Graph Matching: Relax or Not?

Alex Bronstein

School of Electrical Engineering
Tel Aviv University
College of Electrical and Computer Engineering
Duke University

NCSU, 2014

Joint work with Yonathan Aflalo and Ron Kimmel

Minimum-distortion correspondences

Minimum-distortion correspondences

Find the best structure-preserving correspondence

Minimum-distortion correspondences

Find $\varphi:\left(X, d_{X}\right) \mapsto\left(Y, d_{Y}\right)$ minimizing $\left\|d_{X}-d_{Y} \circ(\varphi \times \varphi)\right\|$

'Graph matching' problems

'Graph matching' problems

'Graph matching' problems

Given two undirected weighted graphs represented by adjacency matrices \mathbf{A} and \mathbf{B}

'Graph matching' problems

Given two undirected weighted graphs represented by adjacency matrices \mathbf{A} and \mathbf{B}

Graph isomorphism: determine whether \mathbf{A} and \mathbf{B} are isomorphic

'Graph matching' problems

Given two undirected weighted graphs represented by adjacency matrices \mathbf{A} and \mathbf{B}

Graph isomorphism: determine whether \mathbf{A} and \mathbf{B} are isomorphic

Exact graph 'matching': find isomorphism relating \mathbf{A} and \mathbf{B}

'Graph matching' problems

Given two undirected weighted graphs represented by adjacency matrices \mathbf{A} and \mathbf{B}

Graph isomorphism: determine whether \mathbf{A} and \mathbf{B} are isomorphic

Exact graph 'matching': find isomorphism relating \mathbf{A} and \mathbf{B}

Inexact graph 'matching': find best approximate isomorphism relating \mathbf{A} and \mathbf{B}

Convex relaxation

Graph Matching (NP)

$$
\boldsymbol{\Pi}^{*}=\underset{\Pi \in \mathcal{P}}{\operatorname{argmin}}\left\|\mathbf{A}-\boldsymbol{\Pi}^{\mathrm{T}} \mathbf{B} \boldsymbol{\Pi}\right\|
$$

$\mathcal{P}=$ space of $n \times n$ permutation matrices

Convex relaxation

Graph Matching (NP)

$$
\boldsymbol{\Pi}^{*}=\underset{\Pi \in \mathcal{P}}{\operatorname{argmin}}\left\|\mathbf{A}-\boldsymbol{\Pi}^{\mathrm{T}} \mathbf{B} \boldsymbol{\Pi}\right\|_{\mathrm{F}}^{2}
$$

$\mathcal{P}=$ space of $n \times n$ permutation matrices

Convex relaxation

Graph Matching (NP)

$$
\begin{gathered}
\boldsymbol{\Pi}^{*}=\underset{\boldsymbol{\Pi} \in \mathcal{P}}{\operatorname{argmin}}\|\boldsymbol{\Pi} \mathbf{A}-\mathbf{B \Pi}\|_{\mathrm{F}}^{2} \\
\mathcal{P}=\text { space of } n \times n \text { permutation matrices }
\end{gathered}
$$

Convex relaxation

Graph Matching (NP)

$$
\begin{gathered}
\mathbf{\Pi}^{*}=\underset{\Pi \in \mathcal{P}}{\operatorname{argmin}}\|\boldsymbol{\Pi} \mathbf{A}-\mathbf{B \Pi}\|_{\mathrm{F}}^{2} \\
\mathcal{P}=\text { space of } n \times n \text { permutation matrices }
\end{gathered}
$$

Convex Relaxation

$$
\begin{gathered}
\mathbf{P}^{*}=\underset{\mathbf{P} \in \mathcal{D}}{\operatorname{argmin}}\|\mathbf{P} \mathbf{A}-\mathbf{B P}\|_{\mathrm{F}}^{2} \\
\mathcal{D}=\left\{\mathbf{P} \geq \mathbf{0}: \mathbf{P} \mathbf{1}=\mathbf{P}^{\mathrm{T}} \mathbf{1}=\mathbf{1}\right\} \text { space of } \\
n \times n \text { double-stochastic matrices }
\end{gathered}
$$

Convex relaxation

Graph Matching (NP)

$$
\begin{gathered}
\mathbf{\Pi}^{*}=\underset{\boldsymbol{\Pi} \in \mathcal{P}}{\operatorname{argmin}}\|\boldsymbol{\Pi} \mathbf{A}-\mathbf{B \Pi}\|_{\mathrm{F}}^{2} \\
\mathcal{P}=\text { space of } n \times n \text { permutation matrices }
\end{gathered}
$$

Convex Relaxation (QP)

$$
\begin{gathered}
\mathbf{P}^{*}=\underset{\mathbf{P} \in \mathcal{D}}{\operatorname{argmin}}\|\mathbf{P} \mathbf{A}-\mathbf{B P}\|_{\mathrm{F}}^{2} \\
\mathcal{D}=\left\{\mathbf{P} \geq \mathbf{0}: \mathbf{P} \mathbf{1}=\mathbf{P}^{\mathrm{T}} \mathbf{1}=\mathbf{1}\right\} \text { space of } \\
n \times n \text { double-stochastic matrices }
\end{gathered}
$$

Convex relaxation

Convex Relaxation (QP)

$$
\mathbf{P}^{*}=\underset{\mathbf{P} \in \mathcal{D}}{\operatorname{argmin}}\|\mathbf{P} \mathbf{A}-\mathbf{B P}\|_{\mathrm{F}}^{2}
$$

Generally, \mathbf{P}^{*} is not a permutation!

