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Abstract

Maximally stable component detection is a very popular method for feature analysis in images, mainly due to its low computation
cost and high repeatability. With the recent advance of feature-based methods in geometric shape analysis, there is significant
interest in finding analogous approaches in the 3D world. In this paper, we formulate a diffusion-geometric framework for stable
component detection in non-rigid 3D shapes, which can be used for geometric feature detection and description. A quantitative
evaluation of our method on the SHREC’10 feature detection benchmark shows its potential as a source of high-quality features.

Keywords: deformable shapes; feature detection; diffusion
geometry; component tree; level sets; MSER

1. Introduction

Over the past decade, feature-based methods have become
a ubiquitous tool in image analysis and a de facto standard in
many computer vision and pattern recognition problems. More
recently, there has been an increased interest in developing sim-
ilar methods for the analysis of 3D shapes. Feature descrip-
tors play an important role in many shape analysis applications,
such as finding shape correspondence [32] or assembling frac-
tured models [11] in computational aracheology. Bags of fea-
tures [29, 24, 33] and similar approaches [21] were introduced
as a way to construct global shape descriptors that can be effi-
ciently used for large-scale shape retrieval.

Many shape feature detectors and descriptors draw inspira-
tion from and follow analogous methods in image analysis. For
example, detection of geometric structures analogous to cor-
ners [28] and edges [14] in images has been studied. The his-
togram of intrinsic gradients used in [36] is similar in principle
to the scale invariant feature transform (SIFT) [16] which has
recently become extremely popular in image analysis. In [10],
the integral invariant signatures [17] successfully employed in
2D shape analysis were extended to 3D shapes.

Examples of 3D-specific descriptors include the popular spin
image [12], based on representation of the shape normal field in
a local system of coordinates. Recent studies introduced versa-
tile and computationally efficient descriptors based on the heat
kernel [31, 3] describing the local heat propagation properties
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on a shape. The advantage of these methods is the fact that heat
diffusion geometry is intrinsic and thus deformation-invariant,
which makes descriptors based on it applicable in deformable
shape analysis.

1.1. Related work

A different class of feature detection methods tries to find sta-
ble components or regions in the analyzed image or shape. In
the image processing literature, the watershed transform is the
precursor of many algorithms for stable component detection
[6, 34]. In the computer vision and image analysis community,
stable component detection is used in the maximally stable ex-
tremal regions (MSER) algorithm [18]. MSER represents in-
tensity level sets as a component tree and attempts finding level
sets with the smallest area variation across intensity; the use of
area ratio as the stability criterion makes this approach affine-
invariant, which is an important property in image analysis, as
it approximates viewpoint transformations. Alternative stabil-
ity criteria based on geometric scale-space analysis have been
recently proposed in [13].

In the shape analysis community, shape decomposition into
characteristic primitive elements was explored in [22]. Methods
similar to MSER have been explored in the works on topolog-
ical persistence [8]. Persistence-based clustering [4] was used
by Skraba et al. [30] to perform shape segmentation. In [7],
Digne et al. extended the notion of vertex-weighted component
trees to meshes and proposed to detect MSER regions using the
mean curvature. The approach was tested only in a qualitative
way, and not evaluated as a feature detector.

1.2. Main contribution

The main contribution of our framework is three-fold. First,
in Section 2 we introduce a generic framework for stable
component detection, which unites vertex- and edge-weighted
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graph representations (as opposed to vertex-weighting used
in image and shape maximally stable component detectors
[18, 7]). Our results (see Section 4) show that the edge-
weighted formulation is more versatile and outperforms its
vertex-weighted counterpart in terms of feature repeatability.
Second, in Section 3 we introduce diffusion geometric weight-
ing functions suitable for both vertex- and edge-weighted com-
ponent trees. We show that such functions are invariant un-
der a large class of transformations, in particular, non-rigid in-
elastic deformations, making them especially attractive in non-
rigid shape analysis. We also show several ways of construct-
ing scale-invariant weighting functions. Third, in Section 4 we
show a comprehensive evaluation of different settings of our
method on a standard feature detection benchmark comprising
shapes undergoing a variety of transformations (also see Fig-
ures 1 and 2).

