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Abstract—Informative and discriminative feature descriptors play a fundamental role in deformable shape analysis. For example, they
have been successfully employed in correspondence, registration, and retrieval tasks. In the recent years, significant attention has been
devoted to descriptors obtained from the spectral decomposition of the Laplace-Beltrami operator associated with the shape. Notable
examples in this family are the heat kernel signature (HKS) and the recently introduced wave kernel signature (WKS). Laplacian-
based descriptors achieve state-of-the-art performance in numerous shape analysis tasks; they are computationally efficient, isometry-
invariant by construction, and can gracefully cope with a variety of transformations. In this paper, we formulate a generic family of
parametric spectral descriptors. We argue that in order to be optimized for a specific task, the descriptor should take into account the
statistics of the corpus of shapes to which it is applied (the “signal”) and those of the class of transformations to which it is made
insensitive (the “noise”). While such statistics are hard to model axiomatically, they can be learned from examples. Following the
spirit of the Wiener filter in signal processing, we show a learning scheme for the construction of optimized spectral descriptors and
relate it to Mahalanobis metric learning. The superiority of the proposed approach in generating correspondences is demonstrated on
synthetic and scanned human figures. We also show that the learned descriptors are robust enough to be learned on synthetic data
and transferred successfully to scanned shapes.

Index Terms—diffusion geometry, heat kernel signature, wave kernel signature, HKS, WKS, descriptor, deformable shapes, corre-
spondence, retrieval, spectral methods, Laplace-Beltrami operator, metric learning, Wiener filter, Mahalanobis distance
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1 INTRODUCTION

The notion of a feature descriptor is fundamental in shape
analysis. A feature descriptor assigns each point on the
shape a vector in some single- or multi-dimensional
feature space representing the point’s local and global
geometric properties relevant for a specific task. This
information is subsequently used in higher-level tasks:
for example, in shape matching, descriptors are used
to establish an initial set of potentially corresponding
points [1], [2]; in shape retrieval a global shape descriptor
is constructed as a bag of “geometric words” expressed
in terms of local feature descriptors [3], [4]; segmenta-
tion algorithms rely on the similarity or dissimilarity of
feature descriptors to partition the shape into stable and
meaningful parts [5].

When constructing or choosing a feature descriptor,
it is imperative to answer two fundamental questions:
which shape properties the descriptor has to capture,
and to which transformations of the shape it shall remain
invariant or, at least, insensitive.
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1.1 Previous work

Early research on feature descriptors focused mainly on
invariance under global Euclidean transformations (rigid
motion). Classical works in this category include the
shape context [6] and spin image [7] descriptors, as well
as integral volume descriptors [8], [1] and multiscale
local features [9] just to mention a few out of many.

In the past decade, significant effort has been invested
in extending the invariance properties to non-rigid de-
formations. Some of the classical rigid descriptors were
extended to the non-rigid case by replacing the Eu-
clidean metric with its geodesic counterpart [10], [11].
Also, the use of conformal factors has been proposed
[12]. Being intrinsic properties of a surface, both are
independent of the way the surface is embedded into
the ambient Euclidean space and depend only on its
metric structure. This makes such descriptors invariant
to inelastic bending transformations. However, geodesic
distances suffer from strong sensitivity to topological
noise, while conformal factors, being a local quantity, are
influenced by geometric noise. Both types of noise, vir-
tually inevitable in real applications, limit the usefulness
of such descriptors.

Recently, a family of intrinsic geometric properties
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broadly known as diffusion geometry has become grow-
ingly popular. The studies of diffusion geometry are
based on the theoretical works by Berard et al. [13]
and later by Coifman and Lafon [14] who suggested
to use the eigenvalues and eigenvectors of the Laplace-
Beltrami operator associated with the shape to construct
invariant metrics known as diffusion distances. These
distances as well as other diffusion geometric constructs
have been show significantly more robust compared to
their geodesic counterparts [15], [16]. Diffusion geom-
etry offers an intuitive interpretation of many shape
properties in terms of spacial frequencies and allows
to use standard harmonic analysis tools. Also, recent
advances in the discretization of the Laplace-Beltrami
operator brought forth efficient and robust numerical
and computational tools.

These methods were first explored in the context of
shape processing by Lévy [17]. Several attempts have
also been made to construct feature descriptors based on
diffusion geometric properties of the shape. Rustamov
[18] proposed to construct the global point signature (GPS)
feature descriptors by associating each point with an `2

sequence based on the eigenfunctions and the eigenval-
ues of the Laplacian, closely resembling a diffusion map
[14]. A major drawback of such a descriptor was its
ambiguity to sign flips of each individual eigenfunction
(or, in the most general case, to rotations and reflections
in the eigenspaces corresponding to each eigenvalue).

A remedy was proposed by Sun et al. who in their
influential paper [19] introduced the heat kernel signa-
ture (HKS), based on the fundamental solutions of the
heat equation (heat kernels). In [20], another physically-
inspired descriptor, the wave kernel signature (WKS) was
proposed as a solution to the excessive sensitivity of the
HKS to low-frequency information. As of today, these
descriptors achieve state-of-the-art performance in many
deformable shape analysis tasks [21], [22] and lie in the
foundation of many recent works in shape analysis such
as [23], [4], [24].

