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Abstract. In this paper, we explore the use of the diffusion geometry
framework for the fusion of geometric and photometric information in
local heat kernel signature shape descriptors. Our construction is based
on the definition of a diffusion process on the shape manifold embedded
into a high-dimensional space where the embedding coordinates represent
the photometric information. Experimental results show that such data
fusion is useful in coping with different challenges of shape analysis where
pure geometric and pure photometric methods fail.

1 Introduction

In last decade, the amount of geometric data available in the public domain,
such as Google 3D Warehouse, has grown dramatically and created the demand
for shape search and retrieval algorithms capable of finding similar shapes in
the same way a search engine responds to text queries. However, while text
search methods are sufficiently developed to be ubiquitously used, the search
and retrieval of 3D shapes remains a challenging problem. Shape retrieval based
on text metadata, like annotations and tags added by the users, is often incapable
of providing relevance level required for a reasonable user experience.
Content-based shape retrieval using the shape itself as a query and based
on the comparison of geometric and topological properties of shapes is com-
plicated by the fact that many 3D objects manifest rich variability, and shape
retrieval must often be invariant under different classes of transformations. A
particularly challenging setting is the case of non-rigid shapes, including a wide
range of transformations such as bending and articulated motion, rotation and
translation, scaling, non-rigid deformation, and topological changes. The main
challenge in shape retrieval algorithms is computing a shape descriptor, that
would be unique for each shape, simple to compute and store, and invariant
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under different type of transformations. Shape similarity is determined by com-
paring the shape descriptors.

Broadly, shape descriptors can be divided into global and local. The former
consider global geometric or topological shape characteristics such as distance
distributions [21, 24, 19], geometric moments [14, 30], or spectra [23], whereas the
latter describe the local behavior of the shape in a small patch. Popular examples
of local descriptors include spin images [3], shape contexts [1], integral volume
descriptors [12] and radius-normal histograms [22]. Using the bag of features
paradigm common in image analysis [25, 10], a global shape descriptor counting
the occurrence of local descriptors in some vocabulary can be computed [7].

Recently, there has been an increased interest in the use of diffusion geometry
[11, 16] for constructing invariant shape descriptors. Diffusion geometry is closely
related to heat propagation properties of shapes and allows obtaining global de-
scriptors, such as distance distributions [24, 19, 8] and Laplace-Beltrami spectral
signatures [23], as well local descriptors such as heat kernel signatures [26,9, 7].
One limitation of these methods is that, so far, only geometric information has
been considered. However, the abundance of textured models in computer graph-
ics and modeling applications, as well as the advance in 3D shape acquisition [35,
36] allowing to obtain textured 3D shapes of even moving objects, bring forth
the need for descriptors also taking into consideration photometric information.
Photometric information plays an important role in a variety of shape analysis
applications, such as shape matching and correspondence [28, 33]. Considering
2D views of the 3D shape [32,20], standard feature detectors and descriptors
used in image analysis such as SIFT [18] can be employed. More recently, Za-
harescu et al. [37] proposed a geometric SIFT-like descriptor for textured shapes,
defined directly on the surface.

In this paper, we extend the diffusion geometry framework to include pho-
tometric information in addition to its geometric counterpart. The main idea is
to define a diffusion process that takes into consideration not only the geometry
but also the texture of the shape. This is achieved by considering the shape as
a manifold in a higher dimensional combined geometric-photometric embedding
space, similarly to methods in image processing applications [15,17]. As a result,
we are able to construct geometric and photometric local descriptors (color heat
kernel signatures or cHKS).

The rest of this paper is organized as follows. In Section 2, we review the
mathematical formalism of diffusion processes and their use in shape analysis. In
Section 3, we introduce our approach and in Section 4 its numerical implementa-
tion details. Section 5 presents experimental results. Finally, Section 6 concludes
the paper.

2 Background

Throughout the paper, we assume the shape to be modeled as a two-dimensional
compact Riemannian manifold X (possibly with a boundary) equipped with a
metric tensor g. Fixing a system of local coordinates on X, the latter can be
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expressed as a 2 X 2 matrix g,,, also known as the first fundamental form. The
metric tensor allows to express the length of a vector v in the tangent space
T, X at a point x as g,,v"v"”, where repeated indices u,v = 1,2 are summed
over following Einstein’s convention.

