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ABSTRACT

We propose a method and a prototype imaging system for
real-time reconstruction of volumetric piecewise-smooth
scattering media. The volume is illuminated by a sequence
of structured binary patterns emitted from a fan beam projec-
tor, and the scattered light is collected by a two-dimensional
sensor, thus creating an under-complete set of compressed
measurements. We show a fixed-complexity and latency re-
construction algorithm capable of estimating the scattering
coefficients in real-time. We also show a simple greedy al-
gorithm for learning the optimal illumination patterns. Our
results demonstrate faithful reconstruction from highly com-
pressed measurements. Furthermore, a method for com-
pressed registration of the measured volume to a known
template is presented, showing excellent alignment with just
a single projection. Though our prototype system operates in
visible light, the presented methodology is suitable for fast
x-ray scattering imaging, in particular in real-time vascular
medical imaging.

Index Terms— volumetric reconstruction, structured
light, scattering tomography, compressive sensing, sparse
coding

1. INTRODUCTION

The overwhelming majority of medical CT images acquired
today use attenuation contrast. While allowing to clearly
recognize some tissues, this imaging modality does not yield
satisfactory sensitivity and specificity for weakly absorb-
ing media, such as various soft tissues [1]. A prominent
alternative to transmission x-ray tomography is scattering
tomography, in which the field of backscattered photons due
to Compton scattering is measured instead of the transmit-
ted field [2]. Like the standard transmission CT, scattering
tomography requires a large number of measurements in
order to reconstruct an accurate image, which extends the
acquisition time and prohibits the acquisition of dynamic
objects. For appropriate classes of signals, compressed sam-
pling techniques have been demonstrated to defy the Nyquist-
Shannon bounds, sometimes by orders of magnitude. Unlike
the closed-form reconstruction formula for regularly sampled
signals that the Shannon-Nyquist theory offers, reconstruc-

Fig. 1. Scattering tomography imaging system: 3D view(left)
and top view (right). The projector(c) illuminates the ob-
ject(b) with a sequence of one-dimensional patterns, and the
scattered light is collected by the sensor(a).

tion from compressed samples is more elaborate and requires
the solution of an optimization problem, resulting is slow
reconstruction speed unsuitable for real time applications.
Recent work by [3] followed by [4, 5] and [6, 7] advocate
for an alternative approach. These works showed that several
established iterative optimization algorithms can be truncated
after a small number of iterations and unrolled into a feed-
forward architecture resembling a neural network, with the
parameters of the layers dictated by the specific functional
form of the iteration. While such a truncated algorithm does
not fully converge and is incapable to produce satisfactory
solutions for any measurements vector given as the input, the
authors have demonstrated that when the input is restricted
to vectors commonly arising from the data distribution, the
network parameters can be trained to produce a high-quality
approximation to the exact solution.

2. SIGNAL FORMATION AND ACQUISITION

We consider a scattering tomography imaging system whose
physical setup is depicted schematically in Figure 1. The pro-
jector is assumed to admit the standard projective (pinhole)
model with the optical axis aligned with the X axis. The
sensor, is also assumed to admit a projective model, circular
aperture of radius r, and the optical axis aligned with the Z
axis. The space in the intersection of the projector and sensor
fields of view is assumed to be filled with weakly scattering
medium, whose scattering coefficient is denoted by as.

Standard radiometric calculations lead to the following



form of the sensor irradiance
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where J denotes the Jacobian of the transformation between
the Cartesian and our non-orthogonal coordinates systems, θ
is the angle between the normal to the plane zp = z and the
ray (xc = x, yc = y), φ is the sensor aperture incidence
angle, p is the relative density of scattered photons per unit of
solid angle, and
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denote the optical distances from the projector to the volume
element and from the volume element to the sensor aperture,
respectively.

However, by assuming the total medium scattering and
absorption cross-sections to be sufficiently weak, and adding
a weak perspective assumption, equation (1) simplifies to

E ≈ const ·
∫ z

0

I0asdz. (4)

The latter equation is discretized on a non-Cartesian grid
of voxels formed by the x, y, z coordinate

Eij ≈
Nz∑
k=1

IkAijkwijk, (5)

where Eij , Ik and Aijk denote the discretized versions of
E(x, y), I0(z), and as(x, y, z), respectively, and wijk are
constant weights depending on the system geometry. We note
that the discretized expression (5) is separable; for each i, j,
we can write Eij ≈ sTijaij , where aij is the Nz-dimensional
vector representing the slice ofAijk in the z direction, and sij
is the corresponding sensing vector. Stated this way, for each
i, j,the above relation yields a single linear equation with
Nz unknowns, or, said differently, it is an Nz-undercomplete
system. Typically, Nz is in the range of hundreds, making
the reconstruction challenging for any practical compressed
sensing scheme. However, extra equations can be obtained by
projecting a set of time-multiplexed patterns, or by increasing
the voxel size, or a combination of the latter two. Given that
the total number of equations obtained is noted by n, we can
write

e ≈ Sa, (6)

where S ∈ Rn×Nz is referred to as the sensing matrix. we
henceforth denote the compression ratio of our reconstruction
problem by κ = n

Nz
referring to the latter quantity as the

compression ratio of the measurements. The solution of such
reconstruction problem falls within the domain of compressed
sensing [8], constraining the sensing matrix S to satisfy the
restricted isometry property (RIP [9]).

