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Abstract—Detection and description of affine-invariant features is a cornerstone component in numerous computer vision applications.
In this note, we analyze the notion of maximally stable extremal regions (MSER) through the prism of the curvature scale space, and
conclude that in its original definition, MSER prefers regular (round) regions. Arguing that interesting features in natural images usually
have irregular shapes, we propose alternative definitions of MSER which are free of this bias, yet maintain their invariance properties.

Index Terms—MSER, feature detector, affine invariance, stable region, correspondence.
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1 INTRODUCTION

In recent years, feature descriptors extracted through
linear scale-space analysis of an image have proven to be
a powerful tool in object matching and recognition [1].
One of the most popular descriptor is the scale-invariant
feature transform (SIFT) introduced by David Lowe [2].
It first locates points of interest in a linear scale-space,
and then assigns a descriptor vector constructed as local
histograms of image gradient orientations around the
point. The descriptor itself is oriented by the dominant
gradient direction, which makes it rotation-invariant.
SIFT uses linear scale-space in order to search for feature
points that appear at multiple resolutions of the image,
which makes the method also scale-invariant.

One of the main disadvantages of SIFT is that is is not
affine-invariant (see a recent work of [3] on an affine-
invariant version of SIFT). An affine-invariant alternative
to the SIFT widely used in computer vision applica-
tions is the maximally stable extremal region (MSER) [4].
This approach extracts stable regions from the image
by considering the change in area with respect to the
change in intensity of a connected component defined
by thresholding the image at a given gray level. The
change of area, normalized by the area of the con-
nected component, is used as the stability criterion. The
area ratio is invariant to affine transformations and so
does the the extracted region after appropriate canon-
ization. 1Benchmarks comparing the MSER, SIFT, other
approaches, and affine-invariant alternatives thereof [9],
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1. See [5], [6] for a closely related approach that also allows for
the analysis of contour segments, as well as [7], [8] for an axiomatic
framework of differential affine-invariant signatures of planar shapes.

[10] show that SIFT performs well for planar objects (like
a graffiti wall) while the MSER performs better in most
scenarios involving less trivial objects.

In this paper, we relate MSER to geometric scale-space
analysis and image evolution by the level set curvature
flow. We observe that the stability criterion in the original
formulation of MSER prefers regular regions, and argu-
ing that interesting features in natural images usually
have irregular shapes, propose alternative definitions of
MSER which are free of this bias, yet maintain their
invariance properties. The rest of this paper is organized
as follows. In Section 2, we briefly overview the theory of
image representation as level sets and curve evolution. In
Section 3 we formulate the MSER algorithm and analyze
its preference for round regions. Section 4 is dedicated to
shape normalization. Section 5 defines alternatives to the
MSER stability criterion. Section 6 shows experimental
results. Finally, Section 7 concludes the paper.

2 IMAGE AS A COLLECTION OF LEVEL SETS

Let X ⊂ R2 be a domain on which a grayscale image
I : X → [0, 1] is defined. Every image can be fully
represented as a collection of its level sets. A level set
of I at some given t ∈ [0, 1] is the set {x ∈ X : I(x) = t}.
Topologically, a level set may contain zero or more
connected components of dimension zero (points) or one
(isolines).

Thinking of t as time and observing the evolution of
the level sets over time, we will see connected compo-
nents appear, split, change genus, join and disappear.
The study of the changes of topology of the level sets
with infinitesimal changes of t belongs to the domain
of Morse theory, a branch of differential topology. The
contour or component graph of I is a graph in which
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(i) a leaf vertex represents the creation or deletion of
a component; (ii) an interior vertex represents the join-
ing/splitting of two or more components; and (iii) an
edge formed by two vertices with t = t1 and t = t2

represents a component in the level sets for all values of
t1 ≤ t ≤ t2. This graph recording the topological events
in the level set evolution was shown to be a tree. Each
edge of the component tree represents the evolution of a
single connected component in some contiguous range
of values of t ∈ [t1, t2]. We will denote such components
by ∂Rt implying the entire sequence {Rt}t2t=t1 ; int(Rt)
will denote the open set in X enclosed by ∂Rt, and
Rt will denote the union of the two (the region with
its boundary). Components Rt along the edge are nested
inside each other.

