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Graph Matching: Relax or Not?
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Minimum-distortion correspondences
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Minimum-distortion correspondences

Find the best structure-preserving correspondence
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Minimum-distortion correspondences

Find ¢ : (X,dx) — (Y, dy) minimizing ||dx — dy o (¢ X ¢)|
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'Graph matching’ problems

M3 K
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'Graph matching’ problems

Given two undirected weighted graphs represented
by adjacency matrices A and B
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'Graph matching’ problems

Given two undirected weighted graphs represented
by adjacency matrices A and B

Graph isomorphism: determine whether A and B
are isomorphic

Exact graph 'matching’: find isomorphism
relating A and B

Inexact graph 'matching’: find best approximate
isomorphism relating A and B
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Convex relaxation

Graph Matching (NP)

IT* = argmin||A — TI'BII||
IIeP

P = space of n x n permutation matrices
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Graph Matching (NP)
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Convex relaxation

Convex Relaxation (QP)
P* = argmin||PA — BP||}
PeD
Generally, P* is not a permutation!
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Convex relaxation

1. Convex Relaxation (QP)
P* = argmin||PA — BP||3
PeD

Generally, P* is not a permutation!

2. Projection onto P

A

IT = argmax (I, P*)
IIeP
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Convex relaxation

1. Convex Relaxation (QP)
P* = argmin|PA — BP||3
PeD

Generally, P* is not a permutation!

2. Projection onto P

A
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Convex relaxation

1. Convex Relaxation (QP)

P* = argmin||PA — BP||3
PeD

Generally, P* is not a permutation!

2. Projection onto P (LAP)

A

IT = argmax tr(IT'P*)
IIeP

Solved by Hungarian algorithm
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Relax or not?

What is the relation between IT* and II?
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Relax or not?

What is the relation between IT* and II?

Obviously, IT* is a solution of the relaxation
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Relax or not?

What is the relation between IT* and I1?
Obviously, IT* is a solution of the relaxation

However, the relaxation might produce some P*

A~

which is not a permutation and its projection II
can have || ITA — BII|| > 0
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Relax or not?

What is the relation between IT* and I1?
Obviously, IT* is a solution of the relaxation

However, the relaxation might produce some P*

A~

which is not a permutation and its projection II
can have || ITA — BII|| > 0

Surprisingly, not so much is known about the
relation between IT* and IT!
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Convex relaxation

Convex Relaxation

P* = argmin|PA — BP|}
P>0

st. P1=PT1=1

double-stochastic matrices
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Convex relaxation

An even bigger relaxation

P* = argmin|PA — BP|}
P
st. P1=1

pseduo-stochastic matrices
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Convex relaxation

An even bigger relaxation

P* = argmin|PA — BP|}
P
st. P1=1

pseduo-stochastic matrices

n non-overlapping equality constraints instead
of 2n overlapping constraints
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Convex relaxation

An even bigger relaxation

P* = argmin|PA — BP|}
P
st. P1=1

pseduo-stochastic matrices

n non-overlapping equality constraints instead
of 2n overlapping constraints

no inequality constraints
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Friendly graphs

Convex Relaxation

P* = argmin|PA —BP|; st. P1=1
P
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Friendly graphs

Convex Relaxation
P* = argmin|PA —BP|; st. P1=1
P

Friendly graphs: an undirected weighted graph A
is friendly if

o A has simple spectrum

e no eigenvectors of A are orthogonal to the
constant vector 1
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Friendly graphs

Property: friendly graphs are asymmetric
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Friendly graphs

Property: friendly graphs are asymmetric
(have trivial automorphism group)
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Friendly graphs

Property: friendly graphs are asymmetric

Proof: Let A = UAUT be friendly.
Assume IT # I permutation such that ITA = AII.
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Friendly graphs

Property: friendly graphs are asymmetric

Proof: Let A = UAUT be friendly.

