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Abstract. Multi-part shape matching is an important class of prob-
lems, arising in many fields such as computational archaeology, biology,
geometry processing, computer graphics and vision. In this paper, we
address the problem of simultaneous matching and segmentation of mul-
tiple shapes. We assume to be given a reference shape and multiple parts
partially matching the reference. Each of these parts can have additional
clutter, have overlap with other parts, or there might be missing parts.
We show experimental results of efficient and accurate assembly of frac-
tured synthetic and real objects.

1 Introduction

Multi-part shape matching is an important class of problems, arising in compu-
tational archaeology (assembly of fractured objects [9, 19, 18, 10]), computational
biology (protein docking [12]), and computer vision (merging of partial 3D scans
[17, 21] and assembling 2D and 3D puzzles [13, 7]). Traditionally, the matching
of rigid 3D shapes has been performed using variants of the classical iterative
closest point (ICP) algorithm [2, 6, 15, 8], trying to optimally align the shapes by
means of a rigid transformation minimizing a surface-to-surface distance between
them. Matching of multiple shapes has been done using graph-based methods
[11], iterative pairwise part registration [21], as well as “multi-part ICP” where

Fig. 1. Assembling the Stanford bunny: 3D-printed bunny fractured into multiple parts
(left); each part is scanned individually with clutter (center); the parts are matched to
the reference shape (right) using the proposed approach.
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optimization is performed over rigid transformation parameters of all parts [14].
In [20], a correspondence-less partial matching was proposed using optimization
over parts that maximize the similarity of local descriptors.

In the partial matching setting when parts are missing (e.g. due to occlusions
in the scan process) or conversely, clutter is present (e.g. if each part is scanned
individually), the ICP algorithms can be modified by introducing weights that
reject points with a “bad” correspondence. The shortcoming of such weighting
is that it does not allow direct control of the size and regularity of the matching
parts. A remedy to this problem was proposed in [5], where the authors used the
partial matching framework of [3], optimizing simultaneously for part similarity,
size, and regularity.

Here, we extend this approach to multiple parts, performing matching and
segmentation of multiple shapes at the same time. In the setting we address, we
are given a reference shape and multiple parts partially matching the reference.
Each of these parts can have additional clutter, have overlap with other parts
(like in the 3D view merging); furthermore, there might be uncovered parts of
the reference shape. Some of the applications of the presented method arise,
for example, in assisting orthopedic surgeons in putting fragmented bones back
together using a healthy bone 3D model (taken pre-trauma or from a symmetric
bone). Additional uses are in automated car parts assembly.

2 Background

Given two rigid shapes X and Y , a standard way to match them is to look for a
rigid transformation T (rotation+translation) of one of them (w.l.o.g. Y ) such
that some distance between TY and X is minimized,

min
T∈SE(3)

D(X,TY ). (1)

The shape-to-shape distance D can be e.g. the Hausdorff distance,

DH(X,Y ) = max

{
max
x∈X

min
y∈Y
‖x− y‖,max

y∈Y
min
x∈X
‖x− y‖

}
.

Denoting by y∗(x) = argminy∈Y ‖x − y‖2 and x∗(y) = argminx∈X ‖x − y‖2 the
closest point from x on Y and from y on X, respectively, DH can be written as

DH(X,Y ) = max

{
max
x∈X
‖x− y∗(x)‖,max

y∈Y
‖x∗(y)− y‖

}
.

This formulation allows solving (2) by means of alternating optimization: first,
for a fixed transformation T, find the closest correspondences x∗, y∗. Second, fix-
ing the correspondences x∗, y∗ find the transformation T minimizingDH(X,TY ).
Such methods are known as iterative closest point (ICP). In practice, it is prefer-
able to use a more robust L2-version of a shape-to-shape distance,

D(X,Y ) =

∫
X

‖x− y∗(x)‖2dx+

∫
Y

‖y − x∗(y)‖2dy,
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or a non-symmetric version thereof.
When the shapes X and Y are only partially matching (i.e., there exist

unknown in advance parts X ′ ⊂ X,Y ′ ⊂ Y and a transformation T such that
D(X ′,TY ′) ≈ 0), the above method can be adapted by introducing weighting
into the shape-to-shape distance,

D(X,Y ) =

∫
X

‖x− y∗(x)‖2w(x)dx.