2.1 Curvature flow and geometric scale space

In the SIFT method, interesting feature points are located
by looking for local maxima of the discrete image Lapla-
cian at different scales obtained by convolving the image
with Gaussians of different variances. This procedure is
known as linear scale-space analysis. While providing
SIFT with scale-invariance qualities, the linear scale-
space breaks the geometric relation between images
of the same scene captured at different view points,
in particular, it is not affine-invariant. Moreover, it is
well known that such a scale-space does not necessarily
simplify the image structure. This is especially acute
when level sets are considered, as linear scale space can
disconnect simply connected shapes [11], [12].

Better scale-invariant quantities that are simplified
with scale are provided by the curvature scale-space or
its affine variations [13], [14], [15], [16], [17], [18]. Yet,
involving a non-linear heat flow, the construction of a
geometric scale-space may seem to be more demanding
computationally. The question we try to answer in this
section is whether we can use the structure provided by
geometric scale-space without explicitly computing it, a
property that was trivially accomplished for the linear
scale-space.

In the construction of the curvature scale-space of
an image, the image level sets are propagated by their
curvature vector. Let C(s) : [0, L]→ R2 be an arclength-
parameterized contour. Then, the curvature flow for the
contour is given by

Ct(s) = Css,

where Css = κ~n is the curvature vector, normal to
the curve at C(s). The whole process can be evaluated

simultaneously for all the level sets using the remarkable
property proven by Grayson [14] that embedding is pre-
served along the curvature flow and no self-intersections
occur until the contour vanishes at a circular point. The
equation governing the image evolution is given by

It = div
(
∇I
‖∇I‖

)
‖∇I‖,

and can be easily established by the Osher-Sethian level
set formulation [16]. Another important property of this
flow is that each level set contour vanishes at a time
proportional to its area at t = 0 [15], [14].

The topology of the curvature scale-space can be again
captured entirely by a component tree, identical to the
one we defined before.

3 MAXIMALLY STABLE EXTREMAL REGIONS

Let Rt be the family of connected components represent-
ing an edge in the component tree. Matas et al. refer to
such regions as to extremal since either I|int(Rt) < I|∂Rt

or I|int(Rt) > I|∂Rt
, i.e., all the pixel values in the regions

are either strictly darker or strictly brighter than those
on the boundary, where the intensity is exactly equal to
t.

The stability of a region Rt is defined as

Ψ1(Rt) =
A(Rt)
d
dtA(Rt)

,

where A(Rt) denotes the area of Rt. A region is con-
sidered stable if its area changes only slightly with the
change of the threshold t. A region Rt is called maximally
stable if Ψ1(Rt) has a local maximum at t. Such regions
are image features detected by the MSER algorithm.

In [4], Matas et al. showed that MSER is affine-
covariant. This observation stems directly from the fact
that area ratios are preserved under affine transforma-
tions, which implies that Ψ1(Rt) is an affine-invariant
property. This, in turn, implies that for an affine trans-
formation T of the domain X , the corresponding regions
R and R′ detected in images I and I(T−1), respectively,
will be related by TR = R′.

3.1 Stability and shape factor

Let us now look closer at the stability measure Ψ1.
Observing that

dA(Rt)
dt

= lim
ε→0

1
ε

(A(Rt+ε)−A(Rt)) =
∫
∂Rt

ds

‖∇I‖
,
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we re-write Ψ1 as

Ψ1(Rt) =
A(Rt)∫
∂Rt

ds

‖∇I‖

.

Let us now apply Ψ1 to two equal-area regions, one is a
perfect circle, while the other is a more interesting less
round shape. Under the simplifying assumption that the
change of intensity along the boundaries is the same in
both regions, say ‖∇I‖ = 1, we have

Ψ1(Rt) =
A(Rt)∫
∂Rt

ds

=
A(Rt)
L(∂Rt)

,

where L(∂Rt) is the boundary length of Rt. Similar to the
shape factor 4πA

L2 which is always smaller or equal to one
with equality achieved for the circle, the ratio A

L prefers
regular shapes. In fact, Ψ1 is maximized by a large circle,
and in general, for two shapes with the same area and
same change of intensity along their boundaries, the
one with a shorter boundary would be preferred by
Ψ1. However, such shapes are not necessarily the most
interesting and descriptive features in a natural image,
in which interesting features typically have irregular
boundaries.

Based on this observation, our goal is to correct the
bias of Ψ1 towards round shapes and define an alter-
native stability measure that prefers less regular and
more interesting shapes while still enjoying the affine
invariance and stability of Ψ1.