2. Diffusion geometry

Diffusion geometry is an umbrella term referring to geomet-
ric analysis of diffusion or random walk processes [5]. We mod-
els a shape as a compact two-dimensional Riemannian manifold
X. In it simplest setting, a diffusion process on X is described
by the partial differential equation(

∂

∂t
+ ∆

)
f (t, x) = 0, (1)

called the heat equation, where ∆ denotes the positive-
semidefinite Laplace-Beltrami operator associated with the Rie-
mannian metric of X. The heat equation describes the propaga-
tion of heat on the surface and its solution f (t, x) is the heat dis-
tribution at a point x in time t. The initial condition of the equa-
tion is some initial heat distribution f (0, x); if X has a boundary,
appropriate boundary conditions must be added.

The solution of (1) corresponding to a point initial condition
f (0, x) = δ(x, y), is called the heat kernel and represents the
amount of heat transferred from x to y in time t due to the dif-
fusion process. The value of the heat kernel ht(x, y) can also
be interpreted as the transition probability density of a random
walk of length t from the point x to the point y.

Using spectral decomposition, the heat kernel can be repre-
sented as

ht(x, y) =
∑
i≥0

e−λitφi(x)φi(y). (2)

Here, φi and λi denote, respectively, the eigenfunctions and
eigenvalues of the Laplace-Beltrami operator satisfying ∆φi =

λiφi (without loss of generality, we assume λi to be sorted in
increasing order starting with λ0 = 0). Since the Laplace-
Beltrami operator is an intrinsic geometric quantity, i.e., it can
be expressed solely in terms of the metric of X, its eigenfunc-
tions and eigenvalues as well as the heat kernel are invariant
under isometric transformations (bending) of the shape. These
properties of the Laplacian have been previously exploited in
the literature for “natural” parametrizaton of surfaces [15], con-
struction of global shape descriptors [27], and detection of sym-
metries [25] just to mention a few.

The parameter t can be given the meaning of scale, and the
family {ht}t of heat kernels can be thought of as a scale-space of
functions on X. By integrating over all scales, a scale-invariant
version of (2) is obtained,

c(x, y) =
∑
i≥1

1
λi
φi(x)φi(y). (3)

This kernel is referred to as the commute-time kernel and can
be interpreted as the transition probability density of a random
walk of any length.

By setting y = x, both the heat and the commute time kernels,
ht(x, x) and c(x, x) express the probability density of remain-
ing at a point x, respectively after time t and after any time.
The value ht(x, x), sometimes referred to as the auto-diffusivity
function, is related to the Gaussian curvature K(x) through

ht(x, x) ≈
1

4πt

(
1 +

1
6

K(x)t + O(t2)
)
. (4)

This relation coincides with the well-known fact that heat tends
to diffuse slower at points with positive curvature, and faster at
points with negative curvature.

For any t > 0, the values of ht(x, y) at every x and y ∈ Bε(x) in
a small neighborhood around x contain full information about
the intrinsic geometry of the shape. Furthermore, Sun et al. [31]
show that under mild technical conditions, the set {ht(x, x)}t>0
is also fully informative (note that the auto-diffusivity function
has to be evaluated at all values of t in order to contain full
information about the shape metric).

2.1. Numerical computation

In the discrete setting, we assume that the shape is sampled at
a finite number of points V = {v1, . . . , vN}, upon which a simpli-
cial complex (triangular mesh) with vertices V , edges E ⊂ V×V
and faces F ⊂ V × V × V is constructed. The computation of
the discrete heat kernel ht(v1, v2) and the associated diffusion
geometry constructs is performed using formula (2), in which a
finite number of eigenvalues and eigenfunctions of the discrete
Laplace-Beltrami operator are taken. The latter can be com-
puted directly using the finite elements method (FEM) [27], of
by discretization of the Laplace operator on the mesh followed
by its eigendecomposition. Here, we adopt the second approach
according to which the discrete Laplace-Beltrami operator is
expressed in the following generic form,

(∆X f )i =
1
ai

∑
j

wi j( fi − f j), (5)

where fi = f (vi) is a scalar function defined on V , wi j are
weights, and ai are normalization coefficients. In matrix no-
tation, (5) can be written as ∆X f = A−1W f , where f is an
N × 1 vector, A = diag(ai) and W = diag

(∑
l,i wil

)
− (wi j).

