix of linear combination
coefficients. From the orthogonality of V;, it follows that
A/ A; =1 [11]. Plugging this subspace parametrization
into (8) and observing that \7: L;V; = A/ A;A;, where
A = diag(Xi1,..., A k) is the diagonal matrix contain-
ing the first &’ eigenvalues of L;, we get a problem with
mkk’ variables,

m
min

i A= 1

= i,j=1

—na Y IG/UA; — G U;A |} (10)

ij=1
The use of subspace parametrization offers several ad-
vantages. First, unlike problems (6) and (8), problem (10)
is of fixed size mkk’ independent of n,. This potentially
allows to deal with very large datasets. 3 Since typical
values are n ~ 103 — 10%, while ¥,k ~ 10 — 100,
the reduction of the number of variables can be of
several orders of magnitude. Second, as we represent
our coupled basis vectors as linear combinations of the
first k' low-frequency eigenvectors, the coupled basis
vectors have guaranteed smooth behavior which ensures
neighborhood-preservation property typical of Laplacian
embeddings. Finally, differently from JADE, in (10) the
Laplacians are not used explicitly. This key difference
makes the problem agnostic to the specific discretization
of the Laplacian.

Optimization. The solution of problem (10) can be
carried out using standard constrained optimization
techniques such as fmincon in MATLAB which require
the gradients of the cost function and the constraints.
The gradient of the off-diagonal penalty is given by

Va AT AA; — Allp = 4(AAAT AA; — A AN,
The gradient of the coupling/decoupling term is

Va.|F] UA; —F]U;A;|% = 20, F,(F/ U,A; — F] U;A)).

Alternatively, recent techniques [36], [37] for opti-
mization on Stiefel manifold V,(R¥') = {A e RF*k .
AT A =T} can be employed. In this approach, we solve
an unconstrained problem having the orthonormality
constraint built into the optimization method in the form
of projected descent. Technically, optimization is applied
in a block-coordinate manner w.r.t. to A, fixing all other
Ajzi,

)||AinAi — A2+ e Y |FTUA; — FJ U A2

min
A eV (R =
m
—nay_ |G/ U;A; — G U;A; |3
j=1
alternatingly for all i = 1,...,m.

Complexity. Assuming the number of modalities m
is small and that the ¢ x k' Fourier coefficients matrices
F; U, are pre-computed, the cost function and its gradi-
ent computation (and consequently, the cost of a single
optimization iteration) has complexity O(qk’k).

3. Obviously, in order to construct the subspace parametrization, one
has to calculate the first &/ harmonics of each of the manifolds, an
operation dependent on the data size. However, such a computation
would be required anyway if a single-modality spectral method were
applied to each modality separately. Our parametrization allows to
couple exact harmonics by solving an additional modestly-sized opti-
mization problem.
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4 RELATION TO PREVIOUS WORKS

In this section, we overview other spectral methods for
dealing with multimodal data and show their relations
to the proposed approach. In our analysis, we distin-
guish between two broad groups of approaches: those
assuming the full coupling setting (i.e., equal number
of vertices n; = n and known bijective correspondence
between them) and sparse coupling setting (each modality
might have a different number of vertices, and the
correspondence is known only between a few of them).

4.1

Laplacian averaging. Assuming the full coupling setting
and that the first & eigenvalues of the Laplacians are
zero, we want to find V € R*** such that L;V = 0 for
alli=1,...,mand VIV =1 by reformulating (6) as

Full coupling setting

i L, V|3 11
VITH\IELI;” I (11)

Since > L V% = tr (VT (37, L] L;)V), the prob-
lem can be equivalently recast as finding the null
elgenvectors of the “average” Laplacian matrix L =
S L/L;. One can also consider other averaging op-
erators, such as arithmetic mean L = L™ L; or
harmonic mean L = (37", L;")~'. In what follows,
we will show that many approaches for multimodal
manifold alignment boil down to simple Laplacian aver-
aging in their limit cases. Laplacian averaging methods
seem to be the most ‘naive’ way of producing multi-
modal spectral geometry and have been used in several
applications such as clustering [26]. *

