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Stable semi-local features for non-rigid shapes

R. Litman and A. M. Bronstein and M. M. Bronstein

Abstract

Feature-based analysis is becoming a very popular approach for geometric shape
analysis. Following the success of this approach in image analysis, there is a grow-
ing interest in finding analogous methods in the 3D world. Maximally stable com-
ponent detection is a low computation cost and high repeatability method for feature
detection in images.In this study, a diffusion-geometry based framework for stable
component detection is presented, which can be used for geometric feature detection
in deformable shapes.

The vast majority of studies of deformable 3D shapes models them as the two-
dimensional boundary of the volume of the shape. Recent works have shown that
a volumetric shape model is advantageous in numerous ways as it better captures
the natural behavior of non-rigid deformations. We show that our framework easily
adapts to this volumetric approach, and even demonstrates superior performance.

A quantitative evaluation of our methods on the SHREC’10 and SHREC’11 fea-
ture detection benchmarks as well as qualitative tests on the SCAPE dataset show
its potential as a source of high-quality features. Examples demonstrating the draw-
backs of surface stable components and the advantage of their volumetric counter-
parts are also presented.
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1.1 Introduction

Following their success in image analysis, many feature-based methods have found
their way into the world of 3D shape analysis. Feature descriptors play a major role
in many applications of shape analysis, such as assembling fractured models [16] in
computational archeology, or finding shape correspondence [36].

Some shape feature-works are inspired by and follow methods in image analysis,
for example the histogram of intrinsic gradients used in [41] is similar in princi-
ple to the scale invariant feature transform (SIFT) [21] which has recently become
extremely popular in image analysis. The concept of ”bags of features” [32] was in-
troduced as a way to construct global shape descriptors that can be efficiently used
for large-scale shape retrieval [26, 37].

Other features were developed natively for 3D, as they rely on properties like the
shape normal field, as in the popular spin image [17]. Another example is a family
of methods based on the heat kernel [35, 6], describing the local heat propagation
properties on a shape. These methods are deformation-invariant due to the fact that
heat diffusion geometry is intrinsic, thus making descriptors based on it applicable
in deformable shape analysis.

1.1.1 Related work

The focus of this work is on another class of feature detection methods, one that
finds stable components (or regions) in the analyzed image or shape. The origins of
this approach are also in the image processing literature, this time in the form of the
watershed transform [9, 39].

Matas et al. [22] introduced the stable component detection concept to the com-
puter vision and image analysis community in the form of the maximally stable
extremal regions (MSER) algorithm. This approach represents intensity level sets
as a component tree and attempts to find level sets with the smallest area variation
across intensity. The use of area ratio as the stability criterion makes this approach
affine-invariant, which is an important property in image analysis, as it approxi-
mates viewpoint transformations. This algorithm can be made very efficient [25]
in certain settings, and was shown to have superior performance in a benchmark
done by Mikolajczyk et al. [24]. A deeper inspection of the notion of region stabil-
ity was done by Kimmel et al. [18], also proposing an alternative stability criteria.
The MSER algorithm was also expanded to gray-scale volumetric images in [12],
though this approach was tested only in a qualitative way, and not evaluated as a
feature detector.

Methods similar to MSER have been explored in the works on topological per-
sistence [13]. Persistence-based clustering [7] was used by Skraba et al. [33] to per-
form shape segmentation. More recently, Dey et al. [10] researched the persistence
of the Heat Kernel Signature [35] for detecting features from partial shape data. In
[11], Digne et al. extended the notion of vertex-weighted component trees to meshes



1 Stable semi-local features for non-rigid shapes 3

and proposed to detect MSER regions using the mean curvature. The approach was
tested only in a qualitative way, and not evaluated as a feature detector.

A part of this study was published in the proceedings of the Shape Modeling
International (SMI’11) conference [20].

1.1.2 Main contribution

The contributions of our framework are three-fold:
First, in Section 1.3 we introduce a generic framework for stable component de-

tection, which unifies vertex- and edge-weighted graph representations (as opposed
to vertex-weighting used in image and shape maximally stable component detectors
[22, 11, 12]). Our results (see Section 1.6) show that the edge-weighted formulation
is more versatile and outperforms its vertex-weighted counterpart in terms of feature
repeatability.

Second, in Section 1.2 we introduce diffusion geometric weighting functions
suitable for both vertex- and edge-weighted component trees. We show that such
functions are invariant under a large class of transformations, in particular, non-rigid
inelastic deformations, making them especially attractive in non-rigid shape analy-
sis. We also show several ways of constructing scale-invariant weighting functions.
In addition, following Raviv et al. [29], we show that the suggested framework per-
forms better on volumetric data removing the (sometimes) unwanted insensitivity to
volume-changing transformations inherent to the surface model (see Figure 1.8 for
an illustration).

Third, in Section 1.6 we show a comprehensive evaluation of different settings
of our method on a standard feature detection benchmark comprising shapes un-
dergoing a variety of transformations. We also present a qualitative evaluation on
the SCAPE dataset of scanned human bodies and demonstrate that our methods
are capable of matching features across distinct data such as synthetic and scanned
shapes.

1.2 Diffusion geometry

Diffusion geometry is an umbrella term referring to geometric analysis of diffusion
or random walk processes [8]. Let us consider the shape of a 3D physical object,
modeled as a connected and compact region X ⊂ R3. The boundary of the region
∂X is a closed connected two-dimensional Riemannian manifold. In many applica-
tion in graphics, geometry processing, and pattern recognition, one seeks geometric
quantities that are invariant to inelastic deformations of the object X [30, 19, 35].
Traditionally in the computer graphics community, 3D shapes are modeled by con-
sidering their 2D boundary surface ∂X , and deformations as isometries of ∂X pre-
serving its Riemannian metric structure. In the following, we refer to such defor-
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mations as boundary isometries, as opposed to a smaller class of volume isometries
preserving the metric structure inside the volume X (volume isometries are neces-
sarily boundary isometries, but not vice versa – see Figure 1.8 for an illustration).
Raviv et al. [29] argued that the latter are more suitable for modeling realistic shape
deformations that boundary isometries, which preserve the area of ∂X , but not nec-
essarily the volume of X .