1.2 Contribution

In this paper, we remain within the diffusion geometric
framework and propose a generic family of spectral
feature descriptors that generalize the HKS and the
WKS. We analyze both descriptors within this frame-
work pointing to their advantages and drawbacks, and
enumerate a list of desired properties a descriptor should
have.

We argue that in order to construct a good task-specific
spectral descriptor, one has to be in the position of
defining the spectral content of the geometric “signal”
(i.e., the properties distinguishing different classes of
shapes from each other) and the “noise” (i.e., the changes
of the latter properties due to the deformations the
shapes undergo). Both are functions of the corpus of data
of interest, and the transformations invariance to which
is desired. While it is notoriously difficult to characterize
such properties analytically, we propose to learn them
from examples in a way resembling the construction of
a Wiener filter that passes frequencies containing more
signal than noise, while attenuating those where the
noise covers the signal. We give experimental evidence
to the fact that the proposed construction of descriptors
is robust enough to be transferred across very different
sets of data.

This study was in part inspired by the insightful paper
by Auby et al. [20], and in part is a continuation of
[25] where we attempted to construct optimal diffusion
metrics. However, since diffusion metrics are character-
ized by a single frequency response, the attempt had a
modest success. On the other hand, vector-valued feature
descriptors allowing for multiple frequency response
functions have, in our opinion, more potential. This
paper does not intend to exhaust this potential, but
merely to explore a part of it. We focus on deformable
shape correspondence problems, and attempt to learn
descriptors that improve this task on specific classes of
shapes. We believe that approaching correspondence as
a learning problem is a novel perspective that can be
beneficial in shape analysis and, generally, in computer
vision.

1.3 Organization

The rest of the paper is organized as follows: In Sec-
tion 2 we introduce the mathematical notation of the
Laplace-Beltrami operator and its spectrum and briefly
overview the state-of-the-art descriptors based on its
properties. In Section 3, we indicate several drawbacks
of these descriptors and analyze the properties a good
descriptor should satisfy. We present a spectral descrip-
tor generalizing the heat and the wave kernel signatures,
and show an approach for learning its optimal task-
specific parameters from examples. The relation to metric
learning is highlighted. In Section 4, the superiority of
the proposed learnable descriptor over the fixed ones is
shown experimentally on the synthetic TOSCA as well as
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the scanned SCAPE datasets. Finally, Section 5 concludes
the paper.

Since the figures visualizing the experiments in Sec-
tion 4 are relatively self-explanatory, we decided to
incorporate them in the flow as illustrations to the
phenomena discussed in the paper even before the exact
experimental settings are detailed.

2 SPECTRAL DESCRIPTORS

We model a shape as a compact two-dimensional man-
ifold X , possibly with a boundary ∂X . The manifold is
endowed with a Riemannian metric defined as a local in-
ner product 〈·, ·〉x on the tangent plane TxX at each point
x ∈ X . Given a smooth scalar field f on the manifold, its
gradient grad f is the vector field satisfying f(x+ dr) =

f(x) + 〈grad f(x), dr〉x for every infinitesimal tangent
vector dr ∈ TxX . The inner product 〈grad f(x), v〉x can
be interpreted as the directional derivative of f in the
direction v. A directional derivative of f whose direction
at every point is defined by a vector field V on the
manifold is called the Lie derivative of f along V . The
Lie derivative of the manifold volume (area) form along
a vector field V is called the divergence of V , div V .
The negative divergence of the gradient of a scalar field
f , ∆f = −div grad f , is called the Laplacian of f . The
operator ∆ is called the Laplace-Beltrami operator, and it
generalizes the standard notion of the Laplace operator
to manifolds. Note that we define the Laplacian with the
negative sign to conform to the computer graphics and
computational geometry convention.

2.1 Laplacian spectrum and Shape DNA

Being a positive self-adjoint operator, the Laplacian ad-
mits an eigendecomposition

∆φ = νφ (1)

with non-negative eigenvalues ν and corresponding or-
thogonormal eigenfunctions φ. Furthermore, due to the
assumption that our domain is compact, the spectrum is
discrete, 0 = ν1 < ν2 < · · · .

In physics, (1) is known as the Helmohltz equation rep-
resenting the spatial component of the wave equation.
Thinking of our domain as of a vibrating membrane
(with appropriate boundary conditions), the φk’s can be
interpreted as natural vibration modes of the membrane,
while the νk’s assume the meaning of the corresponding

vibration frequencies. In fact, in this setting the eigen-
values have inverse area or squared spatial frequency
units.

This physical interpretation leads to a natural ques-
tion whether the eigenvalues of the Laplace-Beltrami
operator fully determine the shape of the domain. The
essence of this question was beautifully captured by
Mark Kac as “can one hear the shape of the drum?” [26].
Unfortunately, the answer to this question is negative as
there exist isospectral manifolds that are not isometric.
The exact relation between the latter two classes of
shapes is unknown, but it is generally believed that
most isospectral manifolds are also isometric. Based on
this belief, Reuter et al. [27] proposed to use truncated
sequences of the Laplacian eigenvalues as isometry-
invariant shape descriptors, dubbed by the authors as
shape DNA.