Assume IT # I permutation such that ITA = AII.
= Vi: Allu; = \I1u;

= Ilu; is an eigenvector of A corresponding to \;.
A has simple spectrum = IlTu; = +u;.
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Friendly graphs

Property: friendly graphs are asymmetric

Proof: Let A = UAUT be friendly.

Assume IT # I permutation such that ITA = AII.
= Vi: Allu; = \I1u;

= Ilu; is an eigenvector of A corresponding to \;.
A has simple spectrum = IlTu; = +u;.

IT # I = du; for which ITu; = —u;

= 1TH11@' = —].Tllz'.

IT is a permutation = 1TIT = 17
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Friendly graphs

Property: friendly graphs are asymmetric

Proof: Let A = UAUT be friendly.

Assume IT # I permutation such that ITA = AII.
= Vi: Allu; = \I1u;

= Ilu; is an eigenvector of A corresponding to \;.
A has simple spectrum = IlTu; = +u;.

IT # I = du; for which ITu; = —u;

= 1TH11@' = —].Tllz'.

I is a permutation = 1THuZ- = 1Tuz-
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Friendly graphs

Property: friendly graphs are asymmetric

Proof: Let A = UAUT be friendly.

Assume IT # I permutation such that ITA = AII.
= Vi: Allu; = \I1u;

= Ilu; is an eigenvector of A corresponding to \;.
A has simple spectrum = IlTu; = +u;.

IT # I = du; for which ITu; = —u;

= 1TH11@' = —].Tllz'.

I is a permutation = 1THuZ- = 1Tuz-

= 1Tu; = 0 in contradiction to friendliness
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Friendly graphs

Property: friendly graphs are asymmetric

Proof: Let A = UAUT be friendly.

Assume IT # I permutation such that ITA = AII.
= Vi: Allu; = \I1u;

= Ilu; is an eigenvector of A corresponding to \;.
A has simple spectrum = IlTu; = +u;.

IT # I = du; for which ITu; = —u;

= 1TH11@' = —].Tllz'.

I is a permutation = 1THuZ- = 1Tuz-

= 1Tu; = 0 in contradiction to friendliness

Converse is not true (think of a regular asymmetric
graph), but such graphs should be rare
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Main result

Theorem: Let A and B be friendly isomorphic
graphs. Then P* =1I".
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Main result

Theorem: Let A and B be friendly isomorphic
graphs. Then II =P* =1I".

Checking isomorphism is hard

Checking friendliness is easy

Solve the relaxation: if P*A = BP”* then
the unique isomorphism is IT"* = P*.
Otherwise, no isomorphism exists.
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Sketch of the proof

Input: two friendly graphs B and A = IT*'BIT*
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with global minimizer P = IT".
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Sketch of the proof

Input: two friendly graphs B and A = IT*'BIT*

Convex quadratic program
min |PIT"'B — BPIT'"||Z st. P1=1

with global minimizer P = IT".

Show that the minimizer is unique
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Sketch of the proof

Input: two friendly graphs B and A = IT*'BIT*

Convex quadratic program
min |PIT"'B — BPIT*'||? s.t. PIT"'1 =1

with global minimizer P = IT".

Show that the minimizer is unique
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Sketch of the proof

Input: two friendly graphs B and A = IT*'BIT*

Convex quadratic program reparametrized with
Q — PH*T

m(;i)n IQB - BQ|% st. Q1 =1

with global minimizer Q = IT'IT*! = 1.

Show that the minimizer is unique
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Sketch of the proof

m&n QB — BQJjZ st. Ql =1
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Sketch of the proof

inn 1QB - BQ|% st. Q1 =1

First-order optimality condition: There exit n
Lagrange multipliers a such that

0 =Vqol = QB*+B’Q - 2BQB + a1’

57 /125



Sketch of the proof

inn 1QB - BQ|% st. Q1 =1

First-order optimality condition: using spectral
representation B = UAU?