Matrix factorization. Tang et al. [27] proposed graph
clustering through low-rank factorization of the weight
matrix, trying to find a common factor U such that W; ~
UA,;U" by solving

i W, - UAUT |3, 12

using the quasi-Newton method. Besides the fact that
the factorization is applied to the weight matrix (it can
be equivalently applied to the Laplacian), we see here a
(non-orthogonal) joint diagonalization problem with an
off-diagonality criterion considered by Yeredor [22].

MVSC. Cai et al. [28] proposed a method for multi-
view spectral clustering (MVSC) by solving®

min (13)

tr (V/ LiVi) + | Vi = VI[;
VTiv= Iz 1

4. We refer to reader to [38] for a recent attempt to generalize
Laplacian averaging methods to a more general setting of sparse
coupling.

5. Cai et al. [28] also impose a non-negativity constraint on the matrix
V in order to obtain cluster indicators directly and bypass the K-means
clustering stage. We ignore this additional constraint for the simplicity
of discussion; such a constraint can be added to all the problems
discussed in this paper.

and show that this problem can be equivalently posed
as

max tr (V—r S (L + D)t V)

(14)
vVTv=I

We observe that problem (13) consists of m minimum-
eigenvalue problems w.r.t. bases V;, with the addition
of a coupling term, encouraging V; as close as possible
to some common basis V (note that the authors do
not impose orthogonality constraints V;V = I, but
for p — oo, the proximity to orthogonal V makes
V; approximately orthogonal). Thus, it is possible to
interpret (13) as a kind of joint diagonalization criterion
similar to manifold alignment discussed in Section 4.2.

Problem (14) can be rewritten as a minimum eigen-
value problem

. T 1
Juin tr (V (z (L + pd)~ ) V) (15)
whose solution is given by the first k eigenvectors of the

matrix (Zi:l (L; 4+ pD)~!
the harmonic mean of the Laplacians. In order to obtain
the limit case u — oo, observe that

. For p = 0, this is simply

Y (L +pD)™t =

= TI;_Zm:Li.

Plugged into (14) and normalized, in the limit ;4 — oo
expression (16) becomes

(16)

min tr (VT S L V)

17)
vIiv=I

thus essentially boiling down to arithmetic mean of the
Laplacians. ¢

Co-regularization. Kumar et al. [29] proposed the cen-
troid co-regularization approach for multimodal clustering
based on the minimization of

i Ztr (V] L;iV;) — ptr (V,V, VVT) (18)
VTV,—I VTV I

This function is alternatingly minimized, first with re-
spect to the n x k matrices V;, then with respect to V.
The term —tr (V,;V,VV') = |[V,V] — VVT |2 — k
measures the Grassmanian distance between the column
subspaces span{v;i,..., vt} and span{vy,...,vi} [39]
and has an effect similar to our coupling term ||V, —V||3.
SC-ML. Dong et al. [39] proposed an approach for
spectral clustering on multi-layer graphs (SC-ML) similar to
co-regularization, trying to find an n x k matrix V which
minimizes that Laplacian quadratic form and is closest

6. The same result can be obtained by analyzing (13) and noticing
that for ;1 — co we have V; =V and the problem becomes

min tr (VISm LiV) st. VIV =
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to the subspaces spanned by the first k eigenvectors U;
of the Laplacians L;,

m

min > tr (V' L;V) — ptr (0,0, Vv 7).
viv=l i1

(19)