2.2 Heat kernel signature

The Laplace-Beltrami operator plays a central role in the
heat equation describing diffusion processes on manifolds.
In our notation, the heat equation can be written as(

∆ +
∂

∂t

)
u(x, t) = 0 (2)

where u(x, t) is the distribution of heat on the manifold
at point x at time t. The initial condition is some initial
heat distribution u0(x) at time t = 0, and boundary con-
ditions are applied in case the manifold has a boundary.

The solution of the heat equation at time t can be
expressed as the application of the heat operator

u(x, t) =

∫
ht(x, y)u0(y)da(y) (3)

to the initial distribution. The kernel ht(x, y) of this
integral operator is called the heat kernel and it corre-
sponds to the solution of the heat equation at point x at
time t with the initial distribution being a delta function
at point y. From the signal processing perspective, the
heat kernel can be interpreted as a non shift-invariant
“impulse response”. It also describes the amount of heat
transferred from point x to point y after time t, as well as
the transition probability density from point x to point
y by a random walk of length t.

According to the spectral decomposition theorem, the
heat kernel can be expressed as

ht(x, y) =
∑
k≥1

exp(−νkt)φk(x)φk(y), (4)
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where exp(−νt) can be interpreted as its “frequency
response” (note that with a proper selection of units in
(3), the eigenvalues νk assume inverse time or frequency
units). The bigger is the time parameter, the lower is
the cut-off frequency of the low-pass filter described by
this response and, consequently from the uncertainty
principle, the bigger is the support of ht on the manifold.
The quantity

ht(x, x) =
∑
k≥1

exp(−νkt)φ2k(x), (5)

sometimes referred to as the autodiffusivity function [28],
describes the amount of heat remaining at point x after
time t. Furthermore, for small values of t is it related to
the manifold curvature according to

ht(x, x) =
1

4πt
+
K(x)

12π
+O(t), (6)

where K(x) denotes the Gaussian (in general, sectional)
curvature at point x.

In [19], Sun et al. showed that under mild technical
conditions, the sequence {ht(x, x)}t>0 contains full in-
formation about the metric of the manifold. The authors
proposed to associate each point x on the manifold with
a vector

p(x) = (ht1(x, x), . . . , htn(x, x))
T
, (7)

of the autodiffusivity functions sampled at a finite set
of times t1, . . . , tn. The authors dubbed such a feature
descriptor as the heat kernel signature. In [4], an HKS-
based bag-of-features approach was introduced under
the name of Shape Google and was shown to achieve
state-of-the-art results in deformable shape retrieval. In
[24], a scale-invariant version of the HKS was proposed,
and [29] extended the descriptor to volumes.

Despite its success, the heat kernel descriptor suffers
from several drawbacks. First, being a collection of low-
pass filters (Figure 1, top), the descriptor is dominated
by low frequencies conveying information mostly about
the global structure of the shape. While being important
to discriminate between distinct shapes (which usually
differ greatly at coarse scales), this emphasis of low
frequencies damages the ability of the descriptor to
precisely localize features. This phenomenon can be
observed in Figure 2 (top). In fact, the distance between
HKS computed at a point x and HKS of neighboring
points increases slowly, while for good localization a
steeper increase is required.
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Fig. 1. Examples of (unnormalized) kernels used for the
computation of the heat kernel (first row), wave kernel
(second row), and trained optimized kernel (last row)
descriptors.

2.3 Wave kernel signature

A remedy to the poor feature localization of the heat
kernel descriptor was proposed by Aubry et al. [20]. The
authors proposed to replace the heat diffusion model
that gives rise to the HKS by a different physical model
in which one evaluates the probability of a quantum
particle with a certain energy distribution to be located
at a point x. The behavior of a quantum particle on a
surface is governed by the Schrödinger equation(

i∆ +
∂

∂t

)
ψ(x, t) = 0 (8)

where ψ(x, t) is the complex wave function. Despite an
apparent similarity to the heat equation, the multipli-
cation of the Laplacian by the complex unity in the
Schrödinger equation has a dramatic impact on the dy-
namics of the solution. Instead of representing diffusion,
ψ now has oscillatory behavior.

Let us assume that the quantum particle has an initial
energy distributed around some nominal energy and
described by the probability density function f(e). Since
energy is directly related to frequency, we will use
f(ν) instead in order to stick to the previous notation.
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Fig. 2. Normalized Euclidean distance between the descriptor at a reference point on the right wrist, belly, and chest
(white dots pointed by red arrows) and descriptors computed at rest of the points of the same synthetic shape from
the TOSCA set (left shape in each group), its approximate isometry (middle shape in each group), and a scanned
human shape from the SCAPE set (right shape in each group). 16-dimensional descriptors based on the heat kernel
(first row), wave kernel (second row), and trained kernel (last row) are shown. Dark blue stands for small distance;
red represents large distance. To improve visual rendering, a common color map scale is used in each row for each
descriptor, and is saturated at the median distance on the rightmost shape in each group (i.e. at least half of a shape
is always red).