The weight is set to reject “bad” correspondences, e.g.,

w(x) =

{
1 ‖x− y∗(x)‖ < ε
0 else

thus effectively excluding the non-overlapping parts of X and Y (rejection can
also be made using additional criteria such as angle between normals). Modifying
the threshold ε implicitly changes the area of the matched parts; however, there
is no explicit control of their regularity and area. To overcome this problem, in
[5] it was proposed to simultaneously optimize the part dissimilarity, area, and
regularity over the parts and the transformation,

min
T∈SE(3),X′,Y ′

D(X ′,TY ′)− (A(X ′) +A(Y ′)) + (R(X ′) +R(Y ′)) (2)

where A(X ′) denotes the area and R(X ′) the irregularity (e.g. boundary length)
of part X ′. The purpose of this paper is to extend this idea to multiple part
matching, as described in the following.

3 Regularized multi-part shape matching

In the simplest multi-part setting, we have the reference shape X and its un-
aligned non-overlapping parts Y1, . . . , Yn. we assume an initial coarse alignment
(e.g. using some global registration); devising a dedicated initialization scheme
is deferred to future work. The goal is to match the parts to the references
by means of rigid transformations T1, . . . ,Tn such that the matching regions
X1, . . . , Xn on X are non-overlapping, cover the whole X, regular, and match
the area of Yi (in Sections 3.1 and 3.2, we consider the extension when not all
X is covered, and when the parts are cluttered).

The above problem of simultaneous multi-part registration and segmentation
can be formulated as

min
{Ti∈SE(3)}
{Xi⊆X}

n∑
i=1

D(Xi,TiYi) + λ

n∑
i=1

R(Xi) s.t.

Xi ∩Xj = ∅, i 6= j
X1 ∪ · · · ∪Xn = X
A(Xi) = A(Yi),

(3)

where the first aggregate constitutes the data term measuring the proximity of
the transformed parts TiYi to the corresponding segmentsXi on the model, while
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the second aggregate is the regularization term measuring the irregularity of each
segment. The first two constraint guarantee that {Xi} is a valid partitioning of
X, that is, a covering of the latter by disjoint sets. The area constraints ensure
that the areas of the segments Xi selected on the model match those of the
correspoding parts Yi.

In order to prevent the segmentation from producing fragmented and irreg-
ular segments, we penalize for their boundary length, setting R(Xi) = L(∂Xi).
The discretization of the above problem results in a combinatorial complexity.
To circumvent this difficulty, the problem can be relaxed by replacing the crisp
parts Xi by fuzzy membership functions ui on X, and the functional (3) by a
generalization of the Mumford-Shah functional [16] to surfaces [4, 5]. Here, we
adopt this relaxation as well as the Ambrosio-Tortorelli [1] approximation of the
Mumford-Shah functional,

R(u; ρ) =
λs
2

∫
X

ρ2‖∇u‖2da+ λbε

∫
X

‖∇ρ‖2da+
λb
4ε

∫
X

(1− ρ)2da, (4)

where ρ is the phase field indicating the discontinuities of u, and ε > 0 is a
parameter. The first term of R above imposes piece-wise smoothness of the
fuzzy part u. By setting a sufficiently large λs, the parts become approximately
piece-wise constant as desired in the original crisp formulation (3). The second
term of R is analogous to the segment boundary length and converges to the
latter as ε→ 0.

Using this fuzzy formulation, the data term for each u is expressed as

D(u,TY ) =

∫
X

‖Ty∗(x)− x‖2u(x)da, (5)

where Y denotes the corresponding part, one of the Yi’s, and T its transfor-
mation, one of the Ti’s. Combining the data and the regularization terms, we
rewrite problem (3) as

min
{Ti∈SE(3)}
{ui≥0,ρi≥0}

n∑
i=1

D(ui,TiYi) +

n∑
i=1

R(ui, ρi) s.t.


n∑
i=1

ui = 1∫
X

uida =

∫
Yi

da.