1.2.1 Diffusion on surfaces

Recent line of works [30, 8, 19, 31, 27, 35, 6] studied intrinsic description of shapes
by analyzing heat diffusion processes on ∂X , governed by the heat equation(

∂

∂ t
+∆∂X

)
u(t,x) = 0, (1.1)

where u(t,x) : [0,∞)×∂X→ [0,∞] is the heat value at a point x in time t, and ∆∂X is
the positive-semidefinite Laplace-Beltrami operator associated with the Riemannian
metric of ∂X . The solution of (1.1) is derived from

u(x, t) =
∫

∂X
ht(x,y)u0(y)da(y) (1.2)

and is unique given the initial condition u(0,x) = u0(x), and a boundary condition
if the manifold ∂X has a boundary. The Green‘s function ht(x,y) is called the heat
kernel and represents the amount of heat transferred on ∂X from x to y in time t due
to the diffusion process. The heat kernel is the non-shift-invariant impulse response
of (1.1), i.e ht(x,x0) it is the solution to a point initial condition u(0,x) = δ (x,x0).
A probabilistic interpretation of the heat kernel ht(x,y) is the transition probability
density of a random walk of length t from the point x to the point y. In particular,
the diagonal of the heat kernel or the auto-diffusivity function ht(x,x) describes the
amount of heat remaining at point x after time t. Its value is related to the Gaussian
curvature K(x) through

ht(x,x) ≈
1

4πt

(
1+

1
6

K(x)t +O(t2)

)
. (1.3)

which describes the well-known fact that heat tends to diffuse slower at points with
positive curvature, and faster at points with negative curvature. Due to this relation,
the auto-diffusivity function was used by Sun et al. [35] as a local surface descriptor
referred to as heat kernel signature (HKS). Being intrinsic, the HKS is invariant to
boundary isometries of ∂X .

The heat kernel is easily computed using the spectral decomposition of the
Laplace-Beltrami operator [19],
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ht(x,y) = ∑
i≥0

e−λitφi(x)φi(y), (1.4)

where φ0 = const,φ1,φ2, ... and λ0 = 0≤ λ1 ≤ λ2... denote, respectively, the eigen-
functions and eigenvalues of ∆∂X operator satisfying ∆∂X φi = λiφi.

The parameter t can be given the meaning of scale, and the family {ht}t of heat
kernels can be thought of as a scale-space of functions on ∂X . By integrating over
all scales, a scale-invariant version of (1.4) is obtained,

c(x,y) =
∫

∞

0
ht(x,y)dt = ∑

i≥0

(∫
∞

0
e−λitdt

)
φi(x)φi(y) (1.5)

= ∑
i≥1

1
λi

φi(x)φi(y)

This kernel is referred to as the commute-time kernel and can be interpreted as the
transition probability density of a random walk of any length. Similarly, c(x,x) ex-
press the probability density of remaining at a point x after any time

It is worthwhile noting that both the heat kernel and the commute time kernels
constitute a family of low pass filters. In [2], Aubry et al. argued that for some
shape analysis tasks kernels acting as band-pass filters might be advantageous. The
proposed “wave kernel signature” is related to the physical model of a quantum
particle on a manifold described by the Schrödinger equation. The study of this
alternative model is beyond the scope of this paper.

1.2.2 Volumetric diffusion

Instead of considering diffusion processes on the boundary surface ∂X , Raviv et al.
[29] considered diffusion inside the volume X , arising from the Euclidean volumet-
ric heat equation with Neumann boundary conditions,(

∂

∂ t
+∆

)
U(t,x) = 0 x ∈ int(X);

〈∇U(t,x),n(x)〉= 0 x ∈ ∂X . (1.6)

Here, U(t,x) : [0,∞)×R3→ [0,∞] is the volumetric heat distribution, ∆ is the Eu-
clidean positive-semidefinite Laplacian, and n(x) is the normal to the surface ∂X
at point x. The heat kernel of the volumetric heat equation (1.6) is given, similarly
to (1.4) by

Ht(x,y) = ∑
i≥0

e−ΛitΦi(x)Φi(y), (1.7)

where Φi and Λi are the eigenfunctions and eigenvalues of ∆ satisfying ∆Φi =
Λiφi and the boundary conditions 〈∇Φi(x),n(x)〉 = 0. A volumetric version of the
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commute-time kernel can be created in a similar manner by integration over all val-
ues of t, yielding C(x,y) = ∑i≥1 Λ

−3/2
i Φi(x)Φi(y). The diagonal of the heat kernel

Ht(x,x) gives rise to the volumetric HKS (vHKS) descriptor [29], which is invariant
to volume isometries of X .

1.2.3 Computational aspects

Both the boundary of an object discretized as a mesh and the volume enclosed by
it discretized on a regular Cartesian grid can be represented in the form of an undi-
rected graph. In the former case, the vertices of the mesh form the vertex set V
while the edges of the triangles constitute the edge set E. In the latter case, the ver-
tices are the grid point belonging to the solid, and the edge set is constructed using
the standard 6- or 26-neighbor connectivity of the grid (for points belonging to the
boundary, some of the neighbors do not exist). With some abuse of notation, we will
denote the graph by X = (V,E) treating, whenever possible, both cases in the same
way. Due to the possibility to express all the diffusion-geometric constructions in the
spectral domain, their practical computation boils down to the ability to discretize
the Laplacian.

1.2.3.1 Surface Laplace-Beltrami operator

In the case of 2D surfaces, the discretization of the Laplace-Beltrami operator of the
surface ∂X and can be written in the generic matrix-vector form as ∆∂X f = A−1Wf,
where f = (f(vi)) is a vector of values of a scalar function f : ∂X → R sampled on
V = {v1, ...,vN} ⊂ ∂X , W = diag

(
∑l6=i wil

)
− (wij) is a zero-mean N×N matrix of

weights, and A= diag(ai) is a diagonal matrix of normalization coefficients [14, 40].
Very popular in computer graphics is the cotangent weight scheme [28, 23], where

wi j =

{
(cotαi j + cotβi j)/2 (vi,v j) ∈ E;

0 else, (1.8)

where αi j and βi j are the two angles opposite to the edge between vertices vi and
v j in the two triangles sharing the edge, and ai are the discrete area elements. The
eigenfunctions and eigenvalues of ∆∂X are found by solving the generalized eigen-
decomposition problem Wφi = Aφiλi [19]. Heat kernels are approximated by taking
a finite number of eigenpairs in the spectral expansion.