0 =Vqol = QB*+B’Q - 2BQB + a1’
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Sketch of the proof

m&n 1QB —BQ|% st. Q1 =1

First-order optimality condition: using spectral
representation B = UAU"

0 = QUA*U'+UAU'Q
—2UAUT'QUAU! + a1”
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Sketch of the proof

inn IQB - BQ|7 st. Ql=1

First-order optimality condition: using spectral
representation B = UAU"

0 = U'QUA?+ A?UTQU
—2AUTQUA + Utal1'U
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Sketch of the proof

inn 1QB - BQ|% st. Q1 =1

First-order optimality condition: using spectral
representation B = UAU?

0 = FA?+ A’F —2AFA +~v?

where F=U'QU, vy =U'a, v=U"1
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Sketch of the proof

First-order optimality condition:

FA% + A’F —2AFA + v =0
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Sketch of the proof

First-order optimality condition:

Fiy(hi = M) vy =0
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Sketch of the proof

First-order optimality condition:

Fij(Ai = Xj)* + vy =0

In particular, for : = j: v;v;, =0
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Sketch of the proof

First-order optimality condition:

Fij(Ai = Xj)* + vy = 0

In particular, for : = j: v;v;, =0

Due to friendliness v; = u/1 # 0 = v =0
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Sketch of the proof

First-order optimality condition:

Ej()\l - )\j)Q =0 forzs %j
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Sketch of the proof

First-order optimality condition:

Ej()\l - )\j)Z =0 fori %]

Due to friendliness \; # A;
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Sketch of the proof

First-order optimality condition:

Ej()\l - )\j)Z =0 fori %]

Due to friendliness \; # A\; = F is diagonal
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Sketch of the proof

First-order optimality condition:
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Due to friendliness \; # \; = F is diagonal

1=Q1
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Sketch of the proof

First-order optimality condition:

EJ()\Z — )\j)Q =0 for 7 ?é]

Due to friendliness \; # \; = F is diagonal

1=Q1=UFU'1 = U1 =FU"1

72/125



Sketch of the proof

First-order optimality condition:

Eij(\i—))?=0 fori#j

Due to friendliness \; # \; = F is diagonal

1=Q1=UFU"1 = U1 =FU"1
= v =Fv with v; #0
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Sketch of the proof

First-order optimality condition:

Eij(\i—))?=0 fori#j

Due to friendliness \; # \; = F is diagonal

1=Q1=UFU"1 = U1 =FU"1
=v=Fvwithuv, #0=F =1
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Sketch of the proof

First-order optimality condition:

EJ(AZ — )\j)z =0 for i 7é]

Due to friendliness \; # \; = F is diagonal

1=Q1 =UFU'1 = U'1 =FU"1
=v=Fvwithv,#0=F=1
= Q=UFU"=1
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Inexact graph matching

Friendliness:

o A has simple spectrum

e no eigenvectors of A are orthogonal to the
constant vector 1

Theorem: Let A and B be friendly isomorphic
graphs. Then I1 = P* =IT".
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Inexact graph matching

Strong friendliness:

o A has J-separated spectrum

o every eigenvector u; of A satisfied |u; 1| > ¢

Theorem: Let A and B be strongly friendly
p-isomorphic graphs with p = p(¢,d). Then
P — II'[| < 3.

p-isomorphic < JIT* : |[IT*A — BIT*||7 < p
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Inexact graph matching

Strong friendliness:

o A has J-separated spectrum

o every eigenvector u; of A satisfied |u; 1| > ¢

Theorem: Let A and B be strongly friendly
p-isomorphic graphs with p = p(e,§). Then
P — IT*||» < 3.

Proof using results from regular perturbation theory
of linear equations
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Inexact graph matching

Strong friendliness:

o A has J-separated spectrum

o every eigenvector u; of A satisfied |u; 1| > ¢

Theorem: Let A and B be strongly friendly
p-isomorphic graphs with p = p(e,§). Then
IT =11

Proof using results from regular perturbation theory
of linear equations
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Inexact graph matching

Strong friendliness:

o A has d-separated spectrum

o every eigenvector u; of A satisfied |u 1| > ¢

Theorem: Let A and B be strongly friendly
p-isomorphic graphs with p = p(e,§). Then
IT=1I".