Given a smooth scalar field f : X — R on the manifold, its gradient is defined
as the vector field V f satisfying f(z+dx) = f(x)+g.(Vf(x),dz) for every point
x and every infinitesimal tangent vector dz € T, X. The metric tensor g defines
the Laplace-Beltrami operator A, that satisfies

/nghda: —/gw(Vf,Vh)da (1)

for any pair of smooth scalar fields f,h : X — R; here da denotes integration
with respect to the standard area measure on X. Such an integral definition is
usually known as the Stokes identity. The Laplace-Beltrami operator is positive
semi-definite and self-adjoint. Furthermore, it is an intrinsic property of X, i.e.,
it is expressible solely in terms of g. In the case when the metric g is Euclidean,
A, becomes the standard Laplacian.

The Laplace-Beltrami operator gives rise to the heat equation,

<Ag + ;) u=0, (2)

which describes diffusion processes and heat propagation on the manifold (note
that we use a positive-semidefinite Laplace-Beltrami operator, hence the plus
sign in the heat equation). Here, u(x,t) denotes the distribution of heat at time
t at point x. The initial condition to the equation is some heat distribution
u(z,0), and if the manifold has a boundary, appropriate boundary conditions
(e.g. Neumann or Dirichlet) must be specified. The solution of (2) with a point
initial heat distribution ug (z) = 0 (z, 2’), where 6(2’,2") = 1 o.w. 0, is called the
heat kernel and denoted here by Ky(z,x’). Using a signal processing analogy, K
can be thought of as the “impulse response” of the heat equation.
By the spectral decomposition theorem, the heat kernel can be represented
as [13]
Kt({E,ZL'/) = Ze*/\itqbi(x)qbi(x/), (3)

i>0

where 0 = \p < A1 < ... are the eigenvalues and ¢, ¢1, ... the corresponding
eigenfunctions of the Laplace-Beltrami operator (i.e., solutions to Ag¢p; = A;¢;).
We will collectively refer to quantities expressed in terms of the heat kernel as to
diffusion geometry. Since the Laplace-Beltrami operator is intrinsic, the diffusion
geometry it induces is invariant under isometric deformations of X (incongruent
embeddings of g into R3).

Sun et al. [26] proposed using the heat propagation properties as a local
descriptor of the manifold. The diagonal of the heat kernel, K;(z,z’), referred to
as the heat kernel signature (HKS), captures the local properties of X at point
x and scale t. The descriptor is computed at each point as a vector of the values
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p(z) = (K¢ (z,2),..., K, (x,2)), where t1,...,t, are some time values. Such a
descriptor is deformation-invariant, easy to compute, and provably informative
[26].

Ovsjanikov et al. [7] employed the HKS local descriptor for large-scale shape
retrieval using the bags of features paradigm [25]. In this approach, the shape
is considered as a collection of “geometric words” from a fixed “vocabulary”
and is described by the distribution of such words, also referred to as a bag of
features or BoF. The vocabulary is constructed offline by clustering the HKS
descriptor space. Then, for each point on the shape, the HKS is replaced by
the nearest vocabulary word by means of vector quantization. Counting the
frequency of each word, a BoF is constructed. The similarity of two shapes
X and Y is then computed as the distance between the corresponding BoF's,
d(X,Y) = |BoFx — BoFy].

3 Photometric heat kernel signatures

Let us further assume that the Riemannian manifold X is a submanifold of some
manifold £ (dim(€) = m > 2) with the Riemannian metric tensor h, embedded
by means of a diffeomorphism £ : X — £(X) C £. A Riemannian metric tensor on
X induced by the embedding is the pullback metric (§*h)(r, s) = h(d&(r), d&(s))
for r,s € T, X, where d€ : T; X — T¢(;)€ is the differential of £. In coordinate
notation, the pullback metric is expressed as (§*h),, = h;;0,£°0,&7, where the
indices i, = 1,...,m denote the embedding coordinates.