The discrete eigenfunctions and eigenvalues are found by solv-
ing the generalized eigendecomposition [15] WΦ = AΦΛ,
where Λ = diag(λl) is a diagonal matrix of eigenvalues and
Φ = (φl(vi)) is the matrix of the corresponding eigenvectors.
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Different choices of A and W have been studied, depending
on which continuous properties of the Laplace-Beltrami oper-
ator one wishes to preserve [9, 35]. For triangular meshes, a
popular choice adopted in this paper is the cotangent weight
scheme [26, 19], in which

wi j =

{
(cotαi j + cot βi j)/2 (vi, v j) ∈ E;

0 else, (6)

where αi j and βi j are the two angles opposite to the edge be-
tween vertices vi and v j in the two triangles sharing the edge,
and ai are the discrete area elements.

3. Maximally stable components

Let us now focus on the undirected graph with the vertex
set V and edge set E underlying the discretization of a shape,
which with some abuse of notation we will henceforth denote
as X = (V, E). We say that two vertices v1 and v2 are adjacent if
(v1, v2) ∈ E. An ordered sequence π = {v1, . . . , vk} of vertices is
called a path if for any i = 1, . . . , k − 1, vi is adjacent to vi+1. In
this case, we say that v1 and vk are linked in X. The graph is said
to be connected if every pair of vertices in it is linked. A graph
Y = (V ′ ⊆ V, E′ ⊆ E) is called a subgraph of X and denoted
by Y ⊆ X. We say that Y is a (connected) component of X if Y
is a connected subgraph of X that is maximal for this property
(i.e., for any connected subgraph Z, Y ⊆ Z ⊆ X implies Y = Z).
Given E′ ⊆ E, the graph induced by E′ is the graph Y = (V ′, E′)
whose vertex set is made of all vertices belonging to an edge in
E′, i.e., V ′ = {v ∈ V : ∃v′ ∈ V, (v, v′) ∈ E′}.

A scalar function f : V → R is called a vertex weight, and
a graph equipped with it is called vertex-weighted. Similarly, a
graph equipped with a function d : E → R defined on the edge
set is called edge-weighted. In what follows, we will assume
both types of weights to be non-negative. Grayscale images are
often represented as vertex-weighted graphs with some regular
(e.g., four-neighbor) connectivity and weights corresponding to
the intensity of the pixels. Edge weights can be obtained, for ex-
ample, by considering a local distance function measuring the
dissimilarity of pairs of adjacent pixels. While vertex weighting
is limited to scalar (grayscale) images, edge weighting is more
general.

3.1. Component trees
Let (X, f ) be a vertex-weighted graph. For ` ≥ 0, the `-cross-

section of X is defined as the graph induced by E` = {(v1, v2) ∈
E : f (v1), f (v2) ≤ `}. Similarly, a cross-section of an edge-
weighted graph (X, d) is induced by the edge subset E` = {e ∈
E : d(e) ≤ `}. A connected component of the cross-section is
called an `-level set of the weighted graph.

For any component C of X, we define the altitude `(C) as the
minimal ` for which C is a component of the `-cross-section of
X. Altitudes establish a partial order relation on the connected
components of X as any component C is contained in a com-
ponent with higher altitude. The set of all such pairs (`(C),C)
therefore forms a tree called the component tree. Note that the
above definitions are valid for both vertex- and edge-weighted
graphs.

3.2. Maximally stable components

Since in our discussion undirected graphs are used as a dis-
cretization of smooth manifolds, we can associate with every
component C (or every subset of the vertex set in general) a
measure of area, A(C). In the simplest setting, the area of C
can be thought of as its cardinality. In a better discretization,
each vertex v in the graph is associated with a discrete area ele-
ment da(v), and the area of a component is defined as

A(C) =
∑
v∈C

da(v). (7)

Let now {(`,C`)} be a sequence of nested components form-
ing a branch in the component tree. We define the instability of
C` as

s(`) =
dA(C`)

d`
. (8)

In other words, the more the area of a component changes with
the change of `, the less stable it is. A component C`∗ is called
maximally stable if the instability function has a local minimum
at `∗. Maximally stable components are widely known in the
computer vision literature under the name of maximally stable
extremal regions or MSERs for short [18], with s(`∗) usually
referred to as the region score.

It is important to note that in their original definition, MSERs
were defined on a component tree of a vertex-weighted graph,
while our definition is more general and allows for edge-
weighted graphs as well. The importance of such an extension
will become evident in the sequel. Also, the original MSER
algorithm [18] assumes the vertex weights to be quantized,
while our formulation is suitable for scalar fields whose dy-
namic range is unknown a priori.