Rewriting (19) as

. T T |
Jmin g (V (2 L; — pU,U, ) V) , (20)
one obtains a closed-form solution to V by ﬁndinjg the
first k eigenvectors of the matrix Y~ L; — uU,U; .
CCO. Using the relation between joint diagonaliz-
ability and commutativity [40], [41], Bronstein et al. [42]
considered a class of problems referred to as closest
commuting operators (CCO), where one seeks the smallest
perturbation Ly, Ly of Ly, Ly such that il, L, commute,

2

min Z ||]:;~C - Lk”% s.t. fq]zg = f;gf;l,
LyeM k=1

(eAY)

(where M C R™ "™ is some class of matrices). It was
shown that for M = R"*", problem (21) is equivalent
to JADE (6), in the following sense: since the minimizers
of (21) are commuting matrices, they are jointly diag-
onalizable, and their joint eigenbasis is the minimizer
of (6) [42]. Using as M the set of Laplacian matrices,
one can impose a specific sparse structure on Ly, Lo.
The solution of (21) is carried out by parametrizing L;
through the non-zero elements of the adjacency matrix
W,;. The complexity of the problem depends both on
the size and the structure of W;: assuming that each row
of the adjacency matrix has at most s non-zero elements,
computing the cost function and the constraints and their
gradients requires O(sn?) operations.

4.2 Sparse coupling setting

Manifold alignment. Ham et al. [30] introduced man-
ifold alignment as a way to construct embeddings that
are consistent in two different modalities. Let us be
given two weighted adjacency graphs with n vertices
in the spaces X' and X?, and let us assume w.lo.g.
that the points are ordered such that the first [ points
in the two modalities correspond. The main idea of
manifold alignment is to construct a big graph with
2n vertices where the edges connecting corresponding
points in different modalities have some weight p. The
joint Laplacian of such a graph is a 2n x 2n matrix of the

form
i_ ( L +pQ —pQ )
—pQ Ly +pQ

where Q is an n x n diagonal matrix with first [ diagonal
elements equal to one and the rest to zero. Ham et al.
then compute the eigenmap of the joint Laplacian

(22)

min tr(Z'LZ) st. Z'Z =1,

23
ZeRzTL Xk ( )

and use the rows 1,...,n and n+1,...,2n of Z as the
k-dimensional embeddings of manifolds X' and X?, re-
spectively. Larger values of ;1 ensure that the embedding
coordinates of the corresponding points coincide.
Denoting Z = (V1; V) we can rewrite (23) as

S o (ViLVa) +tr (VL Va) + | QVy — QV2f;

st. VIV + V]V, =1, (24)

We recognize in the first terms the cost used in the
classical eigenmap (3). In the case p = 0, L becomes
a block-diagonal matrix and V; = U, the eigenvectors
of the Laplacians L;. For x4 > 0, the third term serves as
a coupling similar to our coupled diagonalization prob-
lem (8). An important difference, however, is that V; in
this formulation are not orthonormal (the orthogonality
constraint is on their sum). Furthermore, the trace terms
ignore the off-diagonal elements and do not promote
diagonalization of the Laplacians. Thus, the resulting
bases are not quasi-harmonic.

Finally, observe that in the limit case ;1 — 0o and Q =
I, problem (23) becomes (up to scaling) the minimum
eigenvalue problem

min

tr (VT (Ly + L) V)
vVTv=I

(25)
for the matrix L; + Ls. Thus, in this case manifold align-
ment boils down to arithmetic mean of the Laplacians.

Procrustes analysis. Wang and Mahadevan proposed
to align the low-dimensional embeddings of two modal-
ities by solving an orthogonal Procrustes problem [31].
Note that this problem is a particular setting of our
coupled joint diagonalization problem (10) for m =
2,k = k" and p — oo: in this case, we can ignore the
off-diagonality penalty and obtain

R UIA - Fy UoA|7 st AJA; =1 (26)

min
A1 ,A2 E]R’“ Xk
Using the invariance of the Frobenius norm under
orthogonal transformation, we can rewrite problem (26)
as an orthogonal Procrustes problem

min |F{ U; —F, U2 st. Q' Q=1

27
QE]Rk Xk ( )

where Q = A;A[ . The problem has an analytic solution
Q = SR, where [_IlTF1F2TI_J'2 = SER' is the singular
value decomposition of the matrix I_J'IFl F, U, with left-
and right singular vectors S,R [43]. Then, A; = S and
A, =R.