If |P*A — BP*||% < p(e, §) then II is the globally
optimal approximate isomorphism. Otherwise, no
p-isomorphism exists.
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Experimental validation on 1000 strongly friendly graphs

Success rate

0.8

0.6

0.4}

0.2r

0 1
N:)(i)se = A — BH*“% *
p(e, 6)
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Unfriendly graphs

Adjacency matrix has d non-simple eigenspaces
\Al:>\2:"':A’LL<\)\11+1:"':)\21+Z%< .« o

TV TV
multiplicity mq + 1 multiplicity mo + 1
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Unfriendly graphs

Adjacency matrix has d non-simple eigenspaces
\Al:A2:‘.‘:AZL<\AZ:[+1:‘.‘:A21+ZQJ< .« o

TV TV
multiplicity mq + 1 multiplicity mo + 1

m=mi+mg—+---+my

Basis vectors of each eigenspace are selected such
that either

none of them is orthogonal to 1 ; or

all are orthogonal to 1
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Unfriendly graphs

Adjacency matrix has d non-simple eigenspaces
\Al:)\2:'.':AZL<\)\11+1:"':)\Zl+12/< .« o

TV TV
multiplicity mq + 1 multiplicity mo + 1

m=mi+mo+---+my

Basis vectors of each eigenspace are selected such
that either
none of them is orthogonal to 1 (non-hostile); or
all are orthogonal to 1 (hostile)
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Unfriendly graphs

Adjacency matrix has d non-simple eigenspaces
\Al:)\2:'.-:A211<\)\11+1:-.‘:)\Zl+l2j< .« o

TV TV
multiplicity mq + 1 multiplicity mo + 1

m=mi+mo+---+my

Basis vectors of each eigenspace are selected such
that either
none of them is orthogonal to 1 (non-hostile); or
all are orthogonal to 1 (hostile)

k = # of hostile eigenspaces

Unfriendliness degree: m + k
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Matching of unfriendly graphs

First-order optimality condition:

7

E](Az — )\j)2 + 07 = 0 v = u-Tl

Pseudo-stochasticity constraint:

> Fijv; =,
j
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Matching of unfriendly graphs

First-order optimality condition:

(i — A1)?
fi+yv=0
(>‘i - )‘n)2

Pseudo-stochasticity constraint:

VTfZ' = V;

for each i-th row f; = (Fj1,..., Fy,)"

89/125



Matching of unfriendly graphs

First-order optimality condition:

(i — A1)?
fi+yv=0
(>‘i - )‘n)2

Pseudo-stochasticity constraint:
VTfZ' = V;

for each i-th row f; = (Fj1,..., Fy,)"

n systems with n + 1 equations and variables each
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Case |: non-hostile eigenspace

u; belongs to a non-hostile eigenspace

First-order optimality condition:
(Ai = A1)’
fz' + ViV = 0
()‘i - )‘n)z

Pseudo-stochasticity constraint:

VTfZ' = V;
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Case |: non-hostile eigenspace

u; belongs to a non-hostile eigenspace = v; # 0

First-order optimality condition:
(Ai = A1)’
fz' + ViV = 0
()‘i - )‘n)z

Pseudo-stochasticity constraint:

VTfZ' = V;
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Case |: non-hostile eigenspace

u; belongs to a non-hostile eigenspace = v; # 0
=7 =0

First-order optimality condition:

(A — Ap)?
£,=0
()‘i - An)Q

Pseudo-stochasticity constraint:

VTfZ' = U;
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Case |: non-hostile eigenspace

u; belongs to a non-hostile eigenspace = v; # 0
=7 =0

First-order optimality condition:

(A — Ap)?
£,=0
()‘i - An)Q

Pseudo-stochasticity constraint:

VTfZ' = U;

Rank-m; deficient!
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Case Il: hostile eigenspace

u; belongs to a hostile eigenspace

First-order optimality condition:
(A = A1)?
fi + YiV = 0
()‘i - )‘n)2

Pseudo-stochasticity constraint:

