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Abstract

We present a method for supervised learning of shape de-
scriptors for shape retrieval applications. Many content-
based shape retrieval approaches follow the bag-of-
features (BoF) paradigm commonly used in text and im-
age retrieval by �rst computing local shape descriptors,
and then representing them in a `geometric dictionary'
using vector quantization. A major drawback of such ap-
proaches is that the dictionary is constructed in an un-
supervised manner using clustering, unaware of the last
stage of the process (pooling of the local descriptors into
a BoF, and comparison of the latter using some metric).
In this paper, we replace the clustering with dictionary
learning, where every atom acts as a feature, followed by
sparse coding and pooling to get the �nal BoF descriptor.
Both the dictionary and the sparse codes can be learned
in the supervised regime via bi-level optimization using a
task-speci�c objective that promotes invariance desired
in the speci�c application. We show signi�cant perfor-
mance improvement on several standard shape retrieval
benchmarks.

1 Introduction

The recent advance of 3D acquisition and printing tech-
nology has been an important driver to the growth of
large databases of 3D models, bringing with it an in-
creased interest in e�cient methods for shape retrieval
[OLGM11,MWZ∗13]. Shape retrieval if probably a �eld
where the proverbial `one picture is worth a thousand
words' is very true: while it is very hard to provide a
textual description of a geometric shape, it is easy to
provide an example of a similar shape. Therefore, sig-
ni�cant research of shape retrieval has been focusing on
content-based approaches, where the query is a shape,
and the search algorithm tries to �nd similar shapes to
the query.
Shape retrieval methods rely on some shape represen-

tation (signature or descriptor) able to capture the most
distinctive shape properties for retrieval purposes, while

being insensitive to `noise' (in the broad sense, which
can include e.g. inelastic deformation, acquisition arti-
facts, etc). Then, the similarity between two shapes is
determined by the similarity between their respective de-
scriptors. Methods like [ASYS10, LN08, LWW∗10] that
further optimize this similarity measure for retrieval are
beyond the scope of this paper.

Related works Shape descriptors are a popular and
important topic of research in the geometry community,
with numerous e�cient methods (see [Let al.13] for a re-
cent survey). In general, descriptors can be categorized
as global or local. Global descriptors characterize the
whole 3D model [FKMS05, GLWT13], while local ones
refer to object parts like points or regions [SOG09,BK10].
Some methods build the signature directly over local fea-
tures, keeping some relative geometric data. One re-
cent examples of such an approach is [HSG13], which se-
lects discriminative volumetric features over pre-aligned
shapes.

Typically, a global shape descriptor can be constructed
in a bottom-up manner, by aggregating local descrip-
tors. A standard way of doing it is the bag-of-features

(BoF) paradigm, inspired by bag-of-words methods in
text retrieval where text documents are represented by
the frequency of appearance of single words from a �xed
dictionary. This method was successfully applied to im-
ages and video [SZ03, CDF∗04] and, more recently, to
3D shape description [BBGO11, TCF10, DK12, Lav12,
LGSX13]. The geometric equivalent of `words' are local
feature descriptors, which are quantized in a representa-
tive collection of descriptors (`geometric dictionary') to
obtain the `bag-of-geometric words'. Several approaches
use point descriptors [DK12, BBGO11, Lav12], regions
[TCF10], or partial views [LGSX13]. Moreover, di�erent
variants of the original BoF paradigm have appeared to
exploit hierarchical structures of the shape like pyramid
matching [GD05], spatial relationships [DK12,BBGO11,
Lav12], or a combination of the two, usually known as
a spatial pyramid [LH13a, LSGFRC∗13, LSP06]. Other
methods exploit further text-inspired approaches by
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de�ning relations between `geometric words'. For in-
stance, in [BNJ03,Hof01,BBGO11] the concept of visual
topic as `words' co-occurrence is introduced. In [JP11],
topological relations between `words' are used by im-
posing a grid structure for the involved topics, the so
called counting grid. Such approaches demonstrated
successfully results in both 2D and 3D object match-
ing [Hof01,LZQ06,JP11].