1.2.3.2 Volumetric Laplacian

In the 3D case, we used a ray shooting method to create rasterized volumetric
shapes, i.e. every shape is represented as arrays of voxels on a regular Cartesian grid,
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allowing us to use the standard Euclidean Laplacian. The Laplacian was discretized
using a 6-neighborhood stencil. We use the finite difference scheme to evaluate the
second derivative in each direction in the volume, and enforced boundary conditions
by zeroing the derivative outside the shape.

The construction of the Laplacian matrix under these conditions boils down to
this element-wise formula (up to multiplicative factor):

(∆)i j =

{
−1 if i 6= j and (vi,v j) ∈ E
−∑k 6= j(∆)k j if i = j

1.3 Maximally stable components

Let us now we go over some preliminary graph-theory terms, needed to cover the
topic of the component-tree. As mentioned, we treat the discretization of a shape as
an undirected graph X = (V,E) with the vertex set V and edge set E. Two vertices
v1 and v2 are said to be adjacent if (v1,v2) ∈ E. A path is an ordered sequence of
vertices π = {v1, . . . ,vk} such that for any i = 1, . . . ,k−1, vi is adjacent to vi+1. In
this case, every pair of vertices on π are linked in X . If every pair of vertices in X is
linked, the graph is said to be connected. A subgraph of X is every graph for which
Y = (V ′ ⊆V,E ′ ⊆ E), and will be denoted by Y ⊆ X . Such Y will be a (connected)
component of X if it is a maximal connected subgraph of X (i.e. for any connected
subgraph Z, Y ⊆ Z ⊆ X implies Y = Z). A subset of the graph edges E ′ ⊆ E, induces
the graph Y = (V ′,E ′) where V ′ = {v ∈ V : ∃v′ ∈ V,(v,v′) ∈ E ′}, i.e. V ′ is a vertex
set is made of all vertices belonging to an edge in E ′.

A component tree can be built only on a weighted graph. A graph is called vertex-
weighted if it is equipped with a scalar function f : V → R. Similarly, an edge-
weighted graph is one that is equipped with a function d : E → R defined on the
edge set. In what follows, we will assume both types of weights to be non-negative.

In order to define the MSER algorithm on images, some regular connectivity
(e.g., four-neighbor) was used. Gray-scale images may be represented as vertex-
weighted graphs where the intensity of the pixels is used as weights. Using a func-
tion measuring dissimilarity of pairs of adjacent pixels one can obtain edge weights,
as done by Forssen in [15]. Edge weighting is more general than vertex weighting,
which is limited to scalar (gray-scale) images.

1.3.1 Component trees

The `-cross-section of a graph X is the sub-graph created by using only weights
smaller or equal to ` (assuming `≥ 0). If the graph has a vertex-weight f : V → R,
its `-cross-section is the graph induced by E` = {(v1,v2) ∈ E : f (v1), f (v2) ≤ `}.
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Similarly, for a graph with an edge-weight d : E→ R the `-cross-section is induced
by the edge subset E` = {e ∈ E : d(e)≤ `}. A connected component of the `-cross-
section is called the `-level-set of the weighted graph.

The altitude of a component C, denoted by `(C), is defined as the minimal ` for
which C is a component of the `-cross-section. Altitudes establish a partial order
relation on the connected components of X as any component C is contained in a
component with higher altitude.

The set of all such pairs (`(C),C) therefore forms a tree called the component
tree. The component tree is a data structure containing the nesting hierarchy the
level-sets of a weighted graph. Note that the above definitions are valid for both
vertex- and edge-weighted graphs.

1.3.2 Maximally stable components

Since we represent a discretized smooth manifold (or a compact volume) by an
undirected graph, a measure of area (or volume) can associate with every subset of
the vertex set, and therefore also with every component. Even though we are dealing
with both surface and volume, w.l.o.g we will refer henceforth only to surface area
as a measure of a component C, which will be denoted by A(C). When dealing
with regular sampling, like in the case images, the area of C can be thought of as
its cardinality (i.e. the number of pixels in it). In the case of non-regular sampling
a better discretization is needed, and a discrete area element da(v) is associated
with each vertex v in the graph. The area of a component in this case is defined as
A(C) = ∑v∈C da(v).

The process of detection is done on a sequence of nested components {(`,C`)}
forming a branch in the component tree. We define the stability of C` as a derivative
along the latter branch:

s(`) =
Change in altitude
% Change in area

=
A(C`)

d
d`A(C`)

. (1.9)

In other words, the less the area of a component changes with the change of `, the
more stable it is. A component C`∗ is called maximally stable if the stability function
has a local maximum at `∗. As mentioned before, maximally stable components are
widely known in the computer vision literature under the name of maximally stable
extremal regions or MSERs for short [22], with s(`∗) usually referred to as the region
score.

Pay attention that while in their original definition, both MSERs and their vol-
umetric counterpart [12] were defined on a component tree of a vertex-weighted
graph, while the latter definition allows for edge-weighted graphs as well and there-
fore more general. The importance of such an extension will become evident in the
sequel. Also, the original MSER algorithm [22] assumes the vertex weights to be
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quantized, while our formulation is suitable for scalar fields whose dynamic range
is unknown a priori (this has some disadvantages, as will be seen up next).

1.3.3 Computational aspects

Najman et al. [25] introduced quasi-linear time algorithm for the construction of
vertex-weighted component trees, and its adaptation to the edge-weighted case is
quite straightforward. The algorithm is based on the observation that the vertex set
V can be partitioned into disjoint sets which are merged together as one goes up in
the tree. Maintaining and updating such a partition can be performed very efficiently
using the union-find algorithm and related data structures. The resulting tree con-
struction complexity is O(N log logN). However, since the weights must be sorted
prior to construction, the latter complexity is true only if the weights are quantized
over a known range (which is not the case in weights we used), otherwise the com-
plexity becomes O(N logN).