Here, we use the structure of £ to model joint geometric and photometric in-
formation. Such an approach has been successfully used in image processing [15].
When considering shapes as geometric object only, we define £ = R? and h to be
the Euclidean metric. In this case, £ acts as a parametrization of X and the pull-
back metric becomes simply (£*h),,, = 0,610, +...40,£30,&3 = (0,,0,)ps.
In the case considered in this paper, the shape is endowed with photometric infor-
mation given in the form of a field o : X — C, where C denotes some colorspace
(e.g., RGB or Lab). This photometric information can be modeled by defining
& = R3 x C and an embedding £ = (£,,&,). The embedding coordinates corre-
sponding to geometric information §; = (€1,...,€3) are as previously and the
embedding coordinate corresponding to photometric information are given by
& =(&4...,€5 =n(at,...,a?), where n > 0 is a scaling constant. Simplifying
further, we assume C to have a Euclidean structure (for example, the Lab col-
orspace has a natural Euclidean metric). The metric in this case boils down to
(&) = (04€g, 0y rs + M2 (0,&p, 0uEp)re, Which hereinafter we shall denote
by G-t

! The joint metric tensor § has inherent ambiguities. The diffusion geometry induced
by § is invariant the joint isometry group Iso; = Iso((&;h)uw +n°(E5h) ). Ideally, we
would like Isoy = Iso, = Iso((£5h) ) X Isop, = Iso((€5h) ) to hold. In practice, Iso,
is bigger: while every composition of a geometric isometry with a photometric isome-
try is a joint isometry, there exist some joint isometries which cannot be obtained as
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Fig. 1. Textured shape (left); values of the heat kernel (x placed on the foot, t =
1024) arising from regular purely geometric (middle) and mixed photometric-geometric
(right) diffusion process.

The Laplace-Beltrami operator A, associated with such a metric gives rise to
diffusion geometry that combines photometric and geometric information (Fig-
ure 1). We define the photometric or color heat kernel signature (cHKS) as the
diagonal of the heat kernel associated with the joint geometric-photometric dif-
fusion induced by Aj;. The cHKS fuses local geometric and photometric infor-
mation of the shape.

4 Numerical implementation

Let {z1,...,2x} C X denote the discrete samples of the shape, and £(z1), ..., &(xN)
be the corresponding embedding coordinates (three-dimensional in the case we
consider only geometry, or six-dimensional in the case of geometry-photometry
fusion). We further assume to be given a triangulation (simplicial complex), con-
sisting of edges (i,7) and faces (i, j, k) where each (4,7), (4,k), and (i,k) is an
edge (here i,5,k=1,...,N).

A function f on the discretized manifold is represented as an N-dimensional
vector (f(x1),..., f(zn)). The discrete Laplace-Beltrami operator can be writ-
ten in the generic form

A = = 3 wig(f(:) — Fz;)), (4)

@
b jeEN;

a composition of geometric and photometric isometries. Experimental results show
that no realistic geometric and photometric transformations lie in Isog \ (Isog x Isop).
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where w;; are weights, a; are normalization coefficients, and N; denotes a lo-
cal neighborhood of point ¢. Different discretizations of the Laplace-Beltrami
operator can be cast into this form by appropriate definition of the above con-
stants. For shapes represented as triangular meshes, a widely-used method is the
cotangent scheme, which preserves many important properties of the continuous
Laplace-Beltrami operator, such as positive semi-definiteness, symmetry, and
locality [31]. Yet, in general, the cotangent scheme does not converge to the con-
tinuous Laplace-Beltrami operator, in the sense that the solution of the discrete
eigenproblem does not converge to the continuous one (pointwise convergence
exists if the triangulation and sampling satisfy certain conditions [34]).

Belkin et al. [5] proposed a discretization which is convergent without the
restrictions on “good” triangulation required by the cotangent scheme. In this

1

scheme, N; is chosen to be the entire sampling {z1,...,zn}, a; = Tt and

wij = Sje’||5(”“)’5(wj)”2/4”, where p is a parameter, S; denotes area of all tri-
angles sharing the vertex j. In the case of a Euclidean colorspace, w;; can be
written explicitly as

€9 (i) = Eg(@I® _ lIgp (i) —£p(xj)||2} (5)

i =S _ -
Wi Jexp{ 1 1o

where o = p/n?, which resembles the weights used in the bilateral filter [29]. Ex-
perimental results also show that this operator produces accurate approximation
of the Laplace-Beltrami operator under various conditions, such as noisy data
input and different sampling [27, 5].