(6)

The optimization is performed over n Euclidean transformations Ti, n indicator
functions ui, and corresponding n phase fields ρi. The first constraint ensures
that the segments ui constitute a fuzzy partitioning of X and are defined for
each point x on X. The rest of the constraints are the fuzzy counterparts of the
crisp area constraints in (3).

Missing parts. In many practical settings, the observed parts Yi might
not cover X entirely e.g. due to occlusions during the acquiring of the objects.
In order to handle this scenario, an indicator function u0 of a “null segment” is
added to problem (6). Not corresponding to any of the Yi’s, the null segment is
not subject to area constraints and has no data term; however, it does have a
regularity term R(u0, ρ0) which is added to the objective. Finally, since the null
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segment complements the true segments, u1, . . . , un, the point-wise constraint is
modified to

∑n
i=0 ui = 1.

Cluttered parts. Other practical scenarios may involve the parts Yi con-
taminated by clutter, that is, containing foreign objects unrelated to X. We can
therefore formulate a partial matching problem by looking for sub-parts Zi ⊆ Yi
and corresponding segments Xi ⊆ X covering a part of X. In order to address
this setting, the previous optimization problem is further extended by adding
another set of variables, the indicator functions vi and the corresponding phase
fields σi on the Yi’s,

min
{Ti∈SE(3)}
{ui≥0,ρi≥0}
{vi≥0,σi≥0}

n∑
i=1

D(ui, vi,TiYi) +

n∑
i=0

R(ui, ρi) +

n∑
i=1

R(vi, σi)

s.t.


n∑
i=0

ui = 1; vi ≤ 1∫
X

uida =

∫
Yi

vida ≥ αi.
(7)

Note that we still enforce the area constraint, demanding that the area of at least
Ai is selected from each Yi. The latter is a parameter, which may be selected to
be either absolute or relative, αi = αA(Yi). The data term becomes

D(u, v,TY ) =
1

2

∫
X

‖Ty∗(x)− x‖2u(x)v(y∗(x))da(x) +

1

2

∫
Y

‖Ty − x∗(y)‖2u(y)v(x∗(y))da(y). (8)

While in some applications one can assume reasonable knowledge of αi, these
parameters are often difficult to decide upon a priori. As an alternative, we
propose reformulate the matching problem with the data term in the constraint,
aiming at finding the largest area of the segments (or, equivalently, the smallest
area of the null segment) producing a bounded alignment error:

min
{Ti∈SE(3)}
{ui≥0,ρi≥0}
{vi≥0,σi≥0}

∫
X

u0da+

n∑
i=0

R(ui, ρi) +

n∑
i=1

R(vi, σi)

s.t.


n∑
i=0

ui = 1; vi ≤ 1

1

β2
D(ui, vi,TiYi) ≤

∫
X

uida =

∫
Yi

vida

(9)

The parameter β2 controls the maximum allowed mean squared error.
Both problems (7) and (9) are non-convex, yet can be viewed as iteratively

reweighted ICP. Indeed, by fixing the ui’s and vi’s, the optimization boils down
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to solving n weighted rigid matching problems

min
{Ti∈SE(3)}

D(ui, vi,TiYi). (10)

Next, Ti are fixed and ui and vi and the corresponding ρi and σi are updated.
The process is repeated until convergence. Further details of this alternating
minimization algorithm are developed in the sequel.