Input: Measurements e, sensing matrix S, analysis
dictionary Ω, weight λ, parameter τ > 0

Output: Data a
Initialisation: µ0 = 0, z0 = 0
for k = 1, 2, ...until convergence do

ak+1 =(
STS + τΩTΩ

)−1 (
STe + τΩT(zk − µk)

)
zk+1 = σλ

τ

(
Ωak+1 + µk

)
µk+1 = µk + Ωak+1 − zk+1

end
Algorithm 1: Alternating direction method of multipliers
(ADMM, [12]). Here, σt(x) = sign(x) max {|x| − t, 0}
denotes the element-wise soft thresholding.

3. SIGNAL RECONSTRUCTION

Since equation (6) represents an undercomplete system, prior
information on ak has to be added. One of a commonly used
priors, usually referred to as sparse analysis is that the recon-
structed signal a admits a sparse projection on the analysis
dictionary Ω. Reconstruction of the scattering coefficient a
from equation (6 can be cast as the optimization problem

min
a
‖Ωa‖1 s.t. ‖Sa− e‖2 ≤ ε, (7)

where ε represents the amount of tolerable noise.
In this work, the analysis dictionary Ω was selected as

the concatenation of the identity matrix with the matrix of
derivatives following [10]. This choice promotes the solution
to comprise a sparse set of piece-wise constant regions.

3.1. Pursuit via ADMM

Problem (7) is non-smooth due to the `1 norm in the objective;
however, it can be solved using the standard proximal projec-
tion methods through Bregmann splitting [11]. The splitting
introduces an auxiliary variable z = Ωa; the resulting prob-
lem is typically rewritten as the unconstrained minimization
problem of the augmented Lagrangian

min
a,z

1

2
‖Sa− e‖22 +

τ

2
‖Ωa− z +

1

τ
µ‖22 + λ‖z‖1 (8)

Here, the parameter τ controls the penalty strength, and µ is
the vector of Lagrangian multiplies associated to the equality
constraint z = Ωa. The combination of Bregmann splitting
with augmented Lagrangian is known as the alternating di-
rection method of multipliers (ADMM), summarized as Al-
gorithm 1.

3.2. Fast approximation via ADMM networks

Recent work by [3] followed by [4, 5, 6, 7] advocate for an al-
ternative approach of exploiting sparse priors. Coming from



the classical machine learning background, [3] showed that
the popular iterative shrinkage-thresholding algorithm (ISTA
[13]) from the family of proximal projection methods can be
truncated after a small number of iterations and unrolled into a
feed-forward architecture resembling a neural network, with
the parameters of the layers dictated by the ISTA iterations.
In [4, 5, 6, 7], the authors proposed to apply a similar idea to
the ADMM algorithm to approximate the solution of analy-
sis models similar to problem (8). Following this methodol-
ogy, Algorithm 1 is converted into a fixed-depth feed-forward
network (henceforth, ADMM network). The network is then
trained supervisedly to approximate the optimal solution.

Each iteration of Algorithm 1 can be viewed as a layer of
the network, receiving zk and µk as the inputs, and producing
zk+1 and µk+1 as the outputs, with k denoting the layer num-
ber. The only exception is the output layer k = K, producing
the (approximate) solution a.

The training of the network is performed on a collection
of pairs of training vectors, comprising a ground truth signal
a∗ and its measurements e = Sa∗. At training a loss function
of the form

L = Ê‖a∗ − a(e)‖22 (9)

is minimized using standard stochastic gradient [14], where
Ê denotes the empirical ensemble average. We followed the
stochastic gradient training schemes detailed in [6].

3.3. Supervised learning of the sensing matrix

Although there exist previous studies aiming at finding opti-
mal sensing matrices (see, e.g., [15] and [16]), here we focus
on binary matrices. Algorithm 2 summarizes the proposed
learning scheme. At each iteration, a random set of elements
in S is flipped (i.e., 0 becomes 1, and 1 becomes 0). The new
matrix is used to produce the measurements e = Sa∗ on a
training set comprising a collection of ground truth data vec-
tors a∗. The reconstruction algorithm is applied, producing
â = a(e). If the loss ε = Ê‖a∗− â‖22 is reduced, the new ma-
trix is retained. It is straightforward to show that the proposed
algorithm produces a monotonically converging sequence of
errors {εk}.