In matrix notation, equation (4) can be written as Af = AW £, where
A = diag(a;) and W = diag (Zl# wu) — (wy;). The eigenvalue problem A® =
A® is equivalent to the generalized symmetric eigenvalue problem W = AAP,
where A = diag(Ag, ..., Ak) is the diagonal matrix of the first K eigenvalues,
and ¢ = (¢o,...,¢K) is the matrix of the eigenvectors stacked as columns.
Since typically W is sparse, this problem can be efficiently solved numerically.
Heat kernels can be approximated by taking the first largest eigenvalues and the
corresponding eigenfunctions in (3). Since the coefficients in the expansion of h;
decay as O(e™ "), typically a few eigenvalues (K in the range of 10 to 100) are
required.

5 Results

In order to evaluate the proposed method, we used the SHREC 2010 robust
large-scale shape retrieval benchmark methodology [6]. The query set consisted
of 270 real-world human shapes from 5 classes acquired by a 3D scanner with
real geometric transformations and simulated photometric transformations of
different types and strengths, totalling in 54 instances per shape (Figure 2).
Geometric transformations were divided into isometry+topology (real articula-
tions and topological changes due to acquisition imperfections), and partiality
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(occlusions and addition of clutter such as the red ball in Figure 2). Photo-
metric transformations included contrast (increase and decrease by scaling of
the L channel), brightness (brighten and darken by shift of the L channel), hue
(shift in the a channel), saturation (saturation and desaturation by scaling of
the a,b channels), and color noise (additive Gaussian noise in all channels).
Mized transformations included isometry+topology transformations in combi-
nation with two randomly selected photometric transformations. In each class,
the transformation appeared in five different versions numbered 1-5 correspond-
ing to the transformation strength levels. One shape of each of the five classes
was added to the queried corpus in addition to other 75 shapes used as clutter
(Figure 3).

Retrieval was performed by matching 270 transformed queries to the 75
null shapes. Each query had exactly one correct corresponding null shape in
the dataset. Performance was evaluated using the precision-recall character-
istic. Precision P(r) is defined as the percentage of relevant shapes in the
first r top-ranked retrieved shapes. Mean average precision (mAP), defined as
mAP =3 P(r)-rel(r), where rel(r) is the relevance of a given rank, was used
as a single measure of performance. Intuitively, mAP is interpreted as the area
below the precision-recall curve. Ideal retrieval performance results in first rele-
vant match with mAP=100%. Performance results were broken down according
to transformation class and strength.

121111
11443

Fig. 2. Examples of geometric and photometric shape transformations used as queries
(shown at strength 5). First row, left to right: null, isometry+topology, partiality, two
brightness transformations (brighten and darken), two contrast transformations (in-
crease and decrease contrast). Second row, left to right: two saturation transformations
(saturate and desaturate), hue, color noise, mixed.
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Fig. 3. Null shapes in the dataset (shown at arbitrary scale for visualization purposes).

In additional to the proposed approach, we compared purely geometric,
purely photometric, and joint photometric-geometric descriptors. As a purely
geometric descriptor, we used bags of features based on HKS according to [7];
purely photometric shape descriptor was a color histogram. As joint photometric-
geometric descriptors, we used bags of features computed with the MeshHOG
[37] and the proposed color HKS (cHKS).

For the computation of the bag of features descriptors, we used the Shape
Google framework with most of the settings as proposed in [7]. More specifically,
HKS were computed at six scales (¢ = 1024, 1351.2,1782.9,2352.5, and 4096).
Soft vector quantization was applied with variance taken as twice the median of
all distances between cluster centers. Approximate nearest neighbor method [2]
was used for vector quantization. The Laplace-Beltrami operator discretization
was computed using the Mesh-Laplace scheme [4] with scale parameter p = 2.
Heat kernels were approximated using the first 200 eigenpairs of the discrete
Laplacian. The MeshHOG descriptor was computed at prominent feature points
(typically 100-2000 per shape), detected using the MeshDOG detector [37]. The
vocabulary size in all the cases was set to 48.

In cHKS, in order to avoid the choice of an arbitrary value 7, we used a
set of three different weights (n = 0,0.05,0.1) to compute the cHKS and the
corresponding BoFs. The distance between two shapes was computed as the
sum of the distances between the corresponding BoF's for each 7, weighted by 7,
and 1 in case of n = 0, d(X,Y) = |BoF% — BoFy||3 + >, MlIBoF% — BoFY.||3.

