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Minimum-distortion correspondences
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Minimum-distortion correspondences

Find the best structure-preserving correspondence
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Minimum-distortion correspondences

Find ϕ : (X, dX) 7→ (Y, dY ) minimizing ‖dX − dY ◦ (ϕ× ϕ)‖
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’Graph matching’ problems
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’Graph matching’ problems

Given two undirected weighted graphs represented
by adjacency matrices A and B

Graph isomorphism: determine whether A and B
are isomorphic

Exact graph ’matching’: find isomorphism
relating A and B

Inexact graph ’matching’: find best approximate
isomorphism relating A and B
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Convex relaxation

Graph Matching (NP)

Π∗ = argmin
Π∈P

‖A−ΠTBΠ‖

P = space of n× n permutation matrices

Convex Relaxation

(QP)

P∗ = argmin
P∈D

‖PA−BP‖2F

D = {P ≥ 0 : P1 = PT1 = 1} space of
n× n double-stochastic matrices
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Convex relaxation

Convex Relaxation (QP)

P∗ = argmin
P∈D

‖PA−BP‖2F

Generally, P∗ is not a permutation!

2. Projection onto P

(LAP)
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1. Convex Relaxation (QP)

P∗ = argmin
P∈D

‖PA−BP‖2F

Generally, P∗ is not a permutation!

2. Projection onto P

(LAP)

Π̂ = argmax
Π∈P

〈Π,P∗〉
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Convex relaxation

1. Convex Relaxation (QP)

P∗ = argmin
P∈D

‖PA−BP‖2F

Generally, P∗ is not a permutation!

2. Projection onto P (LAP)

Π̂ = argmax
Π∈P

tr(ΠTP∗)

Solved by Hungarian algorithm
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Relax or not?

What is the relation between Π∗ and Π̂?

Obviously, Π∗ is a solution of the relaxation

However, the relaxation might produce some P∗

which is not a permutation and its projection Π̂
can have ‖Π̂A−BΠ̂‖ > 0

Surprisingly, not so much is known about the
relation between Π∗ and Π̂!

20 / 125



Relax or not?

What is the relation between Π∗ and Π̂?

Obviously, Π∗ is a solution of the relaxation

However, the relaxation might produce some P∗

which is not a permutation and its projection Π̂
can have ‖Π̂A−BΠ̂‖ > 0

Surprisingly, not so much is known about the
relation between Π∗ and Π̂!

21 / 125



Relax or not?

What is the relation between Π∗ and Π̂?

Obviously, Π∗ is a solution of the relaxation

However, the relaxation might produce some P∗

which is not a permutation and its projection Π̂
can have ‖Π̂A−BΠ̂‖ > 0

Surprisingly, not so much is known about the
relation between Π∗ and Π̂!

22 / 125



Relax or not?

What is the relation between Π∗ and Π̂?

Obviously, Π∗ is a solution of the relaxation

However, the relaxation might produce some P∗

which is not a permutation and its projection Π̂
can have ‖Π̂A−BΠ̂‖ > 0

Surprisingly, not so much is known about the
relation between Π∗ and Π̂!

23 / 125



Convex relaxation

Convex Relaxation

P∗ = argmin
P≥0

‖PA−BP‖2F

s.t. P1 = PT1 = 1

double-stochastic matrices

n non-overlapping equality constraints instead
of 2n overlapping constraints

no inequality constraints
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Convex relaxation

An even bigger relaxation

P∗ = argmin
P
‖PA−BP‖2F

s.t. P1 = 1

pseduo-stochastic matrices

n non-overlapping equality constraints instead
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Friendly graphs