VTfi =
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Case Il: hostile eigenspace

u; belongs to a hostile eigenspace = v; =0

First-order optimality condition:
(A = A1)?
fi + YiV = 0
()‘i - )‘n)2

Pseudo-stochasticity constraint:

VTfi =
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Case Il: hostile eigenspace

u; belongs to a hostile eigenspace = v; =0
= ~y; undetermined

First-order optimality condition:

()\i - /\1)2 :
fi=—v] 0
(>‘i - )‘n)2 '

Pseudo-stochasticity constraint:

VTfi =0
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Case Il: hostile eigenspace

u; belongs to a hostile eigenspace = v; =0
= ~y; undetermined

First-order optimality condition:

()\i - /\1)2 :
fi=—v] 0
(>‘i - )‘n)2 '

Pseudo-stochasticity constraint:

VTfi =0

Rank-(m; + 1) deficient!
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Matching of unfriendly graphs

For an (m + k)-unfriendly graph, the system

Fij(Ai — )\) +v7 =0

E Fijvi =v;

is rank-(m + k) deficient!
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Matching of unfriendly graphs

For an (m + k)-unfriendly graph, the system

Eii— )2 +vv =0

E Fijv; = v;

is rank-(m + k) deficient!

Solution space is (m + k)-dimensional.
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Matching of unfriendly graphs

For an (m + k)-unfriendly graph, the system

Fij(N\i — )\j)Q +v;v =0

> Fijv; =,
J

is rank-(m + k) deficient!

Solution space is (m + k)-dimensional.

Some solutions may belong to Voronoi cells of
permutations that are not isomorphisms!
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Matching of unfriendly graphs

For an (m + k)-unfriendly graph, the system
Fij(\i — )\j)2 +v;7; =0
> Fivi=v
J
is rank-(m + k) deficient!

Convex relaxation + projection can produce
wrong solutions!
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Seeds and attributes

Seeds (known correspondences): collection of ¢
real functions C = (cy, ..., c,) on the vertex set of
A with corresponding functions D = (dy,...,d,)
on B.
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Seeds and attributes

Seeds (known correspondences): collection of ¢
real functions C = (cy, ..., c,) on the vertex set of
A with corresponding functions D = (dy,...,d,)
on B.

Attributes: ¢-dimensional vector-valued vertex
attributes C = (c{,...,ch)’.
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Seeds and attributes

Seeds (known correspondences): collection of ¢
real functions C = (cy, ..., c,) on the vertex set of
A with corresponding functions D = (dy,...,d,)
on B.

Attributes: ¢-dimensional vector-valued vertex
attributes C = (c{,...,ch)’.

Covariant with a preferred isomorphism: II*C = D.
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Seeds and attributes

Seeds (known correspondences): collection of ¢
real functions C = (cy, ..., c,) on the vertex set of
A with corresponding functions D = (dy,...,d,)
on B.

Columns of C and IT*D are corresponding
functions (e.g., indicator of vertices).

Attributes: ¢-dimensional vector-valued vertex

attributes C = (c{,...,ch)’.

Covariant with a preferred isomorphism: II*C = D.
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Seeds and attributes

Seeds (known correspondences): collection of ¢
real functions C = (cy, ..., c,) on the vertex set of
A with corresponding functions D = (dy,...,d,)
on B.

Columns of C and IT*D are corresponding
functions (e.g., indicator of vertices).

Attributes: ¢-dimensional vector-valued vertex

attributes C = (c{,...,ch)’.

Rows of C and IT*D are corresponding attributes.