4 Discretization and numerical aspects

We represent the surface X as triangular mesh constructed upon the samples
{x1, . . . ,xm} and denote by a = (a1, . . . , am)T the corresponding area elements
at each vertex (the computation of the ai’s is described later). A = diag{a} de-
note the diagonal m×m matrix created out of a. Each membership function ui
is sampled at each vertex and represented as the vector ui = (ui1, . . . , u

i
m)T. Sim-

ilarly, the phase field is represented as the vector ρi = (ρi1, . . . , ρ
i
m)T. Whenever

possible, we will omit the index i to simplify notation. Each of the parts Yi is rep-
resented in the same way as a mesh constructed upon the samples {yi1, . . . ,yini

}.
The area elements are denoted by bi = (bi1, . . . , b

i
ni

)T; the membership and the
phase field vectors are denoted by vi and σi, respectively.

Data term. For a given part Y (one of the Yi’s), let y∗i denote the point cor-
responding to xi. The alignment error can be written as e = (‖x1−y∗1‖2, . . . , ‖xm−
y∗m‖2)T, and the data term for one part as D(u, Y ) = uTe.

Regularization term. We start by deriving the discretization of a single
term ρ2‖∇u‖2da at some point xi on the shape. Let us denote by N (xi) the
1-ring of xi formed by t vertices x1, . . . ,xt ordered e.g. in clock-wise order (to
simplify notation, we assume without loss of generality consecutive indices).
We pick some j-th triangle in N (xi) formed by the central vertex xi and the
vertices xj and xk for k = j mod t+ 1. Let us denote by Xj = (xj −xi,xk−xi)
the 3 × 2 matrix whose columns are the vectors forming the triangle, and by

αj = 1
2

√
det(XT

j Xj) its area. Let also Dj be the sparse 2×m matrix with +1 at

indices (1, j) and (2, k), and−1 at (1, i) and (2, i). Dj is constructed in such a way
to give the differences of values of u on the vertices of the triangle with respect to
the values at the central vertex, Dju = (uj − ui, uk − ui)T. Here, u denotes one
of the membership vectors, ui. The gradient of the function u is constant on the
triangle and can be expressed in these terms by gj = (XT

j Xj)
−1/2Dju = Eju.

The area element corresponding to xi is given by ai = 1
3 (α1 + · · · + αt),

and the gradient at that vertex can be expressed by averaging the gj ’s with the
weights αj . This yields

∇u da ≈ 1

3

t∑
j=1

αjgj =
1

3

t∑
j=1

αjEju =
1

3
((α1, . . . , αt)⊗ I)Eu, (11)

where 1 is a 2t× 1 vector of ones, E is the 2t×m matrix stacking Ej ’s, I is the
2× 2 identity matrix, and ⊗ denotes the Kroenecker product (α1, . . . , αt)⊗ I =
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(α1I, . . . , αtI). Denoting by Gi the 2 × m matrix 1
3 ((α1, . . . , αt) ⊗ I)E corre-

sponding to the vertex xi, we can write ∇u da ≈ Giu.
Let us now consider all the points of the shape. We have∫

X

ρ2‖∇u‖2da ≈
m∑
i=1

ρ2i
ai

uTGT
i Giu. (12)

Introducing a 2m×m matrix

G =

(
diag

{
1
√
a1
, . . . ,

1
√
am

}
⊗ I

) G1

...
Gm

 (13)

allows to rewrite the former integral as∫
X

ρ2‖∇u‖2da ≈ ‖(diag{ρ} ⊗ I)Gu‖2 = uTGT(diag{ρ2} ⊗ I)Gu. (14)

Similarly, ∫
X

‖∇ρ‖2da ≈ ‖Gρ‖2 = ρTGTGρ (15)∫
X

(1− ρ)2da ≈ ρTAρ− 2aTρ + 1Ta. (16)

The discretized regularization term

R(u,ρ) =
λs
2

uTGT(diag{ρ2} ⊗ I)Gu +

λbρ
T

(
εGTG +

1

4ε
A

)
ρ− λb

4ε

(
2aTρ + 1Ta

)
(17)

is, therefore, quadratic in u and ρ independently (but not in both simultane-
ously!). Regularization terms for vi and σi are obtained in the same manner.