Convex Relaxation

P∗ = argmin
P
‖PA−BP‖2F s.t. P1 = 1

Friendly graphs: an undirected weighted graph A
is friendly if

A has simple spectrum

no eigenvectors of A are orthogonal to the
constant vector 1

28 / 125



Friendly graphs

Convex Relaxation

P∗ = argmin
P
‖PA−BP‖2F s.t. P1 = 1

Friendly graphs: an undirected weighted graph A
is friendly if

A has simple spectrum

no eigenvectors of A are orthogonal to the
constant vector 1

29 / 125



Friendly graphs

Property: friendly graphs are asymmetric

Proof: Let A = UΛUT be friendly.
Assume Π 6= I permutation such that ΠA = AΠ.
⇒ ∀i :
⇒ Πui is an eigenvector of A corresponding to λi.
A has simple spectrum ⇒ Πui = ±ui.
Π 6= I ⇒ ∃ui for which Πui = −ui
⇒ 1TΠui = −1Tui.
Π is a permutation ⇒
⇒ 1Tui = 0 in contradiction to friendliness

Converse is not true (think of a regular asymmetric
graph), but such graphs should be rare
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Friendly graphs

Property: friendly graphs are asymmetric
(have trivial automorphism group)
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Main result

Theorem: Let A and B be friendly isomorphic
graphs. Then P∗ = Π∗.

Checking isomorphism is hard

Checking friendliness is easy

Solve the relaxation: if P∗A = BP∗ then
the unique isomorphism is Π∗ = P∗.
Otherwise, no isomorphism exists.
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Sketch of the proof

Input: two friendly graphs B and A = Π∗TBΠ∗

Convex quadratic program
with global minimizer

Show that the minimizer is unique
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Input: two friendly graphs B and A = Π∗TBΠ∗
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Sketch of the proof

Input: two friendly graphs B and A = Π∗TBΠ∗

Convex quadratic program reparametrized with
Q = PΠ∗T

min
Q
‖QB−BQ‖2F s.t. Q1 = 1

with global minimizer Q = Π∗Π∗T = I.

Show that the minimizer is unique
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Sketch of the proof

min
Q
‖QB−BQ‖2F s.t. Q1 = 1

First-order optimality condition:

where F = UTQU, γ = UTα, v = UT1
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Q
‖QB−BQ‖2F s.t. Q1 = 1

First-order optimality condition: There exit n
Lagrange multipliers α such that

0 = ∇QL = QB2 + B2Q− 2BQB +α1T

where F = UTQU, γ = UTα, v = UT1
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Sketch of the proof

min
Q
‖QB−BQ‖2F s.t. Q1 = 1

First-order optimality condition: using spectral
representation B = UΛUT

0 = QUΛ2UT + UΛ2UTQ

−2UΛUTQUΛUT +α1T

where F = UTQU, γ = UTα, v = UT1
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representation B = UΛUT

0 = UTQUΛ2 + Λ2UTQU
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Sketch of the proof

min
Q
‖QB−BQ‖2F s.t. Q1 = 1

First-order optimality condition: using spectral
representation B = UΛUT

0 = FΛ2 + Λ2F− 2ΛFΛ + γvT

where F = UTQU, γ = UTα, v = UT1
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Sketch of the proof

First-order optimality condition:

FΛ2 + Λ2F− 2ΛFΛ + γvT = 0
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Sketch of the proof

First-order optimality condition:

Fij(λi − λj)2 + vjγi = 0
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Sketch of the proof

First-order optimality condition:

Fij(λi − λj)2 = 0 for i 6= j
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First-order optimality condition:

Fij(λi − λj)2 = 0 for i 6= j

Due to friendliness λi 6= λj ⇒ F is diagonal

1 = Q1 = UFUT1 ⇒ UT1 = FUT1
⇒ v = Fv with vi 6= 0
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Sketch of the proof

First-order optimality condition:

Fij(λi − λj)2 = 0 for i 6= j

Due to friendliness λi 6= λj ⇒ F is diagonal

1 = Q1 = UFUT1 ⇒ UT1 = FUT1
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Sketch of the proof

First-order optimality condition:

Fij(λi − λj)2 = 0 for i 6= j

Due to friendliness λi 6= λj ⇒ F is diagonal

1 = Q1 = UFUT1 ⇒ UT1 = FUT1
⇒ v = Fv with vi 6= 0 ⇒ F = I
⇒ Q = UFUT = I
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Inexact graph matching

Friendliness:

A has simple spectrum

no eigenvectors of A are orthogonal to the
constant vector 1

Theorem: Let A and B be friendly isomorphic
graphs. Then Π̂ = P∗ = Π∗.
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Inexact graph matching

Strong friendliness:

A has δ-separated spectrum

every eigenvector ui of A satisfied |uT
i 1| > ε

Theorem: Let A and B be strongly friendly
ρ-isomorphic graphs with ρ = ρ(ε, δ). Then
‖P∗ −Π∗‖∞ < 1

2 .