3.3. Computational aspects

We use the quasi-linear time algorithm detailed in [23] for
the construction of vertex-weighted component trees, and its
straightforward adaptation to the edge-weighted case. The al-
gorithm is based on the observation that the vertex set V can be
partitioned into disjoint sets which are merged together as one
goes up in the tree. Maintaining and updating such a partition
can be performed very efficiently using the union-find algorithm
and related data structures. The resulting tree construction com-
plexity is O(N log log N).

The derivative (8) of the component area with respect to `
constituting the stability function is computed using finite dif-
ferences in each branch of the tree. For example, in a branch
C`1 ⊆ C`2 ⊆ · · · ⊆ C`K ,

s(`k) ≈
A(C`k+1 ) − A(C`k−1 )

`k+1 − `k−1
. (9)

The function is evaluated and its local minima are detected in
a single pass over the branches of the component tree starting
from the leaf nodes. We further filter out maximally stable re-
gions with too high values of s. In cases where two nested
regions overlapping by more that a predefined threshold are de-
tected as maximally stable, only the bigger one is kept.
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4. Weighting functions

Unlike images where methods based on the analysis of the
component tree have been shown to be extremely success-
ful e.g. for segmentation or affine-invariant feature detection
(namely, the MSER feature detector), similar techniques have
been only scarcely explored for 3D shapes (with the notable
exceptions of [7] and [30]). One of possible reasons is the fact
that while images readily offer pixel intensities as the trivial
vertex weight field, 3D shapes are not generally equipped with
any such field. While the use of the mean curvature was pro-
posed in [7], it lacks most of invariance properties required in
deformable shape analysis. Here, we follow [30] in adopting
the diffusion geometry framework and show that it allows to
construct both vertex and edge weights suitable for the defini-
tion of maximally stable components with many useful proper-
ties.

Given a vertex v, the values of the discrete auto-diffusivity
function can be directly used as the vertex weights,

f (v) = ht(v, v). (10)

Maximally stable components defined this way are intrinsic
and, thus, invariant to non-rigid bending. Such strong invari-
ance properties are particularly useful in the analysis of de-
formable shapes. However, unlike images where the inten-
sity field contains all information about the image, the above
weighting function does not describe the intrinsic geometry of
the shape entirely. It furthermore depends on the selection of
the scale parameter t.

Edge weights constitute a more flexible alternative allowing
to incorporate fuller geometric information. The simplest edge
weighting scheme can be obtained from a vector-valued field
defined on the vertices of the graph. For example, associating
ht(v, v) for t ∈ [t1, t2] with each vertex v, one can define an edge
weighting function

d(v1, v2) = ‖ht(v1, v1) − ht(v2, v2)‖t

=

(∫ t2

t1
(ht(v1, v1) − ht(v2, v2))2dt

)1/2

(11)

(here, we write ‖ · ‖t to make explicit that the norm is taken
with respect to the variable t). The function has a closed-form
expression that can be obtained by substituting the spectral de-
composition (2) of the heat kernel. The advantage of this ap-
proach stems from its ability to incorporate multiple scales.
Theoretically, the set of ht(v, v) at all scales contains full in-
formation about the intrinsic geometry of the shape.

In a more general setting, edge weights do not necessarily
need to stem from any finite- or infinite-dimensional vector field
defined on the vertices. For example, since the discrete heat
kernel ht(v1, v2) represents “proximity” between v1 and v2, a
function inversely proportional to the value of the heat kernel,
e.g.

d(v1, v2) =
1

ht(v1, v2)
(12)

can be used as an edge weight. For sufficiently small values of
t, this function also contains full information about the shape’s
intrinsic geometry.

Another way of creating edge weights inversely proportional
to ht is by integrating the squared difference between the kernels
centered at v1 and v2 over the entire shape,

d(v1, v2) = ‖ht(v1, ·) − ht(v2, ·)‖X

=

∑
v∈V

(ht(v1, v) − ht(v2, v))2da(v)

1/2

. (13)

This construction has been previously introduced in [5] under
the name of diffusion distance, which constitutes an intrinsic
metric on X and is fully informative for small t’s.

4.1. Scale invariance
The vertex weighting function (10) and the edge weighting

functions (11), (12) and (13) based on the heat kernel are not
scale invariant since a global scaling of the shape by a factor
γ > 0 influences the heat kernel as γ2hγ2t(v1, v2), scaling by γ2

both the time parameter and the kernel itself. A possible rem-
edy is to replace the heat kernel by the scale invariant commute
time kernel. However, due to the slow decay of the expansion
coefficients λ−1

i in (3) compared to e−λit in (2), the numerical
computation of the commute time kernel is more difficult as it
requires many more eigenfunctions of the Laplacian to achieve
the same accuracy.