3.2 Non-commutativity with blur

Affine covariance of maximally stable regions is the
consequence of covariance of the level sets of the image
with affine transformations of the coordinates. However,
this property holds only if the boundaries of objects in
the scene are smooth, which is violated in real-world
scenarios. Specifically, for the affine covariance of the
level sets to hold, we need the optical point spread func-
tion of the camera to be small compared to the natural
smoothness of objects in the scene. In other words, we
need to assume that the world is blurred to begin with,
and that the image formation is primarily a geometric
transformation of that blurred image of the world. A
more realistic model is to assume that blur occurs after
the geometric transformation. Figure 1 demonstrates the
two cases, where in the upper row smoothing occurs in
the imaging phase, while at the bottom row the bound-
aries are blurred to begin with and the imaging process
is modeled as an affine transformation. In other words,

real view point transformations constitute (locally) affine
transformations followed by blur in the image plane
with the point spread function of the camera, and these
two constituents do not commute.

As in most practical cases the image formation in-
volves non-negligible blur due to the optical acquisition
process, it may happen that the criterion Ψ1 is not
truly invariant to view point transformations. In fact,
a much better quantity for the stability or edginess of
a region would be the weighted gradient magnitude
along its boundary. Here weight could be the affine
arclength dv = |κ|1/3ds for an affine-invariant measure,
that explicitly yields

Ψ2(Rt) =
A(Rt)∫

∂Rt

‖IxxI2
y − 2IxIyIxy + IyyI

2
x‖1/3ds

‖∇I‖

,

or any alternative robust filter like the median could
represent the significance of the boundary sufficiently
well 2.

Fig. 1. Top row assumes affine transformation followed by
imaging blur. Bottom row, assumes affine transformation of a
given blurred object. On the right are three corresponding level
sets for both cases.

4 AFFINE-INVARIANT NORMALIZATION

In typical applications, maximally stable regions found
by MSER undergo a process of affine-invariant normal-
ization or canonization. Normalization can be though of
as a mapping N : R2 → R2 receiving a region R and
returning another region N(R) such that N(TR) = N(R)
for any affine transformation T . Canonization of a given
shape can be viewed as part of a descriptor computation
in which the goal is to compensate for arbitrary trans-
formations of the shape due to the acquisition process.

2. Note that the two basic independent affine-invariant second order
differential descriptors are J(I) = IxxI2y − 2IxIyIxy + IyyI2x , and the
determinant of the hessian H(I) = IxxIyy−I2xy [19], while the second
order approximation for the affine-invariant curvature of the level sets
is given by µ = H/J2/3 [20].
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In [6], Cao et al. argue that normalization of a planar
shape that compensates for affine transformations and
is based on second-order moments can be unstable. The
authors propose alternatives based on the detection of
flat intervals along the boundary. The next steps applied
by Cao et al. involve center of mass estimation for
the two regions created by a line parallel to the flat
boundary line that goes through the center of mass.
Parallel lines, area ratio, and center of mass are indeed
robust measures preserved by affine transformations. On
the other hand, a definition of flatness that is based on
Euclidean distance and angles is not invariant to affine
transformations. Moreover, if we limit our discussion to
the analysis of simple closed contours there is a simple
alternative for the first step propose in [6].

Experimenting with second order moments based nor-
malization [21] we did not experience the instabilities
reported by Cao et al. In fact, the moments based nor-
malization proved to be equally stable as the centers
of mass based alternative as can be seen in Figure 2.
The method we propose in this section could be used
to either initialize the Cao et al. canonization method or
as compensation for the rotation ambiguity in moments
based normalization.

Fig. 2. The original silhouettes of the Puma logo and a
boy appear at the top, and their random affine transformations
sampled to low resolution 64 × 64 patches at the second row
in black. The normalized shapes with second-order moments
appears in dark gray (bottom row) while the alternative method
proposed by Cao et al. is presented in light gray (third row).

Let us assume that the contours we would like to
normalize are interesting and therefor non-convex. In
fact, convex contours could be classified by the sim-
plest regular polygons that approximate the shape. A
rough affine-invariant canonical approximation for con-
vex shapes could be triangles, squares, and circles that
represent the rest of the regular polygons. Relying on
area ratios and centers of mass, and based on [6], we
define a robust affine-invariant method for mapping a
given contour into its canonical normalized shape. The
steps of the method are as follows:

1) Compute the convex hull of the shape.
2) Find the largest area bounded between the convex

hull and the given shape, and use the bitangent
line which is part of the convex hull touching the
largest area for the next steps (see Figure 3).