ρ-isomorphic ⇔ ∃Π∗ : ‖Π∗A−BΠ∗‖2F ≤ ρ
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Proof using results from regular perturbation theory
of linear equations

78 / 125



Inexact graph matching

Strong friendliness:

A has δ-separated spectrum

every eigenvector ui of A satisfied |uT
i 1| > ε

Theorem: Let A and B be strongly friendly
ρ-isomorphic graphs with ρ = ρ(ε, δ). Then
Π̂ = Π∗.

Proof using results from regular perturbation theory
of linear equations

79 / 125



Inexact graph matching

Strong friendliness:

A has δ-separated spectrum

every eigenvector ui of A satisfied |uT
i 1| > ε

Theorem: Let A and B be strongly friendly
ρ-isomorphic graphs with ρ = ρ(ε, δ). Then
Π̂ = Π∗.

If ‖P∗A−BP∗‖2F < ρ(ε, δ) then Π̂ is the globally
optimal approximate isomorphism. Otherwise, no
ρ-isomorphism exists.
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Experimental validation on 1000 strongly friendly graphs
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Unfriendly graphs

Adjacency matrix has d non-simple eigenspaces
λ1 = λ2 = · · · = λi1︸ ︷︷ ︸

multiplicity m1 + 1

< λi1+1 = · · · = λi1+i2︸ ︷︷ ︸
multiplicity m2 + 1

< · · ·

m = m1 +m2 + · · ·+md

Basis vectors of each eigenspace are selected such
that either

none of them is orthogonal to 1 ; or
all are orthogonal to 1

k = # of hostile eigenspaces

Unfriendliness degree: m+ k
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Matching of unfriendly graphs

First-order optimality condition:

Fij(λi − λj)2 + vjγi = 0 vi = uT
i 1

Pseudo-stochasticity constraint:∑
j

Fijvj = vi

for each i-th row f i = (Fi1, . . . , Fin)
T

n systems with n+ 1 equations and variables each
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First-order optimality condition: (λi − λ1)2
. . .

(λi − λn)2

 f i + γiv = 0

Pseudo-stochasticity constraint:

vTf i = vi

for each i-th row f i = (Fi1, . . . , Fin)
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n systems with n+ 1 equations and variables each
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Case I: non-hostile eigenspace

ui belongs to a non-hostile eigenspace

⇒ vi 6= 0
⇒ γi = 0

First-order optimality condition: (λi − λ1)2
. . .

(λi − λn)2

 f i + γiv = 0

Pseudo-stochasticity constraint:

vTf i = vi

Rank-mi deficient!
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Case II: hostile eigenspace

ui belongs to a hostile eigenspace

⇒ vi = 0
⇒ γi undetermined

First-order optimality condition: (λi − λ1)2
. . .

(λi − λn)2

 f i + γiv = 0

Pseudo-stochasticity constraint:

vTf i = vi

Rank-(mi + 1) deficient!
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Case II: hostile eigenspace

ui belongs to a hostile eigenspace ⇒ vi = 0
⇒ γi undetermined

First-order optimality condition: (λi − λ1)2
. . .

(λi − λn)2

 f i = −γi


...
0
...
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Rank-(mi + 1) deficient!

97 / 125



Case II: hostile eigenspace

ui belongs to a hostile eigenspace ⇒ vi = 0
⇒ γi undetermined

First-order optimality condition: (λi − λ1)2
. . .

(λi − λn)2

 f i = −γi


...
0
...