The stability function (1.9) contains a derivative along a branch of the component
tree. Given a branch of the tree is a sequence of nested components C`1 ⊆C`2 ⊆ ·· · ⊆
C`K , the derivative was approximated using finite differences scheme:

s(`k) ≈
A(C`k)

A(C`k+1)−A(C`k−1)
(`k+1− `k−1). (1.10)

Starting from the leaf nodes, a single pass over every branch of the component tree
is in order to evaluate the function and detected its local maxima. Next, we filter
out maxima with too low values of s (more details about this in the detector result
section). Finally, we keep only the bigger of two nested maximally stable regions if
they are overlapping by more that a predefined threshold.

1.4 Weighting functions

Unlike images where pixel intensities are a natural vertex weight, 3D shapes gen-
erally do not have any such field. This could be a possible reason why MSER was
shown to be extremely successful as a feature detector in images, but equivalent
techniques for 3D shapes are quite rare. This method was recently proposed in [11],
but due to the fact it uses mean curvature it is not deformation invariant and therefore
not suitable for the analysis deformable shape . The diffusion geometric framework
used in [33] is more appropriate for this task, as it allows a robust way to analyze
deformable shapes. We follow this approach and show that it allows the construc-
tion both vertex and edge weights suitable for the definition of maximally stable
components with many useful properties.
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Note that even though all of the following weighting functions are defined on
the surface of the shape (usually by using ht(x,y)), they are easily adapted to the
volumetric model (usually by using Ht(x,y) instead).

The discrete auto-diffusivity function is a trivial vertex-weight when using diffu-
sion geometry, and can be directly used given its value on a vertex v:

f (v) = ht(v,v). (1.11)

As will be with all diffusion geometric weights, the latter weights are intrinsic.
Therefore, maximally stable components defined this way are invariant to non-rigid
bending. In images, weighting functions are based on intensity values and therefore
contain all the data needed abut the image. The above weighting function, however,
does not capture the complete intrinsic geometry of the shape, and depends on the
scale parameter t.

Every scalar field may also be used as an edge-weight simply by using d(v1,v2)=
| f (v1)− f (v2)|. As mentioned, edge weights are a more flexible and allow us more
freedom in selecting how to incorporate the geometric information. For example,
a vector-valued field defined on the vertices of the graph can be used to define an
edge weighting scheme by weighting an edge by the distance between its vertices’
values, as done in [15].

There are ways to define edge weights without the usage of vector field defined
on the vertices. Lets take the discrete heat kernel ht(v1,v2) as an example. Taking a
weight function inversely proportional to its value is metric-like in essence, since it
represents random-walk probability between v1 and v2. The resulting edge weight
will be

d(v1,v2) =
1

ht(v1,v2)
(1.12)

This function also contains fuller information about the shape’s intrinsic geometry,
for small values of t, .

1.4.1 Scale invariance

All of the three latter weighting functions are based on the heat kernel, and therefore
are not scale invariant. If we globally scale the shape by a factor a > 0, both the time
parameter and the kernel itself will be scaled by a2, i.e. the scaled heat kernel will be
a2ha2t(v1,v2). The volumetric heat kernel Ht(v1,v2) will be scaled differently and
will become a3Ha2t(v1,v2) (this is why C(v1,v2) is constructed using the eigenvalues
with a power of −3/2).

The commute time kernel is scale invariant, and could be used as a replacement
to the heat kernel. However, the numerical computation of the commute time kernel
is more difficult as its coefficients decay polynomially (1.5), very slow compared to
ht(v1,v2) whose coefficients decay exponentially (1.4). The slower decay translates
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Fig. 1.1 Maximally stable regions detected on different shapes from the TOSCA dataset. Note
the invariance of the regions to strong non-rigid deformations. Also observe the similarity of the
regions detected on the female shape and the upper half of the centaur (compare to the male shape
from Figure 1.2). Regions were detected using ht(v,v) as vertex weight function, with t = 2048.

to the need of many more eigenfunctions of the Laplacian for c(v1,v2) to achieve
the same accuracy as ht(v1,v2).

Let us point out that there is some invariance to scale, originating in the way the
detector operates over the component tree (this is also notable in the detector result
section). As noted by [22], the MSER detector is invariant to any monotonic trans-
formation on the weights (originally pixel-intensities), a fact that can be harnessed
to gain scale invariance in our detector. In practice, it is sufficient for us to limit the
effect scaling on the weights to a monotonous transformation instead of completely
undoing its effect. Such a weighting function will not be scale invariant by itself,
nor the stability function (1.9) computed on such a component tree. However, the
local maxima of (1.9), namely the stable components, will remain unaffected. An
alternative to this approach would be designing a more sophisticated scale-invariant
stability function. We intend to explore both of these options in follow up studies.

1.5 Descriptors

Usually, when using a feature-based approach, feature detection is followed by at-
taching a descriptor to each of the features. Once descriptors are manifested, we
can measure similarity between a pair of features, which in turn, enables us to per-
form tasks like matching and retrieval. Since our detected feature are components
of the shape, we first create a point-wise descriptor of the form α : V →Rq and then
aggregate al the point-descriptors into a single region descriptor.

1.5.1 Point descriptors

We consider a descriptor suitable for non-rigid shapes proposed in [35] - the heat
kernel signature (HKS) HKS is computed by sampling the values of the discrete
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Fig. 1.2 Maximally stable regions detected on shapes from the SHREC’10 dataset using the vertex
weight ht(v,v) with t = 2048. First row: different approximate isometries of the human shape.
Second row: different transformations (left-to-right): holes, localscale, noise, shotnoise and scale.

auto-diffusivity function at vertex v at multiple times, α(v)= (ht1(v,v), . . . ,htq(v,v)),
where t1, . . . , tq are some fixed time values. The resulting descriptor is a vector of
dimensionality q at each vertex. Since the heat kernel is an intrinsic quantity, the
HKS is invariant to isometric transformations of the shape.