Geometrically, the matrices A, Ay can be interpreted
as rotations aligning the eigenvectors Uy, Us to coincide
in the best way at the corresponding points. This solution
is ambiguous up to a rotation A, i.e.,, AgA, ATAl is also
a solution. More importantly, the resulting coupled bases
are not guaranteed to be quasi-harmonic since the off-
diagonality penalty is not used.

Functional correspondence. Ovsjanikov et al. [10]
proposed a framework for finding functional correspon-
dence between X' and X2. Let f' and f? be correspond-
ing functions on X! and X?, respectively. One can define
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h. CD 10%
Fig. 2. Simultaneous two-dimensional embedding of
two Swiss rolls with slightly different connectivity using
JADE, coupled diagonalization (CD) and manifold align-
ment (MA). Ideally, the embedding should ‘unroll’ the
rolls into rectangular regions, and the embeddings of the
two modalities should coincide. Using the same sparse
coupling (from 10% to 1% of the points, shown in gray
lines), CD produces a significantly better alignment than
MA.

the functional map as an ny x n; matrix T, such that
f2 = Tf'. The functional map can be approximated
using k first Laplacian eigenvectors, T ~ U,CTU],
where the k x k matrix C translates Fourier coefficients
from basis U; to basis Us. Given a set of corresponding
vectors F; of size n; x g, @ = 1,2, one can find C by
solving the system of gk linear equations in k? variables,

F, U, =F, U,C. (28)
One needs ¢ > k corresponding vectors in order to make
the system (28) determined. If X!, X? are isometric, C
is orthonormal.

Solving (28) in the least-squares sense in this setting
is equivalent to the orthogonal Procrustes problem (27),
which we showed to be a limit case of our coupled
diagonalization problem. More generally, the use of the
off-diagonal penalty in (10) imposes a diagonal structure
on the matrix C, which serves as a regularization allow-
ing to reduce the amount of data required to make the
problem determined.

5 RESULTS

In this section, we show several examples of the ap-
plication of our simultaneous diagonalization approach.
The leitmotif of all the experiments in, given several
graphs (‘modalities’) representing same or related data
in slightly different ways, to take advantage of this mul-
timodal information. The experiments are structured as
follows: In Section 5.1, we show examples of dimension-
ality reduction by embedding the multimodal data into
low-dimensional spaces using joint Laplacian eigenvec-
tors. We show that the eigenmaps of different modalities
are well aligned in this way. These results are mostly

*

Fig. 3. Alignment of face (green) and statue (blue)
manifolds. Each point represents an image in the re-
spective dataset; circles represent corresponding poses
of the statue and face images shown. Crosses denote
the data points used for coupling. Note some significant
misalignment between the manifolds in the MA results
(marked in red).

qualitative. In Section 5.2, we compare different state-
of-the-art multimodal clustering algorithms on standard
datasets. In Section 5.3 we compute diffusion distances in
the joint Laplacian eigenspaces and use them to classify
objects. Section 5.4 shows further example of applying
diffusion distances for meaningful subsampling of the
datasets using farthest point sampling (FPS) technique
[44]. Finally, in Section 5.5 we analyze the complexity of
our approach.