Pseudo-stochasticity constraint:

vTf i = 0

Rank-(mi + 1) deficient!
98 / 125



Matching of unfriendly graphs

For an (m+ k)-unfriendly graph, the system

Fij(λi − λj)2 + vjγi = 0∑
j

Fijvj = vi

is rank-(m+ k) deficient!
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Matching of unfriendly graphs

For an (m+ k)-unfriendly graph, the system

Fij(λi − λj)2 + vjγi = 0∑
j

Fijvj = vi

is rank-(m+ k) deficient!

Solution space is (m+ k)-dimensional.

Some solutions may belong to Voronoi cells of
permutations that are not isomorphisms!
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Matching of unfriendly graphs

For an (m+ k)-unfriendly graph, the system

Fij(λi − λj)2 + vjγi = 0∑
j

Fijvj = vi

is rank-(m+ k) deficient!

Convex relaxation + projection can produce
wrong solutions!
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Seeds and attributes

Seeds (known correspondences): collection of q
real functions C = (c1, . . . , cq) on the vertex set of
A with corresponding functions D = (d1, . . . ,dq)
on B.

Columns of C and Π∗D are corresponding
functions (e.g., indicator of vertices).

Attributes: q-dimensional vector-valued vertex
attributes C = (cT1 , . . . , c

T
n )

T.

Rows of C and Π∗D are corresponding attributes.

Covariant with a preferred isomorphism: Π∗C = D.
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Seeded/attributed graph matching

Convex Relaxation

min
P
‖PA−BP‖2F s.t. P1 = 1

penalty on attributes disagreement

penalty on seeds correspondence
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Main result

Theorem: Let A and B be isomorphic graphs
related by Π∗. Let C and D = Π∗C be
corresponding seeds/attributes, with D further
satisfying for every non-simple eigenspace of B
spanned by ui, . . . ,ui+mi

DDTuj 6= 0 ∀j = i, . . . , i+mi if eigenspace is
hostile; or

DDTuj 6= 1
uT
i DDTuj

1Tui
∀j = i+ 1, . . . , i+mi

otherwise.

Then, P∗ = Π∗ is the unique solutuon of the
relaxation for every µ > 0.
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Sketch of the proof

Input: two graphs B and A = Π∗TBΠ∗ with
seeds/attributes C and D = Π∗C

Convex quadratic program
with global minimizer

Show that the minimizer is unique
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min
P
‖PA−BP‖2F+µ‖PC−D‖2F s.t. P1 = 1

with global minimizer P = Π∗.
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Sketch of the proof

Input: two graphs B and A = Π∗TBΠ∗ with
seeds/attributes C and D = Π∗C

Convex quadratic program reparametrized with
Q = PΠ∗T

min
Q
‖QB−BQ‖2F+µ‖QD−D‖2F s.t. Q1 = 1

with global minimizer Q = I.

Show that the minimizer is unique
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Sketch of the proof

First-order optimality condition:

QB2 + B2Q− 2BQB+µQDDT − µDDT +α1T = 0

Pseudo-stochasticity constraint: Q1 = 1

Adding attributes/seeds increases rank

116 / 125



Sketch of the proof

First-order optimality condition:

FΛ2 + Λ2F− 2ΛFΛ+µFG− µG + γvT = 0

with G = UTDDTU

Pseudo-stochasticity constraint: Fv = v
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Main result

Theorem: Let D = Π∗C satisfying for every
non-simple eigenspace sp{ui, . . . ,ui+mi

}
DDTuj 6= 0 ∀j = i, . . . , i+mi if eigenspace is
hostile; or

DDTuj 6= 1
uT
i DDTuj

1Tui
∀j = i+ 1, . . . , i+mi

otherwise.

Then, P∗ = Π∗ is the unique solutuon of relaxation.

m+ k linearly independent seeds are required.
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Experimental validation on 1000 symmetric graphs
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Questions

Relaxation space: We used P1 = 1. Do we
need P ≥ 0? do we need PT1 = 1? Practical
consequences?

Better use of geometry: adjacency matrices
are, e.g., metric? low dimensional? smooth?
bounded curvature?

Symmetry breaking: add low-rank noise to
unfriendly eigenspaces of A to make it friendly.
Will the relaxation still work?

Finding all isomorphisms (in particular, all
symmetries of a graph).
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