The solution of the Schrödinger equation can then be
expressed in the spectral domain as [20]

ψ(x, t) =
∑
k≥1

exp (iνkt)f(νk)φk(x) (9)

(note the complex unity in the exponential!). The prob-
ability to measure the particle at a point x at time t

is given by |ψ(x, t)|2. By integrating over all times, the
average probability

p(x) = lim
T→∞

1

T

∫ T

0

|ψ(x, t)|2dt =
∑
k≥1

f2(νk)φ2k(x) (10)

to measure the particle at a point x is obtained. Note that
the probability depends on the initial energy distribution
f .

Aubry et al. considered a family of log-normal energy

distributions

fe(ν) ∝ exp

(
− (log e− log ν)2

2σ2

)
(11)

centered around some mean log energy log e with vari-
ance σ2 (again, we allow ourselves a certain abuse of the
physics and treat energy and frequency as synonyms).
This particular choice of distributions is motivated by a
perturbation analysis of the Laplacian spectrum [20].

Fixing the family of energy distributions, each point
on the surface is associated with a wave kernel signature
of the form

p(x) = (pe1(x), . . . , pen(x))
T
, (12)

where pe(x) is the probability to measure a quantum
particle with the initial energy distribution fe(ν) at point
x. The authors use logarithmically sampled e1, . . . , en.
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Fig. 3. Correspondences computed on TOSCA shapes
using the spectral matching algorithmn [30]. Shown are
the matches with geodesic distance distortion below
10% of the shape diameter, from left to right: HKS (34
matches), WKS (30 matches), and trained descriptor (54
matches).

The WKS descriptor resembles the HKS in the sense
that it can also be thought of as an application of a set
of filters with the frequency responses f2e (ν). However,
unlike the HKS that uses low-pass filters, the responses
of the WKS are band-pass (Figure 1, middle). This reduces
the influence of the low frequencies and allows bet-
ter separation of frequency bands across the descriptor
dimensions. As the result, the wave kernel descriptor
exhibits superior feature localization (Figure 2, middle).

3 SPECTRAL DESCRIPTOR LEARNING

Despite their beautiful physical interpretation, both the
heat and wave kernel descriptors suffer from several
drawbacks.

The fact that the WKS deemphasizes large-scale fea-
tures contributes to its higher sensitivity (i.e., the ability to
identify positives). This property is crucial in matching
problems, where a small set of candidate matches on one
shape is found for a collection of reference points on the
other. The ability to produce a correct match within a
small set of best matches (high true positive rate at low
false positive rate) greatly increases the performance of
correspondence algorithms and allows to detect denser
corresponding sets.

On the other hand, by emphasizing global features
HKS has higher specificity (i.e., the ability to identify
negatives). Without high specificity, many regions on
the shape being matched may look similar to a query
point, producing many false negative matches in geo-
metrically inconsistent regions. This property is related
(though indirectly) to discriminativity, that is, the ability
of the descriptor to distinguish between a shape and

other classes of distinct shapes. High discriminativity
is important when the descriptor is used in retrieval
applications, and the performance of the descriptor at
low false negative rates has a big impact on retrieval
algorithms based on it.

Sensitivity and specificity is visualized in the first
two rows of Figure 2. The first row demonstrates the
high specificity of HKS (each query point has few well-
matching regions) as well as its relatively low sensi-
tivity (the large extents and poor localization of the
matching regions). The second row demonstrates the
opposite behavior of WKS: each query point has many
unrelated matching regions (low specificity), but the
correctly matching region is well-localized (high sensi-
tivity). While it is impossible to maximize both the sen-
sitivity and the specificity, a good descriptor is expected
to have both reasonably high.

Another drawback of both the heat and wave ker-
nel descriptors is the fact that the frequency responses
forming their elements have significant overlaps. As
the result, the descriptor has redundant dimensions.
Finally, both the heat and wave kernel signatures are
only invariant to truly isometric deformations of the
shape (and can be also made scale-invariant using the
scheme proposed in [24]). Deformations that real shapes
undergo frequently deviate from this model, and it is
unclear how they influence the performance of the HKS
and WKS.

We assert that many real-world deformations affect
different frequencies differently. At the same time, the
geometric features that allow to localize a point on a
shape or to distinguish a shape from other shapes also
depend differently on different frequencies. Emphasiz-
ing information-carrying frequencies while attenuating
noise-carrying ones is a classical idea in signal and is
the underlying principle of Wiener filtering [31].

3.1 Desired properties

This observation leads us to the main contribution of this
paper: we propose to construct a collection of frequency
responses forming an optimal spectral descriptor. In
order to be useful, such a descriptor should satisfy the
following properties:

1) Sensitivity: when a point on a shape is queried
against another shape from the same class, a small
set of best matches of the descriptor should contain
a correct match with high probability (ideally, the
first best match shall be correct). High sensitivity
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Fig. 4. Left: CMC curves of the HKS, WKS, and learned descriptors on the TOSCA shapes for different number of
dimensions (shown in parenthesis). Right: hit rate of the first best match of the same descriptors as the function of the
number of dimensions. The superior performance of the low-dimensional learned descriptor is a manifestation of its
efficiency.

is akin to low number of false negatives. This
property can be alternatively stated as Localization:
a small displacement of a point on the manifold
should greatly affect the descriptor computed at it.

2) Specificity: when a point on a shape is queried
against another shape from the same class, the set
of best matches of the descriptor should contain
only points in the vicinity of the correct match
with high probability. High specificity is akin to
low number of false positives. This property can
be alternatively stated as Discriminativity: the de-
scriptor should be able to distinguish between the
geometric content of a local region and that of
other, possibly similarly looking, regions.