1.5.1.1 Scale-invariant heat kernel signature

The fact that HKS is based on ht(v,v), means it also inherits the drawback of its
dependence on the scaling of the shape. As mentioned, scaling the shape globally
by a factor a > 0 will result in the scaled heat kernel a2ha2t(v1,v2). A way of ren-
dering ht(v,v) scale invariant was introduced in [6], by performing a sequence of
transformations on it. First, we sample the heat kernel with logarithmical spacing in
time. Then, we take the logarithm of the samples and preform a numerical derivative
(with respect to time of the heat kernel) to undo the multiplicative constant. Finally,
we perform the discrete Fourier transform followed by taking the absolute value, to
undo the scaling of the time variable. Note that the latter sequence of transforma-
tions will also work on Ht(v,v), as the effect of scaling differs only in the power of
the multiplicative constant.

This yields the modified heat kernel of the form

ĥω(v,v) =
∣∣∣∣F {

∂ loght(v,v)
∂ log t

}
(ω)

∣∣∣∣ (1.13)
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Fig. 1.3 A toy example showing the potential of the proposed method for partial shape matching.
Shown are four maximally stable regions detected on the surface of three shapes from the TOSCA
dataset using the edge weight 1/ht(v1,v2) with t = 2048. The top two regions are the torso and the
front legs of a centaur (marked with α1 and α2 respectively), and on the bottom are the torso of a
human and the front legs of a horse (marked with α3 and α4 respectively). Each of the regions is
equipped with a SI-HKS descriptor, and L2 distance is shown between every pair.

where ω denotes the frequency variable of the Fourier transform. The scale-invariant
version of the HKS descriptor (SI-HKS) is obtained by replacing ht with ĥω , yield-
ing α(v) = (ĥω1(v,v), . . . , ĥωq(v,v)), where ω1, . . . ,ωq are some fixed frequency val-
ues.

1.5.1.2 Vocabulary based descriptors

Another method for the descriptor construction is following the bag of features
paradigm [32]. Ovsjanikov et al. [26] used this approach to create a global shape
descriptor using point-wise descriptors. In the bag of features approach we perform
off-line clustering of the descriptor space, resulting in a fixed “geometric vocab-
ulary” α1, . . . ,αp. We then take any point descriptor α(v), and represent it using
the vocabulary by means of vector quantization. This results in a new point-wise
p-dimensional vector θ(v), where each of its elements follow a distribution of the
form [θ(v)]l ∝ e−‖α(v)−αl‖2/2σ2

. The vector is then normalized in such a way that the
elements θ(v) sum to one. Setting σ = 0 is a special case named ”hard vector quan-
tization” where the descriptor boils down to a query result for the nearest neighbor
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Fig. 1.4 Maximally stable regions detected on shapes from the SHREC’10 dataset using the edge
weight 1/ht(v1,v2) with t = 2048. Region coloring is arbitrary.

of α(v) in the vocabulary. In other words, we will get [θ(v)]l = 1 for αl being the
closest vocabulary element to α(v) in the descriptor space, and zero elsewhere.

1.5.2 Region descriptors

After creating a descriptor α(v) at each vertex v ∈ V , we need to gather the infor-
mation from a subset of vertices, i.e. component C ⊂V . This will result in a region
descriptor. The simplest way to do this is by computing the average of α in C,
weighted by the discrete area elements:

β (C) = ∑
v∈C

α(v)da(v). (1.14)

The resulting region descriptor β (C) is a vector of the same dimensionality q as the
point descriptor α .

Other methods to create region descriptors from point descriptors such as the re-
gion covariance descriptors [38], are beyond the scope of this text. The latter method
may provide higher discriminativity due to the incorporation of spatial contexts.

1.6 Results

1.6.1 Datasets

The proposed approaches were tested both qualitatively and quantitatively. All
datasets mentioned below were given as triangular meshes, i.e. as 2D manifolds.
In the following experiments, meshes were down-sampled to at most 10,000 ver-
tices. For the computation of the volumetric regions, meshes were rasterized in a
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cube with variable number of voxels per dimension (usually around 100-130) in
order for the resulting shapes to contain approximately 45,000 voxels.

1.6.1.1 Data for quantitative tests

While almost every data set can be used for a qualitative evaluation, only datasets
with additional ground-truth data can be used to quantify the performance of the
algorithm. We chose two such data sets: the SHREC’10 [5] and SHREC’11 [3]
feature detection and description benchmarks.

SHREC’10 [5] was used for evaluation only of the 2D version of the algorithm.
The dataset consisted of three shape classes (human, dog, and horse), with simulated
transformations applied to them. Shapes are represented as triangular meshes with
approximately 10,000 to 50,000 vertices.

Each shape class is given in a so-called ”native” form, coined null, and also
in nine categories of transformations: isometry (non-rigid almost inelastic defor-
mations), topology (welding of shape vertices resulting in different triangulation),
micro holes and big holes simulating missing data and occlusions, global and lo-
cal scaling, additive Gaussian noise, shot noise, and downsampling (less than 20%
of the original points). All mentioned transformations appeared in five different
strengths, and are combined with isometric deformations. The total number of trans-
formations per shape class is 45 +1 null shape, i.e. 138 shapes in total.

Vertex-wise correspondence between the transformed and the null shapes was
given and used as the ground-truth in the evaluation of region detection repeatability.
Since all shapes exhibit intrinsic bilateral symmetry, best results over the ground-
truth correspondence and its symmetric counterpart were used.

SHREC’11 [3] was used for the comparison between the surface and volumet-
ric approaches, due to the fact that results of both methods were too similar on
SHREC’10. Having a wider and more challenging range and strength of transfor-
mations present in the SHREC’11 corpus was needed to emphasize the difference.
The SHREC’11 dataset was constructed along the guidelines of its predecessor,
SHREC’10. It contains one class of shapes (human) given in a null form, and also
in eleven categories of transformations, in transformation appeared in five differ-
ent strengths combined with isometric deformations. The strength of transformation
is more challenging, in comparison to SHREC’10. The total number of shapes is
55+1 null shape.