In all aforementioned methods, feature quantization is
performed by an unsupervised clustering procedure us-
ing standard k-means algorithms [DHS01], after which
the cluster centroids are retained as the `words' of the
dictionary. This procedure is completely agnostic to the
pooling into a histogram that is subsequently applied to
the quantized descriptors (Figure 1, left). The clustering,
and therefore the dictionary construction, is performed
without using information about the shape class labels.
Typically, for classi�cation purposes the discriminative
process is introduced at a later stage by a discriminative
classi�er, such as support vector machine (SVM) [Vap98]
or similarity-sensitive hashing [BBGO11].

In this paper, we propose a new supervised BoF frame-
work with the discriminative training introduced already
at the dictionary construction step. To this end, a sparse
coding approach is exploited as an alternative to the
standard vector quantization strategy. Sparse coding is
a generative approach representing a �signal� as a linear
combination of prede�ned atoms of a dictionary. Sparse
coding methods have been used in discriminative tasks
[MBP∗08,BC13,HFL12] using a reconstuctive approach,
where one �rst trains a dictionary per class, and then
the representation of an object is attempted in each of
the dictionaries, and the class label is assigned according
to the dictionary in which the smallest representation
error is obtained [BC13]. Alternatively, residual errors
from all the dictionaries can be collected into a global de-
scriptor that can be subsequently used for discriminative
classi�cation [SH06]. In both cases, the dictionaries are
constructed in an unsupervised data-driven fashion by
minimizing the representation error on the training data.
Therefore, dictionary learning can simply be viewed as
an extension of the k-means clustering [AEB06].

In order to introduce discriminative learning into
sparse coding, a supervised dictionary learning proce-
dure was proposed in [MBP∗08, WYNH13]. The au-
thors trained class-speci�c dictionaries with the objective
to minimize the representation error for a given class,
while maximizing it for the rest of the classes. Simi-
lar ideas were used by [LR09] to construct class-speci�c
dictionaries for vector quantization-based representation.
Class labels are assigned, as before, based on the small-
est representation error. While shape retrieval (and any
content-based retrieval in general) can in principle be
viewed as binary classi�cation of pairs of shapes into pos-
itives (similar) and negatives (dissimilar), in contrast to
standard classi�cation problems, the descriptors have to

be computed ahead of time for each of the shapes indi-
vidually. This makes impossible to use of the residual
error as a means to produce class labels.

Main contributions. The main contribution of the
present paper is a task-speci�c dictionary learning ap-
proach tailored for retrieval problems. We follow the
spirit of [MBP12] learning the dictionary that explicitly
enforces a margin separating the distances between the
bag-of-feature descriptors computed on knowingly posi-
tive and negative training pairs of shapes. In contrast
to standard unsupervised dictionary learning aiming at
minimizing the reconstruction error, we optimize a task-
speci�c objective that takes into account the encoding
of the local geometry descriptors, their pooling into a
global shape descriptor, and the comparison of the latter
descriptor using some standard metric. The proposed ap-
proach can also be interpreted as supervised metric learn-
ing, with two key advantages. First, unlike the majority
of metric learning approaches that use a linear transfor-
mation of the data, ours is non-linear, allowing to learn
more complicated metrics. Second, unlike most existing
nonlinear metric learning techniques, our approach does
not require any out-of-sample extension procedures.
We show experimentally that the supervised construc-

tion of shape descriptors can (sometimes, signi�cantly)
increase the performance of popular shape retrieval ap-
proaches.