Tables 1-4 summarize the results of our experiments. Geometry only de-
scriptor (HKS) [7] is invariant to photometric transformations, but is somewhat
sensitive to topological noise and missing parts (Table 1). On the other hand, the
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Strength
Transform. 1 <2 <3 <4 <5
Isom+Topo 100.00 100.00 96.67 95.00 90.00
Partial 66.67 60.42 63.89 63.28 63.63
Contrast 100.00 100.00 100.00 100.00 100.00
Brightness 100.00 100.00 100.00 100.00 100.00

Hue 100.00 100.00 100.00 100.00 100.00
Saturation  100.00 100.00 100.00 100.00 100.00
Noise 100.00 100.00 100.00 100.00 100.00
Mized 90.00 95.00 93.33 95.00 96.00

Table 1. Performance (mAP in %) of ShapeGoogle using BoF's with HKS descriptors.

Strength
Transform. 1 <2 <3 <4 <5
Isom~+Topo 100.00 100.00 100.00 100.00 100.00
Partial 100.00 100.00 100.00 100.00 100.00
Contrast 100.00 90.83 80.30 71.88 63.95
Brightness  88.33 80.56 65.56 53.21 44.81

Hue 11.35 8.38 6.81 6.05 5.49
Saturation  17.47 14.57 12.18 10.67 9.74
Noise 100.00 100.00 93.33 85.00 74.70
Mixed 28.07 25.99 20.31 17.62 15.38

Table 2. Performance (mAP in %) of color histograms.

color-only descriptor works well only for geometric transformations that do not
change the shape color. Photometric transformations, however, make such a de-
scriptor almost useless (Table 2). MeshHOG is almost invariant to photometric
transformations being based on texture gradients, but is sensitive to color noise
(Table 3). The fusion of the geometric and photometric data using our approach
(Table 4) achieves nearly perfect retrieval for mixed and photometric transfor-
mations and outperforms other approaches. Figure 4 visualizes a few examples
of the retrieved shapes ordered by relevance, which is inversely proportional to
the distance from the query shape.

6 Conclusions

In this paper, we explored a way to fuse geometric and photometric information
in the construction of shape descriptors. Our approach is based on heat propa-
gation on a manifold embedded into a combined geometry-color space. Such dif-
fusion processes capture both geometric and photometric information and give
rise to local and global diffusion geometry (heat kernels and diffusion distances),
which can be used as informative shape descriptors. We showed experimentally
that the proposed descriptors outperform other geometry-only and photometry-
only descriptors, as well as state-of-the-art joint geometric-photometric descrip-
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Strength
Transform. 1 <2 <3 <4 <5
Isom+Topo 100.00 95.00 96.67 94.17 95.33
Partial 75.00 61.15 69.93 68.28 68.79
Contrast 100.00 100.00 100.00 98.33 94.17
Brightness 100.00 100.00 100.00 100.00 99.00

Hue 100.00 100.00 100.00 100.00 100.00
Saturation  100.00 100.00 100.00 98.75 99.00
Noise 100.00 100.00 88.89 83.33 78.33
Mized 100.00 100.00 100.00 93.33 83.40

Table 3. Performance (mAP in %) of BoFs using MeshHOG descriptors.

Strength
Transform. 1 <2 <3 <4 <5
Isom+Topo 100.00 100.00 96.67 97.50 94.00
Partial 68.75 68.13 69.03 67.40 67.13
Contrast 100.00 100.00 100.00 100.00 100.00
Brightness  100.00 100.00 100.00 100.00 100.00

Hue 100.00 100.00 100.00 100.00 100.00
Saturation  100.00 100.00 100.00 100.00 100.00
Noise 100.00 100.00 100.00 100.00 100.00
Mized 100.00 100.00 96.67 97.50 98.00

Table 4. Performance (mAP in %) of ShapeGoogle using w-multi-scale BoFs with
cHKS descriptors.

tors. In the future, it would be important to formally characterize the isometry
group induced by the joint metric in order to understand the invariant proper-
ties of the proposed diffusion geometry, and possibly design application-specific
invariant descriptors.
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