As an alternative, it is possible to use a sequence of transfor-
mations of ht(v1, v2) that renders it scale invariant [3]. First, the
heat kernel is sampled logarithmically in time. Next, the log-
arithm and a derivative with respect to time of the heat kernel
values are taken to undo the multiplicative constant. Finally,
taking the magnitude of the Fourier transform allows to undo
the scaling of the time variable. This yields the modified heat
kernel of the form

ĥω(v1, v2) =

∣∣∣∣∣∣F
{
∂ log ht(v1, v2)

∂ log t

}
(ω)

∣∣∣∣∣∣ , (14)

where ω denotes the frequency variable of the Fourier trans-
form. The transform is computed numerically using the FFT
as detailed in [3]. Substituting ĥω into (11)–(12) yields scale
invariant edge weighting functions. By selecting a single fre-
quency ω, one can construct a scale invariant vertex weight
f (v) = ĥω(v, v) similar to (10). Another way of constructing
a scale invariant vertex weight is by integrating ĥω over a rage
of frequencies, e.g.,

f (v) = ‖ĥω(v, v)‖ω =

(∫ ω2

ω1

ĥ2
ω(v, v)dω

)1/2

. (15)

It is worthwhile noting that the fact that the component inclu-
sion relations giving rise to component tree are invariant to any
monotonous transformation of the weighting functions [18], al-
ready gives very strong invariance properties to our region de-
tector. In particular, for all time parameter dependent weighting
functions, it is sufficient to transform the effect of shape scal-
ing into a monotonous transformation of the weight instead of
completely undoing its effect on t and the scale of the weight.
For example, the kernel

ˆ̂hω(v1, v2) =
∣∣∣F {

log hτ(v1, v2)
}
(ω)

∣∣∣ (16)
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with τ = eat denoting the logarithmic time parameter becomes
γ2 ˆ̂hω(v1, v2) under global scaling by γ. The component tree pro-
duced by such a kernel (used either as vertex or edge weight)
is scale invariant. However, the instability function (8) com-
puted on such a tree will be affected by the scaling (while its lo-
cal minimizers, the stable components, will remain unaffected).
As we will demonstrate in the sequel, in order to achieve prac-
tical good performance of the detector, it is imperative to se-
lect an appropriate threshold on the instability function. The
lack of invariance of the region scores constitutes an obstacle
to such a selection. We also found that the logarithmic trans-
formation and derivative (14) improve repeatability. Further-
more, by completely undoing the effect of scaling, the modified
heat kernel can be used both in the weighting function and in
descriptors of the maximally stable components as detailed in
the following section. These finding motivate the selection of
(14) as the basis for scale-invariant weights. An alternative to
this approach would be designing a more sophisticated scale-
invariant instability function. We intend to explore this option
in follow up studies.

5. Descriptors

5.1. Point descriptors
Once the regions are detected, their content can be described

using any standard point-wise descriptor of the form α : V →
Rq. In particular, here we consider point-wise heat kernel de-
scriptors proposed in [31]. The heat kernel descriptor (or heat
kernel signature, HKS) is computed by taking the values of the
discrete auto-diffusivity function at vertex v at multiple times,
α(v) = (ht1 (v, v), . . . , htq (v, v)), where t1, . . . , tq are some fixed
time values. Such a descriptor is a vector of dimensionality q
at each point. Since the heat kernel is an intrinsic quantity, the
HKS is invariant to isometric transformations of the shape.

A scale-invariant version of the HKS descriptor (SI-HKS)
can be obtained as proposed [3] by replacing ht with ĥω
from (14), yielding α(v) = (ĥω1 (v, v), . . . , ĥωq (v, v)), where
ω1, . . . , ωq are some fixed frequency values. In the follow-
ing experiments, the heat kernel was sampled at time values
t = 21, 21+1/16, . . . , 225. The first six discrete frequencies of the
Fourier transform were taken, repeating the settings of [3].

5.2. Region descriptors
Given a descriptor α(v) at each vertex v ∈ V , the simplest

way to define a region descriptor of a component C ⊂ V is by
computing the average of α in C,

β(C) =
∑
v∈C

α(v)da(v). (17)

The resulting region descriptor β(C) is a vector of the same di-
mensionality q as the point descriptor α.