Most of the transformations appear also in SHREC’10: isometry, micro holes
and big holes, global, additive Gaussian noise, shot noise, and downsampling. Two
transformations were discarded (topology and local scaling) and some new ones
were introduced: affine transformation, partial (missing parts), rasterization (simu-
lating non-pointwise topological artifacts due to occlusions in 3D geometry acqui-
sition), and view (simulating missing parts due to 3D acquisition artifacts). Some of
the mentioned transformations are not compatible with our volumetric rasterization
method. We did not include in our experiments the following transformations: big
holes, partial and view.
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Vertex-wise correspondence were given like in SHREC’10, including bilateral
symmetry. Volumetric ground-truth had to be synthesized, however. For that pur-
pose, the surface voxels of two shapes were first matched using the groundtruth
correspondences; then, the interior voxels were matched using an onion-peel proce-
dure.

1.6.1.2 Data for qualitative tests

In addition to the already mentioned sets, three more datasets without groundtruth
correspondence were used to demonstrate the performance of the proposed method
visually:

TOSCA [4]. The dataset contains 80 high-resolution nonrigid shapes in a variety
of poses, including cat, dog, wolves, horse, 6 centaur, gorilla, female figures, and
two different male figures. Shapes have a varying number vertices, usually about
50,000. This dataset gives a good example of the potential of the detected features
to be used for partial-matching of shapes (see Figures 1.1, 1.2 and 1.3).

SCAPE [1] . The dataset contains watertight scanned human figures, containing
around 12.5K vertices, in various poses. This dataset gives a hint on performance
of the detector on real life (not synthetic) data. Figure 1.9 shows that the detected
components are consistent and remain invariant under pose variations.

Sumner dataset [34]. This dataset contains a few shapes, out of which we chose
two animated sequences of a horse shape represented as a triangular mesh with
approximately 8.5K vertices. One sequence includes a series of boundary and vol-
ume isometries (gallop), while the other includes series of non-volume-preserving
boundary isometries (collapsing). Figure 1.8 shows that while the surface MSERs
are invariant to both types of transformations, the proposed volumetric MSERs re-
main invariant only under volume isometries, changing quite dramatically if the
volume is not preserved – a behavior consistent with the physical intuition.

1.6.2 Detector repeatability

1.6.2.1 Evaluation methodology

We follow the spirit of Mikolajczyk et al. [24] in the evaluation of the proposed
feature detector (and also of the descriptor, later on). The performance of a feature
detector is measured mainly by its repeatability, defined as the percentage of regions
that have corresponding counterpart in a transformed version of the shape. In order
to measure this quantity we need a rule to decide if two regions are ”corresponding”.
Every comparison is done between a transformed shape and its original null shape,
coined Y and X respectively. We will denote the regions detected in X and Y as
X1, . . . ,Xm and Y1, . . . ,Yn. In order to perform a comparison, we use the ground-truth
correspondence to project a region Yj onto X , and will denote it’s projected version
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as X ′j. We define the overlap of two regions Xi and Yj as the following area ratio:

O(Xi,X ′j) =
A(Xi∩X ′j)

A(Xi∪X ′j)
=

A(Xi∩X ′j)

A(Xi)+A(X ′j)−A(Xi∩X ′j)
(1.15)

The repeatability at overlap o is defined as the percentage of regions in Y that have
corresponding counterparts in X with overlap greater than o. An ideal detector has
the repeatability of 100% even for o→ 1. Note that comparison was defined single-
sidedly due to the fact that some of the transformed shapes had missing data com-
pared to the null shape. Therefore, unmatched regions of the null shape did not
decrease the repeatability score, while regions in the transformed shape that had no
corresponding regions in the null counterpart incurred a penalty on the score.

1.6.2.2 Surface detector

Two vertex weight functions were compared: discrete heat kernel (1.11) with
t = 2048 and the commute time kernel. These two scalar fields were also used to
construct edge weights according to d(v1,v2) = | f (v1)− f (v2)|. In addition, we
used the fact that these kernels are functions of a pair of vertices to define edge
weights according to (1.12). Unless mentioned otherwise, t = 2048 was used for the
heat kernel, as this setting turned out to give best performance on the SHREC’10
dataset.

We start by presenting a qualitative evaluation on the SHREC’10 and the TOSCA
datasets. Regions detected using the vertex weight ht(v,v) with t = 2048 are shown
for TOSCA in Figure 1.1 and for SHREC’10 in Figure 1.2. Figure 1.4 depicts the
maximally stable components detected with the edge weighting function 1/ht(v1,v2)
on several shapes from the SHREC’10 dataset. These results show robustness and
repeatability of the detected regions under transformation. Surprisingly, many of
these regions have a clear semantic interpretation, like limbs or head. In Addition,
the potential of the proposed feature detector for partial shape matching can be seen
by the similarly looking regions that are detected on the male and female shapes,
and the upper half of the centaur (see a toy example in Figure 1.3).

Ideally, we would like a detector to have perfect repeatability, i.e. to produce
a large quantity of regions with a corresponding counterpart in the original shape.
This is unfeasible, and all detectors will produce some poorly repeatable regions.
However, if the repeatability of the detected regions is highly correlated with their
stability scores, a poor detector can still be deemed good by selecting a cutoff thresh-
old on the stability score. In other words, set a minimum region stability value that
is accepted by the detector, such that the rejected regions are likely not to be re-
peatable. This cutoff value is estimated based on the empirical 2D distributions of
detected regions as a function of the stability score and the overlap with the corre-
sponding ground-truth regions. Of course, this can only be done given ground-truth
correspondences. In some of the tested detectors, a threshold was selected for sta-
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Fig. 1.5 Repeatability of maximally stable components with the vertex weight ht(v,v) (first row)
and edge weight 1/ht(v1,v2) (second row), t = 2048.

bility score to minimize the detection of low-overlap regions, in order to give an
estimate for the theoretical limits on the performance of the weighting functions.