2 Background

We model the shape as a two-dimensional manifold S
sampled at n points s1, . . . , sn and represented as a tri-
angular mesh. We denote the Laplace-Beltrami operator
of S by ∆S , and discretize it using the cotangent for-
mula [PP93]. The eigenfunctions and the eigenvalues of
the Laplace-Beltrami operator ∆Sφl = λlφl are denoted
by {φl, λl}l≥1. The heat kernel associated with ∆S is
given by

ht(si, sj) =
∑
l≥1

e−λltφl(si)φl(sj). (1)

2.1 Local descriptors

Local descriptors try to represent the geometric struc-
ture of the shape in a small neighborhood of a point.
In some cases, feature description is preceded by fea-
ture detection, which subsamples the surface at a re-
peatably detectable subset of points; in the following,
we assume w.l.o.g. that the descriptor is dense, and each
point si is associated with a q-dimensional local descrip-
tor x(si) = (x1(si), . . . , xq(si))

>. There exists a plethora
of methods for local shape description; we outline below
two popular spectral descriptors that are later employed
in our experiments.
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HKS. Ovsjanikov et al. [SOG09] used the diagonal of
the heat kernel taken at q log-sampled time values t = ατ

as a local intrinsic feature descriptor referred to as the
heat kernel signature (HKS)

x(si) = (hατ1 (si, si), . . . , hατq (si, si))
>. (2)

Note that HKS is not invariant to shape scaling trans-
formations.

SI-HKS. Bronstein and Kokkinos [BK10] developed a
scale-invariant version of the HKS by �rst constructing
a scale-covariant heat kernel

h̄τ (si, si) =
−
∑
l≥1 λlα

τ logαe−λlα
τ

φ2
l (si)∑

l≥1 e
−λlατφ2

l (si)
(3)

that undergoes shift in τ by 2 logα c as a result of shape
scaling by a factor of c. In the Fourier domain, this shift
results in a complex phase H̄(ω)e−iω2 logα c, where H̄(ω)
denotes the Fourier transform of h̄τ w.r.t. τ . Finally, the
scale-invariant HKS (SI-HKS) descriptor is constructed
by taking the absolute value of H(ω) (thus undoing the
phase) and then sampling |H(ω)| at q frequencies,

x(si) = (|H(ω1)|, . . . , |H(ωq)|)>. (4)

2.2 Bag-of-features

Given a set of local q-dimensional descriptors computed
w.l.o.g. at all the n points of the shape, we represent
them as a q × n matrix

X = (x1, . . . ,xn) = (x(s1), . . . ,x(sn)).

A bag-of-features is a global shape descriptor constructed
by replacing the local descriptors with closest entries in a
geometric dictionary and then computing the frequency
of appearance of these geometric words, as shown in Fig-
ure 1 (top).

Geometric dictionary is a q × v matrix D =
(d1, . . . ,dv) whose columns are `representative' descrip-
tors referred to as geometric words or atoms. The geo-
metric dictionary is constructed o�ine using a large col-
lection of shapes, by clustering the respective descriptors
(points in q-dimensional descriptor space) into v Voronoi
regions using, e.g., the k-means algorithm.

Quantization. Given a dictionary D, each local de-
scriptor x is replaced by the closest entry

i∗ = arg min
i=1,...,v

‖x− di‖2

in the geometric dictionary, which can be represented
as the v-dimensional code vector z∗ containing one at
the i∗-th position and zeros elsewhere. This process is

Sparse
coding

Sum
pooling

Local
descriptors

optimal
dictionary

BoF

Input
shape

Bi-level
optimization

Vector
quantization

Sum
pooling

Fixed
dictionary

Local
descriptors

BoF
Input
shape

S X Z∗ h

D

S X Z∗ h

D

Figure 1: Top: a �ow diagram of a traditional BoF framework
using VQ in a �xed dictionary. Bottom: �ow diagram of the
proposed framework. VQ is replaced by sparse coding, and the
dictionary is learned by a bi-level optimization scheme that tries
to maximize the discriminativity of the resulting BoFs on a train-
ing set.

known as vector quantization (VQ) and can be posed as
the problem of constrained sparse coding

Z∗(X,D) = arg min
Z∈{0,1}v×n

‖X−DZ‖F s.t. Z>1 = 1,(5)

in which the codes are binary and are allowed to have
only one non-zero element. The output of VQ is a v × n
matrix Z∗ containing the v-dimensional code for each
shape point.