3) Next we follow the rest of the steps in [6] using
the computed bitangent as the reference axis, see
Figure 4.

The reference axis could also be used for compensating
for rotation ambiguity in the case of moments based
normalization [21]. Using moments based normalization,
first the normalization is performed, and then the above
rotation cancelation using the convex hull and maximal
bounded area is applied.

There are other options to account for rotations, like
radial Fourier transform over the shape and consider-
ation of the phase as a rotation angle. Yet, the best
computational complexity for the convex hull of a closed
contour is O(n log h) where h defines the number of
points in the convex hull (n > h), see [22], while the
Fourier transform is slightly more costly and requires
O(n log n) operations.

Fig. 3. Left to right: The shape’s boundary contour, its convex
hull, and the areas formed between the convex hull and the
shape. The largest area, A1 in this case, defines the bitangent
that is used for normalization (canonization) of the shape or for
fixing its orientation.

5 INTERESTING FEATURES

In order to better treat interesting non-convex shapes,
we propose a stability measure as an alternative to Ψ1.
Unlike the standard MSER where Ψ1 is computed on
the components from the component tree, we propose
to first normalize each component. We then compute the
inverse of the standard Euclidean shape factor

Ψ3(Rt) =
L2(N(Rt))
A(N(Rt))

,

where the operator N means that the measure is applied
to the normalized region. Such a function prefers shapes
with irregular boundaries, while being affine-invariant.



IEEE TRANS. PAMI 5

Fig. 4. Normalization steps of a given shape, left to right:
Convex hull and maximal bounded area detection, rotation of the
parallel to the bitangent through the center of mass, alignment
of the center of mass of the upper half of the shape with the x-
axis, and finally shear of the center of mass of the (new) upper
part so that the line connecting it to the center of mass aligns
with the y axis. The resulting normalized shape is at the right of
each sequence.

Finally, an affine-invariant stability measure for interest-
ing shapes could combine the above measure with Ψ1,
like

Ψ4(Rt) = Ψ1(Rt)Ψ3(Rt) =
A(Rt)L2(N(Rt))
A(N(Rt)) ddtA(Rt)

.

Since the computational complexity of region normal-
ization is proportional to the length of the boundary,
reversing MSER selection and normalization is not more
computationally expensive than first computing Ψ1 and
then doing normalization of the remaining MSERs.

6 EXPERIMENTAL RESULTS

The goal of our first experiment is the validation of the
affine-invariant level set normalization. We applied the
modified canonization based on convex hull, maximal
bounded area and centers of mass to random affine
transformations of two silhouettes collected from the
web. Figure 5 demonstrates the fact that various transfor-
mations of the same object all lead to a similar canonical
shape.

Fig. 5. In each frame a silhouette appears at the top, its random
affine transformations in the middle row and their corresponding
normalized shapes at the bottom.

The second experiment demonstrates the improved
feature matching using a modified MSER, in which
the average gradient along the contour is used as an
estimation for stability. Figure 6 shows feature matching
in an object taken from two video frames of a movie.
The MSER regions are normalized and matched based
on their canonized shapes, and for each pair the first
three matches are considered. The final selection is of
features that are supported by consistent neighboring
features that are determined by the first ten nearest
neighbors. The improvement in performances shows up
in the correspondence of features in the two frames as
can be seen in Figure 7.

Fig. 6. The top frame demonstrates matching with the classical
MSER, while the bottom frame shows the result of a modified
stability criteria.

Fig. 7. The top frame demonstrates the matching pairs ex-
tracted with the classical MSER. First row: regions found in the
first frame. Second row: the matching regions in the second
frame. Third row: normalized regions (first frame). Bottom row:
Matched normalized regions in the second frame. The order (left
to right) is according to the matching score, while the gray level
of the canonical shapes corresponds to the isometrimetric ratio.
Correct matches appear in a red box. Bottom frame repeats the
experiment with the modified stability criterion.



IEEE TRANS. PAMI 6

7 CONCLUSIONS

We stress again the amazing fact that while being only
Euclidean-invariant, the curvature scale-space structure
is captured by the level set graph which is affine- (and
projective-) invariant. This property explains the use-
fulness of the image level sets and their local density
in generating interesting features. The relation between
the level set graph, curvature flow, and invariant stable
and interesting features provides a theoretical bridge that
could be used for various image and shape analysis
applications. Finally, we revisited the assumptions of the
MSER and redefined some of the criteria that help us
extract more informative shape descriptors.
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