3) Insensitivity to transformations: the descriptor should
be invariant or at least insensitive to a certain class
of transformations that the shape may undergo.

4) Efficiency: the descriptor should capture as much
information as possible within as little number of
dimensions as possible.

The localization and sensitivity properties are impor-
tant for matching tasks, while in order to be useful in
shape retrieval tasks, the descriptor should have the
discriminativity property. However, discriminativity is
data-dependent: a descriptor can be discriminative on
one corpus of data, while non-discriminative on another.
While it is generally impractical to model classes of

shapes axiomatically, machine learning offers an easy
alternative of inferring them from training data.

By construction, spectral descriptors are isometry in-
variant. However, other invariance properties are usually
hard to achieve and even harder to model for realistic
transformations. We will therefore stick to learning in
order to achieve invariance on examples of transforma-
tions the training shapes undergo.

3.2 Parametrization

We are interested in descriptors of the form

p(x) =
∑
k≥1

f(νk)φ2k(x), (13)

parameterized by a vector f(ν) = (f1(ν), . . . , fn(ν))T of
frequency responses. Both the HKS and the WKS are
particular cases of this general form. Unlike both heat
and wave kernels that are strictly positive, we will allow
f(ν) assume negative values.

Since the responses f(ν) are the design variables of
the descriptor, they have to be parametrized with a
finite set of parameters. The same parameters have to
be compatible with any shape, even though different
shapes differ in the set of eigenvalues {νk}. In order
to make the representation independent of a specific
shape’s eigenvalues, we fix a basis {b1(ν), . . . , bm(ν)},
m > n, spanning a sufficiently wide interval [0, νmax]
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of frequencies. 1 This allows to express f(ν) as

f(ν) = Ab(ν), (14)

where A is the n × m matrix of coefficients repre-
senting the response using the basis functions b(ν) =

(b1(ν), . . . , bm(ν))T.
Since the eigenvalues νk form a growing progression,

we can truncate the series (13) at νs ≥ νmax. Substituting
the representation (14), we obtain

p(x) = A(b(ν1), . . . ,b(νs))


φ21(x)

...
φ2s(x)

 = Ag(x) (15)

where the m× 1 vector g(x) with the elements

gj(x) =
∑
k≥1

bj(νk)φ2k(x) (16)

captures all the shape-specific geometric information
about the point x. For this reason, we refer to g as to the
geometry vector of a point. Note that this representation
no longer depends on a specific shape; the matrix of
parameters A describes the same vector of frequency
responses on any shape.

3.3 Learning

Let g = g(x) be the geometry vector representing some
point x; let g+ = g(x+) be another geometry vector
representing a point that is knowingly similar to x (pos-
itive); and, finally, let g− = g(x−) represent a knowingly
dissimilar point (negative). We would like to select the
matrix of parameters that maximizes the similarity of
the descriptors p = Ag and p+ = Ag+, and at the same
time minimizes the similarity between p and p− = Ag−.
Using the `2 norm as the similarity criterion, we obtain

d2± = ‖p− p±‖2 = ‖A(g − g±)‖2

= (g − g±)TATA(g − g±). (17)

In other words, the Euclidean distance between the de-
scriptors translates into a Mahalanobis distance between
the corresponding geometry vectors. The problem of
finding the best positive-definite matrix ATA defining
the Mahalanobis metric is known as metric learning and
has been relatively well explored in the literature [32],
[33], [34].

1. A finite basis cannot span the space of all responses f(ν) even on a
finite interval. This basis is merely ought to span a family of sufficiently
smooth functions, and to be able to approximate the kernels of the WKS
and HKS.

Here, we describe a simple yet efficient learning
scheme based on [35], explicitly addressing the desired
properties we required from a good spectral descriptor.
We aim at finding a matrix A minimizing the Maha-
lanobis distance over the set of positive pairs, while
maximizing it over the negative ones. Note that the dis-
tance depends only on the differences between positive
and negative pairs of vectors. Taking expectation over
all positive and negative pairs, we obtain [35]

E(d2±) = E(‖p− p±‖2) = E(eT
±ATAe±)

= tr (AE(e±eT
±)AT) = tr (AC±AT), (18)

where e± = g − g±, and C± stands for the second mo-
ment matrix of the differences of positive and negative
pairs of geometry vectors. In practice, the expectations
are replaced by averages over a representative set of
difference vectors.

Our goal is to minimize E(d2−) simultaneously maxi-
mizing E(d2+). This can be achieved by minimizing the
ratio E(d2−)/E(d2+), which is solved by linear discriminant
analysis (LDA). However, we unfavor this approach as
it does not allow control over the tradeoff between sen-
sitivity and specificity. Instead, we propose to minimize
the difference

(1− α)E(d2+)− αE(d2−) =

tr (A((1− α)C+ − αC−)AT) = tr (ADαAT), (19)

where 0 ≤ α ≤ 1 controls the said tradeoff, and Dα

denotes the difference between the positive and the
negative covariance matrices.