Pooling. Finally, the codes are pooled into a sin-
gle v-dimensional bag-of-features vector h(X,D) =
Z∗(X,D)p, where, in the simplest case, p = 1

n1 (mean
pooling). In this case, h can be regarded as the frequency
of appearance of di�erent geometric words on the shape.
More accurately, the pooling should account for possible
non-uniform sampling, weighting each point by its area
element ai, p = (a1, . . . , an)>/

∑n
i=1 ai. Finally, more

elaborate weighting can also account for the overall fre-
quency of the words, downweighing common words (a
strategy referred to as term frequency-inverse document
frequency, or tf-idf [SZ03]).

The main drawback of the standard BoF construction
outlined above is that all the stages are performed inde-
pendently. In particular, the dictionary construction is
unaware of the following quantization and pooling stages.
As a result, even though the local descriptors may show
good invariance under the desired class of transforma-
tions, the �nal BoFs may di�er signi�cantly (consider
a pathological case where the descriptors are close the
boundaries of the Voronoi cells in the descriptor space
and, due to noise and numerical inaccuracies, are quan-
tized to very di�erent code vectors).
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Figure 2: Visualization of Z∗ based on unsupervised dictionary
learning. Each column represents a di�erent dimension (atom)
of Z∗, and each row includes a di�erent shape from the synthetic
part of SHREC'14 data-set [P∗14]. The top two rows are ap-
proximate isometric deformations of the same shape, while the
bottom row is a di�erent shape. The values of Z∗ are color-
mapped from zero (white) to high values (red). Note that the
two leftmost atoms capture the speci�c pose of the shape rather
than begin isometry agnostic. This e�ect is remedied when su-
pervision is introduced (see Figure 3).

3 Learning BoFs

The key idea of this paper is to revisit the aforementioned
BoF construction procedure, performing it in a super-
vised manner. First, we replace the VQ stage with sparse
coding. Second, the unsupervised dictionary learning is
replaced with supervised learning maximizing the end-
to-end retrieval performance. The �ow of the proposed
method is depicted in Figure 1 (bottom).

Sparse coding. Given an overcomplete q × v dictio-
nary D (v > q), the VQ procedure (5) can be replaced
by solving the standard synthesis pursuit problem1

Z∗(X,D) = arg min
Z

1

2
‖X−DZ‖2F + λ‖Z‖1 +

λ2

2
‖Z‖2F,(6)

producing for each q-dimensional descriptor vector xi a
v-dimensional sparse code z∗i . Note that, unlike VQ, now
each column of Z∗(X) = (z∗(x1), . . . , z∗(xn)) contains a
few non-zero coe�cients with arbitrary magnitudes.

Unsupervised dictionary learning. Since the
sparse codes Z∗ depend on the dictionary D, one may

1Note that we use a slightly modi�ed version of the classical

pursuit problem, for the following reason: the addition of the λ2-

term makes the problem strictly convex, meaning that it has a

unique minimizer. Therefore, Z∗(X) de�nes a bijection from the

space of descriptors to the space of their sparse codes. In practice,

λ2 can assume vanishingly small values.

Figure 3: The same three shape presented in Figure 2, this
time using supervised learning. Note that each atom has some
discriminative power.

add the dictionary as an optimization variable to (6),
resulting in the non-convex problem [AEB06,EAHH99]

Z∗(X) = arg min
Z,D

1

2
‖X−DZ‖2F + λ‖Z‖1 +

λ2

2
‖Z‖2F,(7)

which can be interpreted as a matrix factorization prob-
lem, in which X is approximated by the product of the
left factor D and the sparse right factor Z. Note that
such dictionary learning (DL) is unsupervised (the opti-
mal dictionary tries to minimize the reconstruction er-
ror), and, thus, is again agnostic to the subsequent pool-
ing of the code vectors and the use of the resulting bags
of features in classi�cation or retrieval tasks. An exam-
ple of sparse coding based on unsupervised DL can be
seen in Figure 2.