We now show the performance of the best four weighting functions in Figures 1.5
and 1.6. These figures depict the repeatability and the number of correctly matching
regions as the function of the overlap. One can infer that scale-dependent weight-
ing generally outperform their scale-invariant counterparts in terms of repeatabil-
ity. This could be explained by the fact that we have selected the best time value
for our dataset’s common scale, whereas scale-invariant methods suffer from its
larger degree of freedom. The scalar fields corresponding to the auto-diffusivity
functions perform well both when used as vertex and edge weights. Best repeata-
bility is achieved by the edge weighting function 1/ht(v1,v2). Best scale invariant
weighting by far is the edge weight 1/c(v1,v2).

1.6.2.3 Volume detector

In order to asses the differences between the 2D and the 3D of the approach, we
performed two experiments comparing between 3D MSER and 2D MSER: com-
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Fig. 1.6 Repeatability of maximally stable components with the edge weight |ht(v1,v1) −
ht(v2,v2)| (first row) and edge weight 1/c(v1,v2) (second row), t = 2048.

parison of invariance of the two methods to boundary and volume isometric defor-
mations, and a quantitative comparison evaluating the sensitivity of two methods to
shape transformations and artifacts on the SHREC’11 benchmark. In addition, we
performed one evaluation of volumetric (3D) MSER invariance on scanned human
figures

As mentioned before, all the datasets used in our experiments were originally
represented as triangular meshes and were rasterized and represented as arrays of
voxels on a regular Cartesian grid.

In the first experiment, we applied the proposed approach to the SCAPE dataset
[1], containing a scanned human figure in various poses. Figure 1.9 shows that the
detected components are consistent and remain invariant under pose variations. In
the second experiment, we used the data from Sumner et al. [34]. The dataset con-
tained an animated sequence of a horse shape and includes a series of boundary and
volume isometries (gallop) and series of non-volume-preserving boundary isome-
tries (collapsing). Figure 1.8 shows that while the surface MSERs are invariant to
both types of transformations, the proposed volumetric MSERs remain invariant
only under volume isometries, changing quite dramatically if the volume is not pre-
served – a behavior consistent with the physical intuition.
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In the third experiment, we used the SHREC’11 feature detection and descrip-
tion benchmark [3] to evaluate the performance of the 2D and 3D region detectors
and descriptors under synthetic transformations of different type and strength. 1.
As mentioned, some of the transformations in SHREC’11 are not compatible with
our volumetric rasterization method, so we did not include in our experiments the
big-holes, partial, and view transformations.

Figure 1.7 shows the repeatability of the 3D and 2D MSERs. We conclude
that volumetric regions exhibit similar or slightly superior repeatability compared
to boundary regions, especially for large overlaps (above 80%). We attribute the
slightly lower repeatability in the presence of articulation transformations (“isome-
try”) to the fact that these transformations are almost exact isometries of the bound-
ary, while being only approximate isometries of the volume. Another reason for the
latter degradation may be local topology changes that were manifested in the rasteri-
zation of the shapes in certain isometries. These topology changes appear only in the
volumetric detector, and they affected the quality of detected regions in their vicin-
ity . Although the construction of the MSER feature detector is not affine-invariant,
excellent repeatability under affine transformation is observed. We believe that this
and other invariance properties are related to the properties of the component trees
(which are stronger than those of the weighting functions) and intend to investigate
this phenomenon in future studies.

1.6.3 Descriptor informativity

1.6.3.1 Evaluation methodology

In these experiments, we aim to evaluate the informativity of region descriptors.
This is done by measuring the relation between the overlap of two regions and their
distance in the descriptor space.

Keeping the notation from the previous section, we set a minimum overlap ρ =
0.75 deeming two regions Yi and X j matched, i.e. if oi j = O(X ′i ,X j) ≥ ρ (X ′i is the
projection of Yi on the null shape X). This threshold is needed to constitute the
matching ground-truth.

Given a region descriptor β on each of the regions, we set a threshold τ on the
distance between the descriptors of Yi and X j in order to classify them as positives,
i.e. if di j = ‖β (Yi)−β (X j)‖≤ τ . For simplicity we assume the distance between the
descriptors to be the standard Euclidean distance. We define the true positive rate
(TPR) and false positive rate (FPR) as the ratios

1 In this evaluation we used SHREC11, rather than SHREC10 that was used previously in 2D. this
is due to the fact that results of the 3D and 2D versions were too similar on SHREC10, and dataset
with a wider, and more challenging range and strength of transformations was needed to emphasize
the difference.
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Fig. 1.7 Repeatability of region detectors on the SHREC’11 dataset. Upper left: 2D MSER using
the edge weight 1/ht(v1,v2), t = 2048. Upper right: 3D MSER using the commute-time vertex-
weight. Lower left: 3D MSER using the edge weight 1/Ht(v1,v2), t = 2048. Lower right: 3D
MSER using the vertex-weight Ht(v,v), t = 2048.

TPR =
|{di j ≤ τ}|
|{oi j ≥ ρ}|

; FPR =
|{di j > τ}|
|{oi j < ρ}|

The receiver operator characteristic (ROC) curve is obtained a set of pairs (FPR,TPR),
created by varying the threshold τ . The false negative rate defined as FNR =
1−TPR. The equal error rate (EER) is the point on the ROC curve for which the
false positive and false negative rates coincide. EER is used as a scalar measure for
the descriptor informativity, where ideal descriptors have EER = 0.

Another descriptor performance criterion is created by finding for each Xi its
nearest neighbor in the descriptor space Yj∗(i), namely j∗(i) = argmin j di j. We then
define the matching score, as the ratio of correct first matches for a given overlap ρ ,
and m, the total number of regions in X :

score(ρ) =
|{oi j∗(i) ≥ ρ}|

m
. (1.16)

1.6.3.2 Surface descriptor

Given the maximally stable components detected by a detector, region descriptors
were calculated. We used two types of point descriptors: the heat kernel signature
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Fig. 1.8 Maximally stable components detected on two approximate volume isometries (second
and third columns) and two volume-changing approximate boundary surface isometries (two right-
most columns) of the horse shape (left column). Stable regions detected on the boundary surface
(2D MSER, first row) remain invariant to all deformations, while the proposed volumetric stable
regions (3D MSER, second row) maintain invariance to the volume-preserving deformations only.
This better captures natural properties of physical objects. Corresponding regions are denoted with
like colors. For easiness of comparison, volumetric regions are projected onto the boundary surface.