Note that since the scale of A is arbitrary, a trivial
solution can be obtained. Even when fixing the scale,
the solution will be a rank-1 matrix corresponding to the
smallest eigenvector of Dα. While this can be avoided by
arbitrarily demanding orthonormality of A (as done in
[35]), such a remedy is completely artificial.

Instead, we remind that one of the desired properties
of a descriptor was efficiency. In an efficient descriptor,
each dimension should be statistically independent of
the others. Replacing statistical independence by the
more tractable lack of correlation, we demand

I = E(ppT) = AE(ggT)AT = ACAT (20)

where expectations are taken over all geometry vectors,
and C denotes the covariance matrix of g. A similar
method was used in [36] for content-based image re-
trieval.
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Combining (19) with (20), we obtain the following
minimization problem

min
A

tr (ADαAT) s.t ACAT = I, (21)

which we solve for an n × m matrix A. The problem
has a closed-form algebraic solution, which is easy to
derive using variable substitution. Since C is a positive-
definite matrix, we can substitute B = AC1/2, obtaining
an equivalent minimization problem

min
B

tr (BC−1/2DαC−1/2BT) s.t BBT = I, (22)

(C is symmetric and so is its square-root C1/2; we
therefore keep writing C−1/2 instead of its transpose).
Let us denote by C−1/2DαC−1/2 = UΛUT the eigende-
composition of the scaled covariance difference, with the
eigenvalues Λ = diag(λ1, . . . , λm) sorted in ascending
order, and the corresponding orthonormal eigenvectors
U = (u1, . . . ,um). The solution to (22) is given by the
first n smallest eigenvectors, B = UT

n = (u1, . . . ,un)T.
Note that one must ensure that all the eigenvectors
correspond to negative eigenvalues; if this is not the case,
n has to be reduced. Finally, the solution to our original
problem (21) follows straightforwardly as

A = UT
nC−1/2. (23)

3.4 Training set

So far, we have described a learning scheme allowing to
construct efficient spectral descriptors with uncorrelated
elements based on covariances of geometry vectors de-
scribing positive and negative pairs of points. Having
no practical possibility to model the statistics of these
vectors, their covariance matrices have to be computed
empirically from a training set of positive and negative
examples. The construction of such a set is therefore
crucial for obtaining a good descriptor. In what follows,
we describe how to construct the training set in order to
achieve each of the desired properties mentioned before.

Localization. Let x be a point on a training shape X , and
Br(x) is the geodesic metric ball of radius r centered at
x. We fix a pair of radii r < R and deem all points x+ ∈
Br(x) positive, while deeming negative all x− /∈ BR(x).
Points lying in the ring BR(x)\Br(x) are excluded from
both sets. If the shape possesses an intrinsic symmetry
ϕ : X → X , then Br(ϕ(x)) is also included in the positive
set, while BR(ϕ(x)) is excluded from the negative set.2

2. Our practice shows that when symmetries are ignored, the trained
descriptors cede only a tiny amount of performance. We attribute this
to the fact that the amount of incorrectly labeled positives is over-
whelmed by the amount of correctly labeled positives and negatives.

The training set is created by sampling many reference
points and corresponding positive and negative points
on a collection of representative shapes. The selection
of r and R gives explicit control over the localization
capability of the descriptor.

Discriminativity. Let X and X− be knowingly dissimi-
lar shapes (i.e., belonging to different classes we would
like to tell apart). A random point x on X and a random
point x− on X− are deemed negative. The training set
is created by sampling many random pairs of points on
knowingly dissimilar pairs of shapes.

Insensitivty to transformations. Let X be a shape and
X+ its transformation belonging to a class of transforma-
tions insensitivity to which is desired. We further assume
to be given a correspondence ϕ : X → X+ between the
shapes. A random point x on X and the corresponding
point x+ = ϕ(x) on X+ are deemed positive. The
training set is created by sampling many points on a
collection of shapes, paired with corresponding points
on the transformed versions of the same shape.

The combination of the positive and negative sets con-
structed this way allows to train for descriptor local-
ization, discriminativity, and transformation insensitivity
properties.

3.5 Sensitivity-Specificity tradeoff

The proposed learning scheme allows simple control
over the tradeoff between the sensitivity and the speci-
ficity of the descriptor through the parameter α. The
bigger is α, the bigger is the relative influence of C−

compared to C+. Therefore, for large values of α, the
descriptor will emphasize producing large distances on
the negative set (low false positive rate), while trying
to keep small distances on the positive set (high true
positive rate). As the result, high sensitivity is obtained.
For small values of α, the converse is observed: the
descriptor emphasizes performance on the positive set,
resulting in higher specificity.

In order to select the optimal α for a highly-sensitive
descriptor, we empirically compute the false negative
rate at some small fixed false positive rate (e.g., 1% or
0.1%) and select the α for which it is minimized. For
highly-specific descriptors, α is selected to minimize the
false positive rate at some small false negative rate. The
behavior of the error rates as a function of α is illustrated
in Figure 5.
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Fig. 5. Error rates on the TOSCA shapes as a function
of the parameter α. Large values of α result in high sen-
sitivity, while for small values high specificity is obtained.
False positives (FP) increase with α, even though values
are still low for the optimal false negatives (FN) at α ≈ 0.25

that was chosen for the rest of the experiments.