An alternative construction considered here follows Ovs-
janikov et al. [24] where a global shape descriptors were ob-
tained from point-wise descriptors using the bag of features
paradigm [29]. In this approach, a fixed “geometric vocabu-
lary” α1, . . . , αp is computed by means of an off-line clustering

of the descriptor space. Next, each point descriptor at v is rep-
resented in the vocabulary using vector quantization, yielding a
point-wise p-dimensional distribution of the form

θ(v) ∝ e−‖α(v)−αl‖
2/2σ2

. (18)

The distribution is normalized in such a way that the elements
of θ(v) sum to one. In the case of σ = 0, hard vector quantiza-
tion is used, and θl(v) = 1 for αl being the closest element of the
geometric vocabulary to α(v) in the descriptor space, and zero
elsewhere. Given a component C, we can define a local bag of
features by computing the distribution of geometric words over
the region,

β(C) =
∑
v∈C

θ(v)da(v). (19)

Such a bag of features is used as a region descriptor of dimen-
sionality p.

6. Results

6.1. Dataset
The proposed approach was tested on the data of the

SHREC’10 feature detection and description benchmark [2].
The SHREC dataset consisted of three shape classes, with sim-
ulated transformations applied to them. Shapes are represented
as triangular meshes with approximately 10,000 to 50,000 ver-
tices. In our experiments, all meshes were downsampled to at
most 10,000 vertices. Each shape class contained nine cate-
gories of transformations: isometry (non-rigid almost inelastic
deformations), topology (welding of shape vertices resulting in
different triangulation), micro holes and big holes simulating
missing data and occlusions, global and local scaling, additive
Gaussian noise, shot noise, and downsampling (less than 20%
of the original points). In transformation appeared in five differ-
ent strengths. Vertex-wise correspondence between the trans-
formed and the null shapes was given and used as the ground
truth in the evaluation of region detection repeatability. Since
all shapes exhibit intrinsic bilateral symmetry, best results over
the groundtruth correspondence and its symmetric counterpart
were used.

We also used several deformable shapes from the TOSCA
dataset [1] for a qualitative evaluation.

6.2. Detector repeatability
The evaluation of the proposed feature detector and descrip-

tor followed the spirit of the influential work by Mikolajczyk
et al. [20]. In the first experiment, the repeatability of the de-
tector was evaluated. Let X and Y be the null and the trans-
formed version of the same shape, respectively. Let X1, . . . , Xm

and Y1, . . . ,Yn denote the regions detected in X and Y , and let
X′j be the image of the region Y j in X under the ground-truth
correspondence.1 Given two regions Xi and Y j, their overlap is

1As some of the transformed shapes had missing data compared to the null
shape, comparison was defined single-sidedly. Only regions in the transformed
shape that had no corresponding regions in the null counterpart decreased the
overlap score, while unmatched regions of the null shape did not.
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Figure 1: Maximally stable regions detected on different shapes from the TOSCA dataset. Note the invariance of the regions to strong non-rigid deformations.
Also observe the similarity of the regions detected on the female shape and the upper half of the centaur (compare to the male shape from Figure 2). Regions were
detected using ht(v, v) as vertex weight function, with t = 2048.

defined as the following area ratio

O(Xi, X′j) =
A(Xi ∩ X′j)

A(Xi ∪ X′j)
=

A(Xi ∩ X′j)

A(Xi) + A(X′j) − A(Xi ∩ X′j)
. (20)

The repeatability at overlap o is defined as the percentage of re-
gions in Y that have corresponding counterparts in X with over-
lap greater than o [20]. An ideal detector has the repeatability
of 1.

Four vertex weight functions were compared: discrete heat
kernel (10) with t = 2048, commute time kernel (3), modified
heat kernel with ω = 0, and the norm of the modified heat ker-
nel (15). These four scalar fields were also used to construct
edge weights according to d(v1, v2) = | f (v1) − f (v2)|. Further-
more, since these kernels are functions of a pair of vertices,
they were used to define edge weights according to (12). In
addition, we also tested edge weights constructed according to
(11) and the diffusion distance (13). Unless mentioned other-
wise, t = 2048 was used for the heat kernel and ω = 0 for the
modified heat kernel, as these settings turned out to give best
performance on the SHREC’10 dataset.