Bi-level supervised dictionary leaning. Let S and
S+ be two shapes from the same class, possibly a�ected
by some transformation, and S− be a shape from a dif-
ferent class (for example, S is a human, S+ a non-rigid
deformation thereof, and S− is a dog; see examples shown
in Figure 5). We refer to the pair S, S+ as positives and
to S, S− as negatives, and denote the corresponding de-
scriptor matrices of sizes q × n, q × n± by X and X±,
respectively.

Ideally, we would like the BoFs of the positives to be
similar and those of the negatives to be dissimilar, i.e.,
make ‖h(X)− h(X+)‖ as small as possible, while keep-
ing ‖h(X) − h(X−)‖ as large as possible. This can be
achieved by minimizing the loss

L =
∑

X,X+,X−∈T

`(X,X+,X−) (8)

over all the triplets X,X+,X− in a given training set T ,
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where ` = α`+ + (1− α)`− with

`+(X,X+) = ‖h(X)− h(X+)‖1,
`−(X,X+,X−) = max{µ, ‖h(X)− h(X+)‖1

−‖h(X)− h(X−)‖1}.

The term `−, known as the hinge loss, tries to achieve a
separation by at least µ between the dissimilarity of the
positive and the negative pair [WS09]. The parameter
α ≥ 0 sets the tradeo� between the two losses, allowing
to control the tradeo� between the false positive and the
false negative rates.
Note that in the above expressions, the BoFs h = Z∗p

depend on the codes Z∗, which in turn depend on the
dictionary D. Therefore, supervised dictionary learning
results in a bi-level minimization problem [CMS07]

min
D

∑
X,X+,X−∈T

`(Z∗(X,D),Z∗(X+,D),Z∗(X−,D)), (9)

which depends on the minimizer of (6). The solution
of problem (9) produces a task-speci�c dictionary that
optimally (in the sense of the loss `) separates between
the BoFs of positive and negative pairs. An example
of sparse-coding based on supervised DL can be seen in
Figure 3.
An example of all the stages of the BoF construction

is shown in Figure 4.

4 Numerical optimization

In order to solve problem (9) we need to compute the
gradients of the loss L with respect to the dictionary D.
Since L consists of a sum of losses `(X,X+,X−) given for
a triplet X,X+,X−, we henceforth consider the gradient
of an individual loss `. It is well-established in [MBP12]
that the map Z∗(X,D) is almost everywhere di�eren-
tiable with respect to D. Denoting by Λ the active set of
Z∗ = Z∗(X,D) (i.e., the set of indices at which it attains
non-zero values), we de�ne

βΛ = (D>ΛDΛ + λ2IΛ)−1 (∇Z`)Λ , (10)

where

∇Z` = α∇Z‖Z− Z+‖1+

(1− α)∇Z max{µ, ‖Z− Z+‖1 − ‖Z− Z−‖1}(11)

is the gradient of the loss function with respect to Z. The
elements of β outside Λ are set to zero. Similarly, one
can construct β± for Z∗± = Z∗(X±,D), with

∇Z−` = (1− α)∇Z− max{µ, ‖Z− Z+‖1 − ‖Z− Z−‖1}
∇Z+` = α∇Z+‖Z− Z+‖1 +

(1− α)∇Z+ max{µ, ‖Z− Z+‖1 − ‖Z− Z−‖1}
(12)

replacing ∇Z` in (10), and the active set Λ replaced by
the corresponding actives sets of Z∗±.
The gradient of ` with respect to D can be expressed

as

∇D` = (X−DZ∗)β> + (X−DZ∗+)β>+ + (X−DZ∗−)β>−

−D
(
βZ∗> + β+Z

∗>
+ + β−Z

∗>
−
)

(13)

(for derivation details, the reader is referred to [MBP12]).
We perform the minimization of the bi-level prob-

lem (9) using stochastic gradient descent as done in
[MBP12], which at every iteration approximates the gra-
dient of the loss

∇DL =
∑

X,X+,X−∈T

∇D`(X,X+,X−) (14)

by randomly drawing a batch of a few triplets (in the
extreme case, only a single one) from the training set T .
As the initialD, we used the solution of the unsupervised
dictionary learning problem (7).