4 EXPERIMENTAL RESULTS

4.1 Datasets

The experiments reported in the sequel were performed
on the TOSCA [37] and SCAPE [38] datasets. The TOSCA
dataset comprises 7 shape classes (centaur, horse, two
male figures, female, cat, and dog). In each such class,
an extrinsically symmetric “null” shape underwent a
few different near-isometric deformations. Typical ver-
tex count ranges from 5, 000 to 50, 000. The SCAPE
dataset contains a scanned human figure in about 70

different poses, each containing 12, 500 vertices. Both
datasets include vertex-wise correspondences between
all deformed instances of the shapes belonging to the
same class, and have compatible triangulation. In or-
der to reduce computational and storage complexity,
shapes with over 10, 000 vertices were downsampled
maintaining compatible triangulations and groundtruth
correspondences. SCAPE shapes were scaled the have
roughly the same size as TOSCA shapes.

We used the finite elements scheme [27] to compute
the first 300 eigenvalues and eigenvectors of the Laplace-
Beltrami operator on each shape. Neumann boundary
conditions were used. The range of frequencies νmax

was set to the maximal value of ν300 over the entire
set of training shapes. The interval was evenly divided

into m = 150 segments and the cubic spline basis
was used as {bj(ν)}. The resulting geometric-vectors g

were normalized to have unit `2 length. Unless specified
otherwise, 16-dimensional descriptors were computed.

For comparison, we also evaluated the HKS and WKS
descriptors. The HKS time scales were optimized accord-
ing to [4]. The WKS energy levels and the variance σ2

were set as described in [20]. For the fairness of compar-
ison, Euclidean distance was used for all descriptors.

Training sets. The training sets were built from
150-dimensional geometric vector triplets of the form
(g,g+,g−) as described Section 3.4. We used the farthest
point sampling (FPS) strategy [39] with the geodesic
distances to select 1000 uniformly placed points on the
shape. To each such point, we paired 50 positive points
sampled at random from the ball of radius r, and 50

negative points. Half of the negatives were selected from
the “near” ring lying between the radii R and 4R around
the central point; another half was filled with points
farther than 4R. We found that this sampling strategy
emphasizes the locality of the descriptor. The radii r and
R were set to about 1% and 2% of the average intrinsic
shape diameter, respectively. A total of 98, 750 triplets
was generated on the TOSCA set and 99, 550 on SCAPE.
On the TOSCA set, we used the female and one of the
male shapes (David) for training. On the SCAPE set, we
used shapes 20 − 29 and 50 − 70 – an arbitrary choice
motivated mainly by visual considerations.

Test sets. Quantitative descriptor performance evalua-
tion was performed on a selection of 1000 points from the
shapes selected using FPS in the descriptor space, similar
to the experiment reported in [20]. For the fairness of
comparison, the latter selection process was done for all
the descriptors under test, and the union was used in the
evaluation. The second male shape (Michael) was used
for test on the TOSCA set. On SCAPE, the remaining
shapes not used for training were used for test.

4.2 Evaluation methodology

We use two quantitative and two qualitative criteria to
evaluate the performance of the learned descriptors.

Receiver operating characteristic (ROC). For each posi-
tive and negative pair of descriptors (p,p+) and (p,p−)

from the test set, we measure the corresponding `2

distances, d± = ‖p − p±‖2. Deeming as “positive” all
pairs with the distance below a threshold τ , and “neg-
ative” otherwise produces a measure of the incorrectly
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classified negatives, the false positive rate (FPR) defined
as

FPR(τ) =
|{d− < τ}|
|{d−}|

, (24)

Similarly, the false negative rate (FNR) is defined as

FNR(τ) =
|{d+ ≥ τ}|
|{d+}|

. (25)

The complementary true positive and true negative rates
are computed as TPR = 1 − FNR and TNR =

1 − FPR, respectively. The ROC curve is defined as
(FPR(τ),TPR(τ)), varying the value of the threshold τ .
To define the descriptor performance by a single number,
it is customary to evaluate the FPR at some low FNR
(usually, 1% or 0.1%), and vice versa, the FNR at some
low FPR. The term equal error rate (EER) refers to the
point on ROC curve at which FPR equals FNR.

Cumulative match characteristic (CMC). The CMC
curve evaluates the probability of finding the correct
match within the first k best matches. The hit rate at k
is calculated by sorting all the distances {d+} ∪ {d−} in
ascending order, and evaluating the percentage of posi-
tives in the first k distances. The CMC is a monotonically
increasing curve of the hit rate as a function of k.

Similarity map. We used similarity maps to visualize
and qualitatively assess the localization capabilities of
different descriptors. One point on a shape is selected as
reference, and the remaining points on the shape are col-
ored according to the distance between their descriptor
to the descriptor at the reference point. We also show
several other shapes colored according to the distance
in the descriptor space from each point on the shape to
the reference point on the first shape. Since the range of
distances can be greatly affected by a few high outliers,
the color map is saturated at the median distance.

Spectral matching. We put the descriptor to the ac-
tual test of generating correspondences using a method
similar to [30]. We stop generating matches from the
latter method when the maximal geodesic distortion gets
higher than a certain threshold.