Fig. 1.9 Stable volumetric regions detected on the SCAPE data [1]. Shown are volumetric re-
gions (first and third columns) and their projections onto the boundary surface (second and fourth
columns). Corresponding regions are denoted with like colors. The detected components are in-
variant to isometric deformations of the volume.

(HKS), and its scale invariant version SI-HKS. Each of these two point descriptors
was also used as a basis to create vocabulary based descriptors. Region descriptors
were created from every point descriptor using averaging ( 1.14). In the following
experiments, the HKS was created based on the heat kernel signature ht(v,v), sam-
pled at six time values t = 16,22.6,32,45.2,64,90.5,128. The SI-HKS was created
by sampling the heat kernel time values t = 21,21+1/16, . . . ,225 and taking the first
six discrete frequencies of the Fourier transform, repeating the settings of [6]. Bags
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Fig. 1.10 ROC curves of different regions descriptors (“vs” stands for vocabulary size). The fol-
lowing detectors were used: vertex weight ht(v,v) (left), and edge weight 1/ht(v1,v2) (right).
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Fig. 1.11 Performance of region descriptors with regions detected using the vertex weight ht(v,v),
t = 2048. Shown are the HKS descriptor (first row) and SI-HKS descriptor (second row).

of features were tested on the two descriptors with vocabulary sizes p = 10 and 12,
trained based on the SHREC’10 and TOSCA datasets. This sums up to a total of 6
descriptors - two in the ”raw” form and four vocabulary based descriptors.
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Fig. 1.12 Performance of region descriptors with regions detected using the edge weight
1/ht(v1,v2), t = 2048. Shown are the HKS descriptor (first row) and SI-HKS descriptor (second
row).

The four best weighting functions (shown in Figures 1.5 and 1.6) were also se-
lected to test region detectors. The performance in terms of EER of all the com-
binations of latter weighting functions and the six region descriptors is shown in
Table 1.1.

Figures 1.11 and 1.12 show the number of correct first matches and the match-
ing score as a function of the overlap for the two ”raw” descriptors and the two
best weighting functions: the vertex weight ht(v,v) (left) and the edge weight
1/ht(v1,v2)). Figure 1.10 depicts the ROC curves of all of the descriptors based
on maximally stable components of the same two weighting functions.

We conclude that the SI-HKS descriptor consistently exhibits higher perfor-
mance in both the ”raw” form and when using vocabulary, though the latter perform
slightly worse. On the other hand, the bag of feature setting seems to improve the
HKS descriptor in comparison to its ”raw” form, though never reaching the scores of
SI-HKS. Surprisingly, SI-HKS consistently performs better, even in transformations
not including scaling, as can be seen from Figures 1.11–1.12,
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Weighting HKS HKS HKS SI-HKS SI-HKS SI-HKS
function Avgerage BoF(p = 10) BoF(p = 12) Avgerage BoF(p = 10) BoF(p = 12)
ht(v,v) 0.311 0.273 0.278 0.093 0.091 0.086
1/ht(v1,v2) 0.304 0.275 0.281 0.104 0.093 0.090
|ht(v1,v1)−ht(v2,v2)| 0.213 0.212 0.222 0.085 0.091 0.094
1/c(v1,v2) 0.260 0.284 0.294 0.147 0.157 0.148

Table 1.1 Equal error rate (EER) performance of different maximally stable component detectors
and descriptors (t = 2048 was used in all cases). p denotes the vocabulary size in the bag of features
region descriptors.

1.6.3.3 Volume descriptor

Scale invariant volume HKS descriptor (SI-vHKS) were calculated for every volu-
metric stable region detected in the previous section. When testing the volumetric
setting we used only the SI-vHKS descriptor due to its superior performance in 2D.

As with the surface descriptors, the matching score was measured for each of the
volumetric regions and is shown in Figure 1.13. For comparison, we used the SI-
HKS descriptors on the boundary for the detected 2D regions. The combination of
volumetric regions with volumetric descriptors exhibited highest performance over
the entire range of deformations.

A region matching experiment was performed on the volumetric regions, seeking
the nearest neighbors of a selected query region. The query region was taken from
the SCAPE dataset, and the nearest neighbors were taken from the TOSCA dataset
which differs considerably from the former (SCAPE shapes are 3D scans of human
figures, while TOSCA contains synthetic shapes). Despite the mentioned difference,
correct matches were found consistently, as can be seen in Figure 1.14

1.7 Conclusions

A generic framework for the detection of stable non-local features in deformable
shapes is presented. This approach is based on a popular image analysis tool called
MSER, where we maximize a stability criterion in a component tree representation
of the shape. The framework is designed to unify the vertex or edge weights, unlike
most of its predecessors. The use of diffusion geometry as the base of the weighting
scheme make to detector invariant to non-rigid bending, global scaling and other
shape transformations, a fact that makes this approach applicable in the challenging
setting of deformable shape analysis.

The approach was shown to work with volumetric diffusion geometric analysis.
In all experiments, our volumetric features exhibited higher robustness to deforma-
tion compared to similar features computed on the two-dimensional boundary of
the shape. We also argue and exemplify that unlike features constructed from the
boundary surface of the shape, our volumetric features are not invariant to volume-
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Fig. 1.13 Matching score of descriptors based on the 2D and 3D regions detected with the detectors
shown in Figure 1.7. Shown are the 2D SI-HKS (upper left) 3D SI-vHKS (upper right and two
bottom plots) descriptors.

changing deformations of the solid object. We believe that this is the desired behav-
ior in many applications, as volume isometries better model natural deformations of
objects than boundary isometries.

We showed experimentally the high repeatability of the proposed features, which
makes them a good candidate for a wide range of shape representation and retrieval
tasks.
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Fig. 1.14 Examples of closest matches found for different query regions from the SCAPE dataset
on the TOSCA dataset. Shown from left to right are: query, 1st, 2nd, 4th, 10th, and 15th matches.
Edge-weight 1/Ht(v1,v2) was used as the detector; average SI-vHKS was used as the descriptor.
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