5.1 Dimensionality reduction

Swiss rolls. In this experiment, we used two Swiss
roll surfaces with slightly different embedding as two
different data modalities. The rolls were constructed in
such a way that in each modality there is topological
noise (connectivity “across” the roll loops) at different
points. The rolls contained n = 451 points. Laplacians
were constructed as in [2], using 8-neighbor connectivity
and Gaussian weights with scale parameter ¢t = 5. Fig-
ure 1 shows the first few eigenvectors computed using
each Laplacian individually (top) and jointly with JADE
(bottom). Using individual modalities, the difference in
the connectivity produces different eigenvectors, with
respect to both their order and their behavior (values
across two different faces are closer where there are
links). When using joint eigenvectors, instead, we are
able to correctly capture the intrinsic structure of the data
(i.e. links across faces are not influent anymore), and the
eigenvectors behave the same way. This effect is evident
in Figure 2, where the second and third uncoupled (a)
and joint (e) eigenvectors of the same rolls are plotted.

Sparsely-coupled Swiss rolls. Next, we repeat the
same experiment using correspondence between a small
subset of vertices (sparse coupling) rather than all the
points. The corresponding sparse points were sampled
using farthest point sampling. Since the rolls are (up
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Tags modality

Color histogram modality

Multimodal (]ADE)

Fig. 4. Spectral clustering of the NUS dataset. Shown are
a few images (randomly sampled) attributed to a single
cluster by spectral clustering using the Tags modality only
(top), the Color modality only (middle) and the Tags+Color
multimodal clustering using JADE (bottom). Groundtruth
clusters are shown in different colors. Note the ambigu-
ities in the Tag-based clustering (e.g. swimming tigers
and underwater scenes) and Color-base clustering (e.g.
yellowish tigers and autumn scenes).

to topological noise) isometric to a plane, their ideal
embeddings should be rectangular patches. Figure 2 (f-
h) shows the result of joint embedding using our CD
with sparse point-wise correspondence. With as little as
1% correspondences, we obtain results similar to JADE
(which uses full coupling). Figure 2 (b-d) shows the
result of manifold alignment (MA) [30] with the same
sparse correspondences. It is evident that MA requires
many more points to achieve results similar to CD.

Alignment of visual manifolds. As an additional
comparison of CD and MA, we reproduce the problem of
alignment of two visual manifolds using the data of [30]:
831 120x100 images of a face and 698 64 x64 images of
a statue. The datasets were coupled sampling 25 points
from the statue dataset with FPS and then manually
matching them with corresponding images in the faces
dataset. Figure 3 shows the result of the alignment of
face (green) and statue (blue) manifolds. As an example,
we took 6 face pictures in different poses (green circles)
and showed them, for both methods, next to their closest

:,‘ . .

Multimodal (]ADE)

Fig. 5. Spectral clustering of the Caltech-7 dataset.
Shown are a few images (randomly sampled) attributed
to a single cluster by spectral clustering using the Bio-
inspired modality only (top), the PHOW modality only
(middle) and the multimodal clustering using JADE (bot-
tom). Groundtruth clusters are shown in different colors.
Ideally, a cluster should contain images from a single
class only.

counterparts on the statue manifold (blue circles). We
observe that, with the same number of correspondences,
the alignment of the two manifolds is significantly better
using CD compared to MA: as a consequence, pictures
in the statue dataset tend to be closer to pictures of faces
in the same pose.