5 Results

In this section, we evaluate the proposed sparse coding
with supervised dictionary learning method on several
standard shape retrieval benchmarks. Our code was im-
plemented in MATLAB and is available from our SVN
server 2. Sparse coding and unsupervised dictionary
learning was done using the SPAMS toolbox [MBPS09].
The dictionary size v and the value of λ were found em-
pirically.
Retrieval performance was evaluated using precision

(the fraction of retrieved shapes that match the query
class) and recall (the fraction of shapes from the query
class that is retrieved). In addition, we used themean av-

erage precision (mAP) as a performance criterion. Eval-
uation was performed on datasets from the Shape Re-
trieval Contest (SHREC).

SHREC'10 ShapeGoogle [BBGO11] dataset con-
sisted of 1184 synthetic shapes, out of which 715 shapes
were obtained from 13 shape classes with simulated
transformation (55 per shape) used as queries, and 456
unrelated distractor shapes, treated as negatives (see ex-
amples in Figure 5, top). We used HKS [SOG09] as the
local descriptor of dimension q = 31, with the same pa-
rameters as in [BBGO11]. In order to make the dataset
more challenging, we re-scaled all the shapes to have the
same size, and removed the `don't-care' ground truth la-
bels used in the original benchmark (e.g., male and fe-
male shapes were considered the same class). For train-
ing, we took two shapes from each of the 13 shape classes
(total 26 shapes), using pairs of shapes from the same

2https://vista.eng.tau.ac.il:8443/svn/main/pub/

SupervisedBoF, username �guest�, blank password
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Sparse coding+Unsupervised DL

Sparse coding+Supervised DL (proposed)z∗(xi) z∗(x+
i ) z∗(x−

i )

xi x+
i x−

i

6.26

3.53

0.98

Bags of features h = Z∗p

Figure 4: Example of BoF construction. Green and blue are positives (two near-isometric deformations of the same person), while
red is a negative (a di�erent person; note that the di�erence between the persons is hard to notice even for a human observer).
Left, from top to bottom: local SI-HKS descriptors of three representative points on the belly (dotted), groin (dashed) and head
(dash-dotted; colors represent di�erent shapes); vector quantization of the local descriptors in a �xed dictionary; sparse coding of
the local descriptors in an optimal task-speci�c dictionary computed by the proposed procedure. Right, top to bottom: BoF using
standard VQ, sparse coding with unsupervised DL, and the proposed sparse coding with supervised DL. Ideally, the green and blue
BoFs should coincide, while the red one should be distinct. Numbers represent the ratio ‖h(X) − h(X+)‖1/‖h(X) − h(X−)‖1
(the smaller the better).

class as positives and pairs from di�erent classes as neg-
atives (total of one positive and 25 negatives for each
query). The values of µ = 0.5, λ = 0.5, and v = 48 were
used. Typical training time using stochastic gradient de-
scent was approximately 30 sec for a batch of 25 triplets,
and took less than 500 iterations to converge, resulting
in nearly 4 hours in total on a machine with a 3.2GHz
CPU.

Testing was performed on the rest of the shapes, dis-
joint with the training set (total of 53 positives and 1105
negatives for each query). We compared the performance
of di�erent methods for creating BoF descriptors high-
lighted in Sections 2 and 3: the original ShapeGoogle
method [BBGO11] based on VQ, sparse coding with un-
supervised DL (7) and the proposed supervised DL (9).