Alternating minimization. The problem (6) is solved by means of alter-
nating minimization, in the following steps:

1. Fix {ui,ρi} and compute the transformation {Ti} minimizing the data term∑n
i=1D(ui,TiYi). This step is akin to a step of multiple individual weighted

ICP problems.
2. Update Yi = TiYi, compute the correspondence and the alignment errors ei.
3. Fix {Ti, ei,ρi} and compute the weights {ui} solving the quadratic program-

ming (QP) problem

min
{ui}

n∑
i=1

uT
i ei +

λs
2

uT
i Biui s.t.

n∑
i=1

ui = 1; aTui = A(Yi); ui ≥ 0

where B = GT(diag{ρ2} ⊗ I)G as defined in (17).
4. Fix {Ti, ei,ui} and compute the phase fields {ρi} by solving the uncon-

strained optimization problem

min
{ρi}

n∑
i=1

ρT
i Ciρi −

λb
2ε

aTρi
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Fig. 2. Multi-part marching with missing parts. First row: two parts and the reference
shape; Second row: initialization with ICP; Third row: first iteration of alternate min-
imization; Fourth row: final result. Columns 1-2: data term; columns 3-5: ui, columns
6-8: ρi.

where C =
(
λs

2 S(u) + λbεG
TG + λb

4εA
)

, S(u) = diag{s1, . . . , sm} and si =

1
ai

uTGT
i Giu ≈ ‖∇u‖2da at vertex xi. The solution for each ρi is given by

ρ =

(
2
λsε

λb
S(u) + 4ε2GTG + A

)−1
a.

Problems (7)–(9)) are solved in a similar way: we fix all the parameters
above, compute the correspondence and follow steps 3 and 4 for {vi} and {σi},
respectively.

5 Experimental results

In this section, we show the performance of our algorithm under different settings
on three shapes from the Stanford repository (bunny, armadillo, and dragon).
The algorithm was implemented in MATLAB. Execution time depended on the
number of vertices and parts; typical execution time for a reference shape with
103 points and 5 parts was 3.5 sec. Figure 2 illustrates the different stages of our
algorithm on the problem of matching two parts (head and tail) of the dragon
shape with a missing part (chest).

Effect of regularization is shown in Figure 3. In this experiment, we use
the armadillo model fragmented into 4 parts, contaminated by Gaussian noise.
The resulting segmentation of the reference model varies with the modification of
the area (Figure 3, left) and alignment error (Figure 3, right) constraints. Small
area constraint results in large portions of the shape marked as “missing part”.
A similar result is obtained when allowing small alignment error. Increasing the
regularity penalty encourages segmentation into parts with smoother boundaries.
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Fig. 3. The effect of different terms and constraints in the problem. Note the effect of
over-regularization which causes shortening of the segment boundaries (top close-up),
and under-regularization causing fragmented segments (bottom close-up).

Fig. 4. Noisy parts of the dragon shape (left) and the matching result (right) using
the area constraint setting. The reference shape is shown in gray.

Handling noise is shown in Figure 4, where we fragmented the dragon
shape into four parts contaminated by gaussian noise and matched them to the
clean reference shape using our approach (the area constraint was computed on
the clean parts).

Handling clutter is shown in Figure 1. In this experiment, we printed the
bunny shape fragmented into ten parts using a 3D printer. Leaving one part (the
right ear) out, we scanned the remaining parts using a 3D scanner. The scan
imperfections are clearly seen as noise, clutter, and holes. Solving our problem
with the error in the constraint for indicators on the model and on each of the
parts, we get the segmentation shown in Figure 1 (center). Having removed the
clutter in this way, the segmented fragments fit together correction (Figure 1,
right).

6 Conclusions

We presented an efficient alternate optimization scheme for solving simultaneous
registration and segmentation of multi-part shapes. We are not aware of any
other method which handle both problems simultaneously. Our approach can
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handle noise, clutter, and missing part, as shown on real 3D data examples. In
future works, we will extend our method to the matching of solid (volumetric)
3D shapes, such as fragments encountered in archaeological applications.
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