5.2 Multimodal clustering

We performed multimodal spectral clustering on six
different multimodal datasets. Circles and Text are two
synthetic datasets purposely built to be noisy in each
modality (overlapping clusters) and to have modalities
that disambiguate each other (clusters which are close
in one modality are far apart in the other one, see
Figure 6). NUS is a subset of the NUS-WIDE dataset
[45] containing images (represented by 64-dimensional
color histograms) and their text annotations (represented
by 1000-dimensional bags of words). Images were pur-
posely selected to have ambiguous content and annota-
tions (e.g., swimming tigers are also tagged as “water”
making them confuse e.g. with whales). Caltech is a
subset of the Caltech-101 dataset with the same 7 image
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Accuracy/NMI (%)
Method Circles Text Caltech [28], [24] NUS [45], [24] Digits [46], [47] Reuters [48], [47]
#points 800 800 105 145 2000 600
Uncoupled” | 53.0/39.5 60.4/50.9 77.1/75.0 84.8/81.9 83.2/82.2 52.3/41.1
Harmonic Mean | 95.6/90.1 97.2/91.0 84.8/79.2 89.0/83.8 87.0/86.3 52.3/40.9
Arithmetic Mean | 96.5/91.2 96.9/89.6 88.6/83.1 95.2/92.1 85.2/84.8 52.2/41.4
Comraf [49] | 40.8/16.9 60.8/41.7 - 86.9/84.3 81.6/77.0 53.2/30.7
MVSC [28] | 95.6/90.1 97.2/91.2 85.7/80.8 89.0/83.8 83.0/84.8 52.3/40.9
MultiNMF [47] | 41.1/14.2 50.5/23.2 — 77.4/79.3 87.2/79.3 53.1/40.9
SC-ML [39] | 98.2/94.6 97.8/93.1 88.6/81.6 94.5/90.7 87.8/85.3 52.8/38.4
JADE [24] | 100/100 98.4/94.1 86.7/80.6 93.1/87.5 85.1/85.1 52.3/40.9
10% | 52.5/26.0 54.5/26.2 78.7/75.3 78.6/77.9 94.2/87.8 53.7/34.4
20% | 61.3/40.2 60.0/41.9 80.8/76.0 82.9/78.2 94.1/87.4 54.2/33.7
pos 60% | 93.7/85.4 86.5/69.7 87.0/80.0 87.2/78.9 93.9/87.1 54.7/36.5
CD* 100% | 98.9/95.5 96.8/89.4 89.5/83.3 94.5/90.6 93.9/87.1 54.8/36.9
10% | 67.3/465 63.6/42.1 86.5/80.9 92.7/86.2 94.9/88.9 59.0/37.7
pos+neg  20% | 69.6/50.2 67.8/50.0 87.9/81.2 93.3/87.0 94.8/88.7 57.6/37.1
60% | 95.2/87.9 87.0/68.5 89.2/84.0 94.5/88.5 94.8/88.7 57.0/38.8
TABLE 1

Performance of different multimodal clustering methods of different datasets (accuracy / normalized mutual
information in %, the higher the better). References provide additional details about the datasets, experiments, and
methods. *Best performing modality is shown.

Uncoupled Comraf MultiNMF

X
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Fig. 6. Clustering of synthetic multimodal datasets Circles (two modalities shown in first and second rows) and Text
(third and fourth rows). Marker shape represents ground truth clusters; marker color represents the clustering results
produced by different methods (ideally, all markers of one type should have only one color).
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Uncoupléd 1 Uncoupled 2 JADE

) C (pos) cb (pos;neg)

Fig. 7. Diffusion distances between objects from the
Caltech (top) and NUS (bottom) datasets using sepa-
rate modalities (first and second columns), JADE (third
column) and CD with coupling (fourth column) and cou-
pling+decoupling (fifth column) terms. Note the ambigui-
ties between different classes of objects (marked in cyan)
when using a single modality.

classes as in Cai et al. [28]. For each image, kernels
arising from different visual descriptors were given [50]:
we chose the ht_bio_105728 bio-inspired features and 4x4
pyramid histogram of visual words (PHOW) as different
modalities. Digits is the UCI Handwritten Digits dataset
[46], [47], represented using 76 Fourier coefficients and
the 240 pixel averages in 2 x 3 windows. Reuters is a
subset of the Reuters multilingual text collection [48],
[47] using the English and French languages as two
different modalities.