4. COMPRESSED REGISTRATION

Traditionally, compressed sensing approaches focus on the
reconstruction of a latent signal from a set of compressed
measurements. In some applications, however, a reasonable
knowledge is available about the signal being reconstructed,
while its position or deformation is unknown. We are there-
fore interested in the problem of compressed registration. We
assume the volume A being imaged A to be created through
an unknown transformation T from some parametric group of
transformations T of a known volume A∗. The goal of com-
pressed registration is to estimate the transformation T given

Input: a,S0,Ω
Output: S
Initialisation:
S = S0, â = argmin

z

1
2‖Sa− Sz‖22 + λ‖Ωz‖1,

ε0 =
∑
‖â− a‖2F

for k = 1, 2, ... until convergence do
Select p at random from {1, . . . ,m× n}
Set Sc = S and flip p random dimensions in Sc
â = argmin

z

1
2‖Sca− Scz‖22 + λ‖Ωz‖1

if εk >
∑
‖â− a‖2F then

εk =
∑
‖â− a‖2F ;

S = Sc
else

εk = εk−1;

end
Algorithm 2: Greedy learning procedure for a binary sens-
ing matrix.

the measurements E of A. Formally, the problem can be cast
as the minimization

min
T∈T
‖E− ST (A)‖2F. (10)

The template volume A∗ is assumed to be given in sampled
form on a fixed grid G∗, while the sensing matrix G operates
on a possibly different grid G.

Here, as a proof-of-concept, we restricted T to be the
three-dimensional translation group.

5. RESULTS

We present volumetric image reconstruction results on a pro-
totype acquisition setup depicted in Figure 2. We used a
computer-controlled DLP Lightcommander projector to illu-
minate the scene, and a FireWire Point Grey Flea2 camera to
capture the images. Scattering models were created by en-
graving small dots in a clear glass volume using a commer-
cial laser engraving process. Acquisition was performed on a
70x60x50 mm volume by projecting between 4 to 16 128x128
images, captured by a 1280x960 pixels monochrome camera.
Reconstruction was executed on an Intel 2600Mhz quad-core
computer. This acquisition environment simulates to some
extent the physics of fan beam x-ray scattering tomography,
with the important difference that x-rays scattering is domi-
nated by Compton scattering, while in our visible light system
Mie (and, possibly, Raleigh) scattering is dominant [17].

In what follows, we report the reconstruction results from
measurements with different compression ratios and differ-
ent reconstruction methods. The networks were trained using
data containing shapes geometrically similar to the model.
Different number of layers (4, 8, 16, 25 and 32) was used



Fig. 2. Top view of the experimental acquisition setup show-
ing the camera (a), model (b) and projector (c).

as described in Section 3.2. Figure 3 depicts the reconstruc-
tion results with a random sensing matrix and the optimal ma-
trix trained using Algorithm 2. Figure 4 compares the recon-
struction accuracy as function of execution time for the ex-
act ADMM algorithm and its approximation via the ADMM
network. As a reference, we show the performance of the
standard basis pursuit algorithm implemented as linear pro-
gramming [10].

Finally, we observed that the non-reconstructive com-
pressed registration task succeeds with a single projection;
the quality of reconstruction from such highly undetermined
data is clearly unacceptable.

6. CONCLUSIONS

In this research, we studied the problem of reconstructing
volumetric images by means of scattering tomography. The
proposed techniques were evaluated on real data obtained
from a custom-built visible light acquisition system. Our
results demonstrated accurate reconstruction from measure-
ments with ten-fold compression ratios; these results im-
prove significantly when optimal illumination patterns are
used in lieu of random ones. Furthermore, we showed that
a significantly better compression can be obtained in non-
reconstructive tasks such as compressed registration, often
achieving faithful alignment from a single projection only.
We also evaluated the running times of the proposed iterative
reconstruction algorithm and its fast approximation. Al-
though our Matlab implementation is far from being optimal,
this evaluation suggests at least an order of magnitude im-
provement in runtime at comparable reconstruction accuracy.

Fig. 3. Reconstruction results using ADMM on the acquired
Horse models for random (left column) and optimal (right
column) binary projections with compression ratios values of
1 : 8 (top row), 1 : 16 (middle row), and 1 : 32 (bottom row).
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Fig. 4. Comparison of reconstruction performance of the ex-
act iterative ADMM and its approximation by ADMM net-
works with different number of layers on the acquired Horse
model with κ = 1 : 8.

Though the presented models and experiments assumed visi-
ble light imaging, we believe that the presented methodology
is suitable for x-ray scattering tomography. The relatively
small amount of measurements and the fast reconstruction
numerics promise potential applications in real-time medical
imaging, including in particular 3D vascular imaging. We
intend to explore these applications in future research.
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