We first evaluated different region detectors qualitatively us-
ing shapes from the SHREC’10 and the TOSCA datasets. Fig-
ure 1 shows the regions detected using the vertex weight ht(v, v)
with t = 2048 on a few sample shapes from the TOSCA dataset.
Figure 2 depicts the maximally stable components detected
with the same settings on several shapes from the SHREC
dataset. Similar regions were obtained using the edge weight-
ing function 1/ht(v1, v2). In all cases, the detected regions ap-
pear robust and repeatable under the transformations. Surpris-
ingly, many of these regions have a clear semantic interpreta-
tion. Moreover, similarly looking regions are detected on the
male and female shapes, and the upper half of the centaur. This
makes the proposed feature detector a good candidate for partial
shape matching and retrieval.

An ideal detector should produce a large quantity of regions
with perfect repeatability. The latter is practically unachievable,
as all detectors will produce both highly repeatable as well as
poorly repeatable regions. However, a detector can be deemed
good if the repeatability of the detected regions is highly corre-
lated with their stability scores. This allows selecting a cutoff

threshold on the instability function i.e., the maximum region

instability value that is still accepted by the detector, such that
the accepted regions are highly repeatable with high probabil-
ity, while the rejected regions are likely not to be repeatable.
As a means for threshold selection, we estimated on a repre-
sentative set of shapes the empirical distributions of the number
of detected regions as a function of the instability score and
the overlap with the corresponding groundtruth regions. These
histograms are depicted in Figure 3. In each of the tested de-
tectors, the instability score threshold was selected to maximize
the detection of high-overlap regions.

Table 1 summarizes the repeatability of different weighting
functions at overlap of 75%. Figures 4 and 5 depict the repeata-
bility and the number of correctly matching regions as the func-
tion of the overlap for the best four of the compared weighting
functions. We conclude that scale-dependent weighting gen-
erally outperform their scale-invariant counterparts in terms of
repeatability. The four scalar fields corresponding to different
auto-diffusivity functions perform well both when used as ver-
tex and edge weights. Best repeatability is achieved by the edge
weighting function 1/ht(v1, v2). Best scale invariant weighting
is also the edge weight 1/c(v1, v2).

6.3. Descriptor discriminativity
In the second experiment, the discriminativity of region de-

scriptors was evaluated by measuring the relation between dis-
tance in the descriptor space and the overlap between the corre-
sponding regions.

Using the notation from the previous section, let Yi be one of
the n maximally stable components detected on a transformed
shape Y , X′i its image on the null shape X under the ground
truth correspondence, and let X j denote one of the m maximally
stable components detected on the null shape. A groundtruth
relation between the regions is established by fixing a minimum
overlap ρ = 0.75 and deeming Yi and X j matching if oi j =

O(X′i , X j) ≥ ρ. Let us now be given a region descriptor β; for
simplicity we assume the distance between the descriptors to
be the standard Euclidean distance. By setting a threshold τ on
this distance, Yi and X j will be classified as positives if di j =

‖β(Yi)− β(X j)‖ ≤ τ. We define the true positive rate as the ratio

TPR =
|{di j ≤ τ}|

|{oi j ≥ ρ}|
; (21)
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Figure 2: Maximally stable regions detected on shapes from the SHREC’10 dataset using the vertex weight ht(v, v) with t = 2048. First row: different approximate
isometries of the human shape. Second row: different transformations (left-to-right): holes, localscale, noise, shotnoise and scale.

similarly, the false positive rate is defined as

FPR =
|{di j > τ}|

|{oi j < ρ}|
. (22)

A related quantity is the false negative rate defined as FNR =

1 − TPR. By varying the threshold τ, a set of pairs (FPR,TPR)
referred to as the receiver operator characteristic (ROC) curve
is obtained. The particular point on the ROC curve for which
the false positive and false negative rates coincide is called
equal error rate (EER). We use EER as a scalar measure for
the descriptor discriminativity. Ideal descriptors have EER = 0.