Laplacians were constructed using the Gaussian
weight selected with a self-tuning scale [51]. Spectral
clustering was performed independently on each modal-
ity (Uncoupled), on the joint eigenspace calculated with
JADE [21], and on the coupled bases calculated using CD
with coupling only (pos, pq = 0) as well as decoupling
(pos+neg) terms. Sparse sets of corresponding points for
coupling were generated using FPS on each cluster with
random initial point. The results were averaged over ten
runs with different sampling. Negatives were generated
by choosing blobs of points belonging to ambiguous sets
(e.g. clusters 5, 6, and 7 for NUS, and clusters 4 and 5
for Caltech). For reference, we show the performance of
the following state-of-the-art multiview clustering meth-
ods: Comraf [49], MVSC [28], MultiNMF [47], and SC-
ML [39].”7 We further compare with the two Laplacian av-
eraging methods (harmonic mean and arithmetic mean).
Clustering quality was measured using two standard
criteria used in the evaluation of clustering algorithms:
the micro-averaged accuracy [49] and the normalized mutual
information (NMI) [52].

Figures 4 and 5 visualizes the results of unimodal
spectral clustering with its multimodal extension (calcu-
lated using JADE) on the NUS and Caltech dataset. One
can easily see the advantage of simultaneously using
information from both modalities: images which are
ambiguous in either modality (e.g. due to their colors,

7. Since Comraf and Multi-NMF methods require explicit coordi-
nates of the data points, while Caltech data is represented implicitly as
kernels, we could not measure performance on this dataset.

1 — 1 -
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é .'. c'/ &
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o™ 30 s : 9 &
[ o* o 7 .o' il
K K e .°° o[ *e Uncoupled 1
0.4’0 - . 04 ;é-" ~e*|*+ Uncoupled 2
. " oo o= JAD
0.2fe° o* 0.2fee°® cco
ee® == CD (pos)
CD (pos+neg)
0.001 0.01 0.1 1 0.001 0.01 0.1 1
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Fig. 8. Object classification performance on Caltech

(left) and NUS (right) datasets using diffusion distances
computed in each modality separately (Uncoupled), a
joint eigenspace (JADE), coupled eigenspaces produced
by CD with coupling (pos) and coupling+decoupling
(pos+neg) terms, and the joint eigenspace of the closest
commuting Laplacians (CCO). Note that CD (pos+neg)
performs better than each modality on its own and out-
performs the other methods.

tags, or other visual features) are made unambiguous in
the multimodal case.

Figure 6 visualizes the behavior of different mul-
timodal clustering algorithms (all assuming the full
coupling setting) on the synthetic datasets Circles and
Text: due to the non-globular shapes of the clusters
and their overlap, both the unimodal approach and
the non-spectral multimodal ones perform poorly on
these datasets. Clusters found by multimodal spectral
clustering methods, instead, are all quite accurate, and
JADE performs the best among them.

Finally, Table 1 summarizes the quantitative evalua-
tion of different clustering methods. In the full coupling
setting, we observe that multimodal spectral methods
perform consistently better on non-globular clusters and
very noisy datasets. In particular, methods that might
look naive such as harmonic and arithmetic mean pro-
vide surprisingly good results, competing with other
much more elaborate approaches. In the sparse cou-
pling setting (using correspondence between 10%-100%
points), CD is able to obtain performances close to (and
often better than) the ones of full coupling methods with
just a fraction of the data they need.

5.3 Object classification

In this experiment, we used the diffusion distances
computed using Laplacian eigenvectors (individual and
joint). The distances were computed with the first 100
eigenvectors according to (4) using heat diffusion kernel
K(\) = e 5\ Figure 7 shows the distance matrices
between the objects in the Caltech (top) and NUS (bot-
tom) datasets. Ideally, the distance matrix should contain
zero blocks on the diagonal (objects of the same class)
and non-zero elsewhere (objects from different classes).
Thresholding these distances at a set of levels and mea-
suring the false positives/true positive rates (FPR/TPR),
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Fig. 9. Farthest point sampling of NUS (top) and Caltech-
7 (bottom) datasets using the diffusion distance in the
joint eigenspace computed by JADE. First point is on the
left. Numbers indicate the sampling radius. Note that in
both cases, the first seven samples cover all the image
classes, providing a meaningful subsampling of the re-
spective datasets.

we produce the ROC curves that clearly indicate the
advantage of using multiple modalities (see Figure 8).