Convex relaxation

1. Convex Relaxation (QP)

$$
\mathbf{P}^{*}=\underset{\mathbf{P} \in \mathcal{D}}{\operatorname{argmin}}\|\mathbf{P} \mathbf{A}-\mathbf{B P}\|_{\mathrm{F}}^{2}
$$

Generally, \mathbf{P}^{*} is not a permutation!
2. Projection onto \mathcal{P}

$$
\hat{\boldsymbol{\Pi}}=\underset{\boldsymbol{\Pi} \in \mathcal{P}}{\operatorname{argmax}}\left\langle\boldsymbol{\Pi}, \mathbf{P}^{*}\right\rangle
$$

Convex relaxation

1. Convex Relaxation (QP)

$$
\mathbf{P}^{*}=\underset{\mathbf{P} \in \mathcal{D}}{\operatorname{argmin}}\|\mathbf{P} \mathbf{A}-\mathbf{B P}\|_{\mathrm{F}}^{2}
$$

Generally, \mathbf{P}^{*} is not a permutation!
2. Projection onto \mathcal{P}

$$
\hat{\boldsymbol{\Pi}}=\underset{\boldsymbol{\Pi} \in \mathcal{P}}{\operatorname{argmax}} \operatorname{tr}\left(\boldsymbol{\Pi}^{\mathrm{T}} \mathbf{P}^{*}\right)
$$

Convex relaxation

1. Convex Relaxation (QP)

$$
\mathbf{P}^{*}=\underset{\mathbf{P} \in \mathcal{D}}{\operatorname{argmin}}\|\mathbf{P} \mathbf{A}-\mathbf{B P}\|_{\mathrm{F}}^{2}
$$

Generally, \mathbf{P}^{*} is not a permutation!
2. Projection onto \mathcal{P} (LAP)

$$
\hat{\boldsymbol{\Pi}}=\underset{\boldsymbol{\Pi} \in \mathcal{P}}{\operatorname{argmax}} \operatorname{tr}\left(\boldsymbol{\Pi}^{\mathrm{T}} \mathbf{P}^{*}\right)
$$

Solved by Hungarian algorithm

Relax or not?

What is the relation between Π^{*} and $\hat{\Pi}$?

Relax or not?

What is the relation between Π^{*} and $\hat{\Pi}$?

Obviously, $\boldsymbol{\Pi}^{*}$ is a solution of the relaxation

Relax or not?

What is the relation between Π^{*} and $\hat{\Pi}$?

Obviously, Π^{*} is a solution of the relaxation

However, the relaxation might produce some \mathbf{P}^{*} which is not a permutation and its projection $\hat{\Pi}$ can have $\|\hat{\Pi} \mathbf{A}-\mathbf{B} \hat{\Pi}\|>0$

Relax or not?

What is the relation between Π^{*} and $\hat{\Pi}$?

Obviously, $\boldsymbol{\Pi}^{*}$ is a solution of the relaxation

However, the relaxation might produce some \mathbf{P}^{*} which is not a permutation and its projection $\hat{\Pi}$ can have $\|\hat{\Pi} \mathbf{A}-\mathbf{B} \hat{\Pi}\|>0$

Surprisingly, not so much is known about the relation between Π^{*} and $\hat{\Pi}$!

Convex relaxation

Convex Relaxation

$$
\begin{array}{r}
\mathbf{P}^{*}=\underset{\mathbf{P} \geq \mathbf{0}}{\operatorname{argmin}}\|\mathbf{P A}-\mathbf{B P}\|_{\mathrm{F}}^{2} \\
\text { s.t. } \mathbf{P} \mathbf{1}=\mathbf{P}^{\mathrm{T}} \mathbf{1}=\mathbf{1}
\end{array}
$$

double-stochastic matrices

Convex relaxation

An even bigger relaxation

$$
\begin{gathered}
\mathbf{P}^{*}=\underset{\mathbf{P}}{\operatorname{argmin}}\|\mathbf{P A}-\mathbf{B P}\|_{\mathrm{F}}^{2} \\
\text { s.t. } \mathbf{P} \mathbf{1}=\mathbf{1}
\end{gathered}
$$

pseduo-stochastic matrices

Convex relaxation

An even bigger relaxation

$$
\begin{gathered}
\mathbf{P}^{*}=\underset{\mathbf{P}}{\operatorname{argmin}}\|\mathbf{P A}-\mathbf{B P}\|_{\mathrm{F}}^{2} \\
\text { s.t. } \mathbf{P} \mathbf{1}=\mathbf{1}
\end{gathered}
$$

pseduo-stochastic matrices
n non-overlapping equality constraints instead of $2 n$ overlapping constraints