Covariant with a preferred isomorphism: II*C = D.
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Seeded /attributed graph matching

Convex Relaxation

min [PA — BP|i st. P1=1
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Seeded /attributed graph matching

Convex Relaxation of seeded/attributed matching

min [PA — BP|[+ 4/PC - D st. P1=1
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Seeded /attributed graph matching

Convex Relaxation of seeded/attributed matching
min [PA — BP|[+ 4/PC - D st. P1=1

penalty on attributes disagreement

penalty on seeds correspondence
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Main result

Theorem: Let A and B be isomorphic graphs
related by IT*. Let C and D = IT*C be

corresponding seeds/attributes, with D further
satisfying for every non-simple eigenspace of B

spanned by u;, ..., Ujtm,
° DDTuj #0Vj=1,...,i+m; if eigenspace is
hostile; or
THNT
u DD u;
.DDTuﬂu’lT—J Vi=i+1,....i+m
otherwise. Z

Then, P* = IT” is the unique solutuon of the
relaxation for every p > 0.
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Sketch of the proof

Input: two graphs B and A = IT*TBII* with
seeds/attributes C and D = IT*C

112 /125



Sketch of the proof

Input: two graphs B and A = IT*'BII* with
seeds/attributes C and D = IT*C

Convex quadratic program

min [PA — BP|[+4/PC — D st. P1=1

with global minimizer P = IT".
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Sketch of the proof

Input: two graphs B and A = IT*'BIT* with
seeds/attributes C and D = IT*C

Convex quadratic program reparametrized with

min [QB — BQ|i +4QD — D} st. Q1 =1

with global minimizer Q =1.
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Sketch of the proof

Input: two graphs B and A = IT*'BIT* with
seeds/attributes C and D = IT*C

Convex quadratic program reparametrized with

min [QB — BQ|i +4QD — D} st. Q1 =1
with global minimizer Q =1.

Show that the minimizer is unique
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Sketch of the proof

First-order optimality condition:

QB? + B?’Q - 2BQB+.QDD! — /DD + a1t =0

Pseudo-stochasticity constraint: Q1 =1
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Sketch of the proof

First-order optimality condition:
FA? + A’F — 2AFA+uFG — 4G + vt =0
with G = U'DD"'U

Pseudo-stochasticity constraint: Fv=v
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Sketch of the proof

First-order optimality condition:
FA? + A’F — 2AFA+uFG — 4G + vt =0
with G = U'DD"'U = 0

Pseudo-stochasticity constraint: Fv=v

Adding attributes/seeds increases rank
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Main result

Theorem: Let D = IT*C satisfying for every
non-simple eigenspace sp{u;, ..., W}
° DDTuj #0Vj=1,...,i+ m; if eigenspace is
hostile; or

TDDT
o« DDy, ;éll—uj Vi=i+1,....0+m
otherwise. Z

Then, P* = IT" is the unique solutuon of relaxation.
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Main result

Theorem: Let D = IT*C satisfying for every

non-simple eigenspace sp{u;, ..., W}
° DDTuj #0Vj=1,...,i+ m; if eigenspace is
hostile; or
u!DD"u;
o DDy #1—9 Vi=i+1,...,i+m,
otherwise. Z

Then, P* = IT" is the unique solutuon of relaxation.

m + k linearly independent seeds are required.
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Experimental validation on 1000 symmetric graphs
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o Relaxation space: We used P1 = 1. Do we
need P > 0? do we need PT1 = 1? Practical
consequences?
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o Relaxation space: We used P1 = 1. Do we
need P > 0? do we need PT1 = 1? Practical
consequences?

o Better use of geometry: adjacency matrices
are, e.g., metric? low dimensional? smooth?
bounded curvature?
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o Relaxation space: We used P1 = 1. Do we
need P > 0? do we need PT1 = 1? Practical
consequences?

o Better use of geometry: adjacency matrices
are, e.g., metric? low dimensional? smooth?
bounded curvature?

o Symmetry breaking: add low-rank noise to
unfriendly eigenspaces of A to make it friendly.
Will the relaxation still work?
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o Relaxation space: We used P1 = 1. Do we
need P > 0? do we need PT1 = 1? Practical
consequences?

o Better use of geometry: adjacency matrices
are, e.g., metric? low dimensional? smooth?
bounded curvature?

o Symmetry breaking: add low-rank noise to
unfriendly eigenspaces of A to make it friendly.
Will the relaxation still work?

o Finding all isomorphisms (in particular, all
symmetries of a graph).
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