5.4 Manifold subsampling

Next, we used the same diffusion distances to pro-
gressively sample the Caltech (top) and NUS (bottom)
datasets using the farthest point sampling strategy: start-
ing with some point, pick up the second one as most
distant from the first; then the third as the most distant
from the first and second, and so on. Such sampling
is almost-optimal [44] and is known to produce a pro-
gressively refined r-covering of the dataset. Figure 9
shows that the first seven samples produced in this way
cover all the classes present in the dataset, providing
thus a meaningful subsampling. This is an indication of
the presence of data clusters in the coupled eigenspace
which are cohesive (points in the same class are close to
each other) and at the same time well separated (points
in different classes are far from each other).

5.5 Complexity

In our final experiment, we studied the complexity of the
CD approach and compare it to the CCO. The synthetic
dataset using in this experiment was similar the Circles
dataset, and contained four concentric circles with differ-
ent connectivity in two modalities; the number of points
n ranged between 400 and 2000. The Laplacians were
constructed using s=5, 10, and 20 nearest neighbors.
Since CCO assumes full coupling (bijective correspon-
dence between the modalities), in order to make the
comparison fair, we used the full coupling setting in the
CD problem (g = n), thus making its complexity depend
linearly on n.

Figure 10 shows the computational complexity com-
parison between CD and CCO, computed as average
computation time of the cost functions (10) and (21) and
their respective gradients. The CD problem complexity
in this setting scales linearly with n, independently of s.
The CCO problem complexity scales quadratically in n
and linearly in s.

e s=5 cco
R = 5=10 s CD (K'=20) |
E $=20 s CD (K'=50)
@ 1
£ 10 E
&
T
10° A

STITITICTITIT I

7000 1200 1400 1600 1800

Number of vertices n
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Fig. 10. Comparison of CCO and CD computational com-
plexity, measured the mean time (in msec) per iteration
for different number of vertices n and number of nearest
neighbors s used in the definition of the Laplacian. CD is
shown in two settings: ¥’ = 20 (blue) and ¥’ = 50 (red);
CCO is shown in green. For a fair comparison, in CD
the coupling is performed using all the points, hence the
complexity grows linearly with n (the complexity of CCO
grows quadratically with n). Also, note that CCO depends
on the adjacency structure (number of nearest neighbors
s) while CD does not.

6 CONCLUSIONS

We presented a framework for multi-modal data analysis
using approximate joint diagonalization of Laplacian
matrices, naturally extending the classical construction
of diffusion geometry to the multi-modal setting. This
construction allowed an almost straightforward exten-
sion of various diffusion-geometric data analysis tools
such as spectral clustering and manifold learning based
on diffusion maps.

Our starting point was the generalized Jacobi method
(JADE) for joint diagonalization of matrices developed in
the signal processing community for source separation
problems. Though conceptually easy to understand, this
method was developed for small full matrices while we
have large sparse ones. Furthermore, JADE computes
the full set of eigenvectors while most manifold analysis
applications require only a few largest or smallest eigen-
vectors. As an alternative, we showed a method working
in the subspace of the eigenvectors of the Laplacians.
It is also easily extendable to the more generic setting
of coupled diagonalization, in which only partial corre-
spondence between the different modalities is known.

Surprisingly, it appears that many prior works on
multi-modal data analysis can be considered as particu-
lar instances of our framework. In particular, previously
proposed approaches to multi-modal spectral clustering
are nearly equivalent and try to solve some version of
the joint approximate diagonalization problem. Manifold
alignment methods are also instances of the coupled di-
agonalization. We believe that the presented construction
makes the need of such a tool central enough to deserve
the interest of the entire machine learning community.
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