Evaluation results are summarized in Figure 7 (left).
One can observe slight performance improvement result-
ing from replacing VQ with sparse coding with unsuper-
vised dictionary (compare black and gray curves), and a
signi�cant improvement from learning the dictionary in a
supervised manner by the proposed bi-level optimization
(red curve). Figure 6 and Table 1 show the breakdown
of the retrieval results by transformation classes present

in the ShapeGoogle dataset. The proposed method is
able to learn invariance to all the transformations from
one example and outperforms the simple-minded VQ and
unsupervised DL.

Transformation VQ Unsup. DL Sup. DL

Isometry 98.8 97.7 99.4

Topology 100 100 100
Isometry+topology 93.3 93.4 95.6

Partiality 94.7 94.8 95.1

Triangulation 95.4 95.0 95.5

All 89.1 89.1 91.2

Table 1: Comparison of di�erent retrieval methods in terms
of mean average precision (mAP, in %) on the SHREC'10
ShapeGoogle dataset, broken down according to transformation
classes.

SHREC'14 Humans [P∗14] consisted of two di�erent
sub-sets. The �rst part (synthetic) contained 15 di�er-
ent human models created using DAZ Studio, each in 20
di�erent poses (total of 300 models, Figure 5, middle).
The second one (scanned) contained scans of 40 human
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SHREC'10 ShapeGoogle

SHREC'14 Humans (synthetic)

SHREC'14 Humans (scanned)

Positives Negatives

Figure 5: Examples of shapes from three datasets used in our experiments, from the easiest to the hardest (top to bottom):
SHREC'11 ShapeGoogle dataset contains shapes of di�erent bi- and quadrupeds, SHREC'14 Humans (synthetic) dataset contains
CAD shapes of humans di�ering in size and body shape, and SHREC'14 Humans (scanned) contains scanned human shapes. In
the latter, the di�erences between di�erent humans are very subtle (note, for example, that the leftmost and the rightmost shapes
in the last row belong to di�erent persons, which is very hard to tell). Shown are a representative shape (leftmost), three positives
(center) and three negatives (right) used to construct the training set.

subjects, each in 10 di�erent poses (400 shapes in to-
tal, Figure 5, bottom). All shapes were down-sampled
to have 4.5× 103 triangles.

Note that both datasets (in particular, the scanned
shapes) are extremely challenging, as they contain geo-
metrically similar human shapes (very di�cult to distin-
guish even for a human observer). Due to the big vari-
ability in the shape sizes, we used the 16-dimensional
SI-HKS as the local descriptor, with settings according
to [BK10]. For training, we used four examples per class
for both datasets. For the synthetic dataset, the number
of positives was 3 and the number of negatives was 56
per query. For the scanned dataset, we used 3 positives
and 36 negatives per query. We used µ = 0.2, v = 32
for both datasets, λ = 0.5 for the synthetic dataset, and
λ = 0.25 for the scanned one.

Testing was performed on the rest of the shapes, dis-
joint with the training set. For each query in the syn-
thetic dataset, the number of positives was 15 and the
number of negatives was 224. For each query in the
scanned dataset, the number of positives was 5 and the

number of negatives was 234. In addition to Shape-
Google (VQ), unsupervised DL and the proposed su-
pervised DL, we compared to the recent state-of-the-art
shape retrieval methods that achieved top performance
on the SHREC benchmark, based on Histograms of Area
Projection Transform (HAPT) [GL12], Deep Belief Net-
work (DBN) [P∗14], Intrinsic Spatial Pyramid Matching
(ISPM) [LH13b,LH13a], and Reduced Bi-harmonic Dis-
tance Matrix (R-BiHDM) [YYY13]. Evaluation results
are summarized in Figure 7 (center and right) and in Ta-
ble 2. The proposed approach consistently outperforms
all the compared methods.