4.3 Experiments

To assess the influence of the parameter α, we measured
the error rates of the descriptors learned with different
values of the parameter. The TOSCA dataset was used
for training and testing. The results are summarized in
Figure 5. From this experiment, we selected the value of
α = 0.25 giving the lowest FNR at 1% and 0.1% FPR.
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Fig. 6. Hit rate at the first best match on the TOSCA
shapes for the optimal descriptor learned on a training set
contaminated by a different amount of irrelevant shapes.
The HKS and WKS descriptors are shown for reference.

Figure 4 depicts the performance of the learned de-
scriptors as well as of the HKS and WKS for different
number of dimensions. We observed that the learned
descriptor gives excellent performance (over 50% hit
rate at first match) even for as little as 16 dimensions,
while the HKS and the WKS perform significantly worse
(lower than 25% hit rate). Increasing the number of
dimensions improves the performance of the WKS, while
the HKS shows no sign of performance, and even a
slight degradation. For dimensionality above 100, the
WKS approaches the learned descriptor, a phenomenon
deserving further investigation.

The CMC and ROC curves of the learned 16-
dimensional descriptors are compared to those of the
HKS and WKS in Figure 8 on the TOSCA data, and
Figure 9 on the SCAPE data. In the latter figure, we
also show the performance of the descriptor learned on
TOSCA and tested on SCAPE. Such a transfer of the
learned descriptor is possible with a negligible drop in
the CMC and only a small degradation of the ROC. This
given an experimental evidence of the generalization
power of the descriptors. For a qualitative assessment,
we show similarity maps of different descriptors in
Figure 2

To study the influence of the content of the training set
on the performance of the descriptor, we trained a 16-
dimensional descriptor on training sets containing a part
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of the TOSCA training set, and the remaining part filled
with geometric vectors from irrelevant shapes drawn
from the Princeton shape benchmark [40] and belonging
to hundreds of non-human classes. The performance
evaluated in terms of hit rate at first match is depicted
as a function of percentage of irrelevant shapes in the
training set in Figure 6. The performance drops with the
increase of the “contamination level”. Still, even when
the training set is contaminated by 50% of irrelevant
shapes, the learned descriptors significantly outperform
the WKS and the HKS.

To study the influence of missing data on the per-
formance of the descriptor, tested the descriptors from
the previous experiment on a corpus of TOSCA shapes
with removed parts. The CMC curve in Figure 7 shows
that the optimal descriptor is affected less by the missing
parts, while the HKS is affected the most due to its lack
of locality.

Finally, in order to test the performance of different
descriptors in a correspondence task, we performed a
simple shape matching experiment on TOSCA shapes.
100 points were sampled on one of the shapes, and
were each paired with the best 20 matches on the other
shape using the `2 distances between the descriptors.
The latter list of possible matches was used to construct
pairwise affinity matrix. We then invoked our variant of
the spectral correspondence algorithm [30] to compute
the point-to-point correspondence between the shapes.
Matches resulting in geodesic distortion higher than
10% of the shape diameter were rejected. A comparison
between the correspondences produced by the learned
descriptors, the HKS and the WKS is shown in Figure 3.
Our experiments show that the learned descriptors con-
sistently produce more correct matches.

5 CONCLUSION

We presented a generic framework for the construction
of feature descriptors for deformable shapes based on
their spectral properties. The proposed descriptor is
computed by applying a bank of “filters” to the shape’s
geometric features at different “frequencies”, and it gen-
eralizes the heat and wave kernel signatures. We also
showed a learning approach allowing to construct filters
for optimized specific shape analysis tasks, resembling in
its spirit optimal signal filtering by means of a Wiener
filter.

We formulated the learning approach in terms of the
`2 distance and related it to Mahalanobis metric learning.
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Fig. 7. CMC curves of the 16-dimensional HKS, WKS and
optimal descriptors on the TOSCA shapes with partially
missing data. The amount of missing data in percent is
specified in parentheses.

While the adopted algebraic solution gave good results,
other Mahalanobis metric learning approaches, such as
the maximum-margin learning [33] can be readily used.
Some of these metric learning approaches were designed
with a specific task in mind (e.g., ranking), and might be
beneficial for the construction of spectral descriptors in
some applications. Evidence shows that distances other
than the Euclidean one (e.g., the `1 distance) improve the
performance of spectral descriptors. Also, applications
where compact and easily searchable descriptors are of
importance may benefit from hash learning techniques
[41], essentially based on the Hamming distance. We
intend to explore alternative learning frameworks and
different distances in follow-up studies.

While the main focus of this paper was the construc-
tion of the descriptor itself, in future studies we are going
to explore its performance in real shape retrieval and
matching tasks. Particularly, in retrieval tasks spectral
feature descriptors are used to generate global shape
descriptors by means of vector quantization or sparse
coding, a growingly popular alternative in the computer
vision community. Taking this highly non-linear process
into account when constructing the feature descriptor
will also be a subject of our future research.
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Fig. 8. CMC (left) and ROC (right) curves of the 16-dimensional HKS, WKS and optimal descriptors on the TOSCA
shapes.
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Fig. 9. CMC (left) and ROC (right) curves of the 16-dimensional HKS, WKS and optimal descriptors on the SCAPE
shapes. Observe that descriptors trained on the TOSCA set have negligibly lower hit rate compared to the ones trained
on the SCAPE data.
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