Another descriptor performance criterion used here considers
the first matches produced by the descriptor distance. For that
purpose, for each Xi we define its first match as the Y j∗(i) with
j∗(i) = arg min j di j (nearest neighbor of β(Xi) in the descriptor
space). The matching score is defined as the ratio of correct
first matches for a given overlap ρ,

score(ρ) =
|{oi j∗(i) ≥ ρ}|

m
. (23)

The following four weighting functions exhibiting best re-
peatability scores in the previous experiment were used to de-
fine region detectors: the edge weight 1/ht(v1, v2) with t = 1024
(absolute winner in terms of repeatability), the vertex weight
ht(v, v) (second-best repeatability), its edge-weight counter-
part |ht(v1, v1) − ht(v2, v2)| (gives lower repeatability scores but
supplies almost twice correspondences), and the edge weight
1/c(v1, v2) (best scale invariant detector). Given the maximally

stable components detected by a selected detector, region de-
scriptors were calculated. We used two types of point descrip-
tors: the heat kernel signature ht(v, v) sampled at six time val-
ues t = 16, 22.6, 32, 45.2, 64, 90.5, 128, and its scale invariant
version ĥω(v, v), for which we have taken the first six discrete
frequencies of the Fourier transform (these are settings identical
to [3]). These point descriptors were used to create region de-
scriptors using averaging ( 17) and local bags of features ( 19).
Bags of features were tested with vocabulary sizes p = 10 and
12. Table 2 summarizes the performance in terms of EER of
different combinations of weighting functions and region de-
scriptors. Figure 6 depicts the ROC curves of different descrip-
tors of vertex- and edge-weighted maximally stable component
detectors.

Figures 7–8 show the number of correct first matches and the
matching score as a function of the overlap for different choices
of weighting functions and descriptors. Examples of matching
regions are depicted in Figure 9. This shows the potential ap-
plicability of our approach to deformable shape retrieval.

We conclude that the scale invariant HKS descriptor consis-
tently exhibits higher performance in both the average and bag
of features flavors. The latter flavors perform approximately the
same. The HKS descriptor, on the other hand, performs better
in the bag of feature setting, though never reaching the scores
of SIHKS. Surprisingly, as can be seen from Figures 7–8, the
SIHKS descriptor is consistently more discriminative even in
transformations not including scaling.
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Figure 3: Distributions of maximally stable components as a function of the overlap to the groundtruth regions and instability score. Left-to-right top-to-bottom are
shown the following weighting function: vertex weight ht(v, v) at t = 2048, vertex weight c(v, v), edge weight ‖ht(v1, ·) − ht(v2, ·)‖X (diffusion-distance) at t = 2048,
edge weight 1/ht(v1, v2) at t = 2048, vertex weight ĥω(v, v) at ω = 0 and edge weight |ht(v1, v1)− ht(v2, v2)| at t = 2048. Good detectors are characterized by a large
number of high-overlap stable regions (many regions in the upper left corner of the plot) that can be easily separated from the low-overlap regions that should be
concentrated in the lower right corner.

7. Conclusions

We presented a generic framework for the detection of stable
regions in non-rigid shapes. Our approach is based on the max-
imization of a stability criterion in a component tree represen-
tation of the shape with vertex or edge weights. Using diffusion
geometric weighting functions allows obtaining a feature de-
tection algorithm that is invariant to a wide class of shape trans-
formations, in particular, non-rigid bending and global scaling,
which makes our approach applicable in the challenging setting
of deformable shape analysis. In followup studies, we are go-
ing to explore the uses of the proposed feature detectors and
descriptors in shape matching and retrieval problems. We also
intend to study the construction of more interesting stability and
region score functions along the lines suggest in [13] and study
their invariance properties.
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Figure 4: Repeatability of maximally stable components with the vertex weight ht(v, v) (first row) and edge weight 1/ht(v1, v2) (second row), t = 2048.
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Figure 5: Repeatability of maximally stable components with the edge weight |ht(v1, v1) − ht(v2, v2)| (first row) and edge weight 1/c(v1, v2) (second row), t = 2048.
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Figure 6: ROC curves of different regions descriptors (“vs” stands for vocabulary size). The following detectors were used: vertex weight ht(v, v) (left), and edge
weight 1/ht(v1, v2) (right).
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Figure 7: Performance of region descriptors with regions detected using the vertex weight ht(v, v), t = 2048. Shown are the HKS descriptor (first row) and SI-HKS
descriptor (second row).
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Figure 8: Performance of region descriptors with regions detected using the edge weight 1/ht(v1, v2), t = 2048. Shown are the HKS descriptor (first row) and
SI-HKS descriptor (second row).
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Figure 9: Examples of closest matches found for different query regions on the TOSCA dataset. Shown from left to right are: query, 1st, 2nd, 4th, 10th, and 15th
matches. Vertex weight ht(v, v) with t = 2048 was used as the detector; average SIHKS was used as the descriptor.

14