Figure 8 contains an example of top �ve matches re-
turned by di�erent methods in response to a female shape
query. The di�culty of the `�ne-grained' human shape
retrieval task is evident from this example (all the mis-
matched shapes appear `reasonable'), and the fact that
our method produces all correct matches is remarkable.
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Figure 7: Performance of di�erent retrieval methods on the ShapeGoogle (left) and SHREC'14 Humans (synthetic, center and real,
right) datasets. Show are Precision-Recall (top) and Precision@N (bottom) curves. The proposed Supervised DL method achieves
the best performance in all the experiments.

Method Synthetic Scanned
ISPM [LH13b,LH13a] 90.2 25.8

DBN [P∗14] 84.2 30.4
R-BiHDM [YYY13] 64.2 64.0

HAPT [GL12] 81.7 63.7
ShapeGoogle (VQ) [BBGO11] 81.3 51.4

Unsupervised DL 84.2 52.3
Supervised DL 95.4 79.1

Table 2: Comparison of di�erent retrieval methods in terms of
mean average precision (mAP, in %) on the SHREC'14 Humans
datasets.

6 Conclusion

In this work, we presented a method for learning bag-of-
features shape descriptors in a fully supervised manner.
Unlike previous approaches that tried to introduce su-
pervision in some parts of the BoF pipeline (e.g. making
the VQ process supervised), our training is done `end-
to-end', optimizing a task-speci�c penalty dependent on
the �nal BoF. Working in such a supervised regime allows
to learn invariance to practically any kind of transforma-
tions or degree of variability, provided that representative
examples of positive and negative shapes are available.
Ideologically, our approach follows [BBGO11], which ad-
vocated in favor of learning invariance from examples
rather than trying to construct invariant descriptors ax-
iomatically.

Experimental results on the recent challenging SHREC

benchmarks show that the proposed method achieves
state-of-the-art performance, and especially excels in
cases where there are subtle di�erences between the
shape classes. Such `�ne-grain' recognition problems are
currently considered the most di�cult in the pattern
recognition community [GFS∗13,HSG13].

Our method beats some state-of-the-art algorithms,
doing so `out of the box' based on older descriptors that
are no longer considered such. Some of the newer shape
descriptors can trivially be used within our framework.

Future directions. We see several follow-up direc-
tions for our work. First, in our approach we used a
very naïve mean pooling operator. It is possible to use
a di�erent pooling strategy such as tf-idf, or more gener-
ally, to learn the pooling operator. Second, if using spec-
tral local descriptors, we can incorporate the approach
of [LB14] for learning the optimal transfer function into
our pipeline. Third, the L1-norm used in our loss func-
tion to compare between BoFs can be replaced by any
di�erentiable dissimilarity between histograms, that does
not necessarily have to be a metric. Finally, we can bi-
narize the BoFs produced by our approach, thus hashing
the descriptors similarly to Bronstein et al. [BBGO11].
The big advantage of binary descriptors is their compact-
ness (which is of importance in large-scale applications)
and the e�cient computation of the Hamming metric
used for their retrieval. As opposed to applying stan-
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Figure 6: Performance (in terms of Precision/Recall) of di�er-
ent retrieval methods on the SHREC'10 ShapeGoogle dataset,
broken down by transformation class.

dard similarity-sensitive hashing techniques to BoF de-
scriptors, the use of sparse codes allows achieving e�-
cient retrieval without compromising the recall, as re-
cently shown in [MBB∗13].

Limitations. With our current implementation, train-
ing times can be prohibitively long in some situations.
Fortunately, there have been several recent approaches
to this problem, one of which is approximating the sparse
coding optimization problem by a special neural net-
work [GL10, SBS12]. This way, an iterative optimiza-
tion procedure producing the sparse code is replaced by
a few layers of a neural network, each of which corre-
sponds to an iteration of the iterative shrinkage (ISTA)
algorithm [DDDM04]. The resulting speedup can be in
the range of several orders of magnitude [SBS12].
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