Convex relaxation

An even bigger relaxation

$$
\begin{gathered}
\mathbf{P}^{*}=\underset{\mathbf{P}}{\operatorname{argmin}}\|\mathbf{P A}-\mathbf{B P}\|_{\mathrm{F}}^{2} \\
\text { s.t. } \mathbf{P} \mathbf{1}=\mathbf{1}
\end{gathered}
$$

pseduo-stochastic matrices
n non-overlapping equality constraints instead of $2 n$ overlapping constraints
no inequality constraints

Friendly graphs

Convex Relaxation

$$
\mathbf{P}^{*}=\underset{\mathbf{P}}{\operatorname{argmin}}\|\mathbf{P} \mathbf{A}-\mathbf{B P}\|_{\mathrm{F}}^{2} \text { s.t. } \mathbf{P} \mathbf{1}=\mathbf{1}
$$

Friendly graphs

Convex Relaxation

$$
\mathbf{P}^{*}=\underset{\mathbf{P}}{\operatorname{argmin}}\|\mathbf{P} \mathbf{A}-\mathbf{B P}\|_{\mathrm{F}}^{2} \text { s.t. } \mathbf{P} \mathbf{1}=\mathbf{1}
$$

Friendly graphs: an undirected weighted graph A is friendly if

- A has simple spectrum
- no eigenvectors of A are orthogonal to the constant vector 1

Friendly graphs

Property: friendly graphs are asymmetric

Friendly graphs

Property: friendly graphs are asymmetric (have trivial automorphism group)

Friendly graphs

Property: friendly graphs are asymmetric Proof: Let $\mathbf{A}=\mathbf{U} \Lambda \mathbf{U}^{\mathrm{T}}$ be friendly. Assume $\boldsymbol{\Pi} \neq \mathbf{I}$ permutation such that $\Pi \mathbf{A}=\mathbf{A} \boldsymbol{\Pi}$.

Friendly graphs

Property: friendly graphs are asymmetric Proof: Let $\mathbf{A}=\mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^{\mathrm{T}}$ be friendly. Assume $\Pi \neq \mathbf{I}$ permutation such that $\Pi \mathbf{A}=\mathbf{A} \boldsymbol{\Pi}$.
$\Rightarrow \forall i: \mathbf{A u}_{i}=\lambda_{i} \mathbf{u}_{i}$

Friendly graphs

Property: friendly graphs are asymmetric Proof: Let $\mathrm{A}=\mathbf{U} \boldsymbol{\Lambda} \mathrm{U}^{\mathrm{T}}$ be friendly. Assume $\boldsymbol{\Pi} \neq \mathbf{I}$ permutation such that $\Pi \mathbf{A}=\mathbf{A} \boldsymbol{\Pi}$.
$\Rightarrow \forall i: \Pi \mathbf{A u}_{i}=\lambda_{i} \boldsymbol{\Pi} \mathbf{u}_{i}$

Friendly graphs

Property: friendly graphs are asymmetric Proof: Let $\mathbf{A}=\mathbf{U} \Lambda \mathbf{U}^{\mathrm{T}}$ be friendly. Assume $\boldsymbol{\Pi} \neq \mathbf{I}$ permutation such that $\Pi \mathbf{A}=\mathbf{A} \boldsymbol{\Pi}$.
$\Rightarrow \forall i: \quad \mathbf{A \Pi u}_{i}=\lambda_{i} \boldsymbol{\Pi} \mathbf{u}_{i}$

Friendly graphs

Property: friendly graphs are asymmetric
Proof: Let $\mathbf{A}=\mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^{\mathrm{T}}$ be friendly.
Assume $\Pi \neq \mathbf{I}$ permutation such that $\Pi \mathbf{A}=\mathbf{A} \Pi$.
$\Rightarrow \forall i: \quad \mathbf{A} \boldsymbol{\Pi} \mathbf{u}_{i}=\lambda_{i} \boldsymbol{\Pi} \mathbf{u}_{i}$
$\Rightarrow \Pi \mathbf{u}_{i}$ is an eigenvector of \mathbf{A} corresponding to λ_{i}.

Friendly graphs

Property: friendly graphs are asymmetric
Proof: Let $\mathbf{A}=\mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^{\mathrm{T}}$ be friendly.
Assume $\Pi \neq \mathbf{I}$ permutation such that $\Pi \mathbf{A}=\mathbf{A} \Pi$.
$\Rightarrow \forall i: \quad \mathbf{A} \Pi \mathbf{u}_{i}=\lambda_{i} \boldsymbol{\Pi} \mathbf{u}_{i}$
$\Rightarrow \Pi \mathbf{u}_{i}$ is an eigenvector of \mathbf{A} corresponding to λ_{i}.
A has simple spectrum $\Rightarrow \Pi \mathbf{u}_{i}= \pm \mathbf{u}_{i}$.

Friendly graphs

Property: friendly graphs are asymmetric Proof: Let $\mathbf{A}=\mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^{\mathrm{T}}$ be friendly. Assume $\boldsymbol{\Pi} \neq \mathbf{I}$ permutation such that $\Pi \mathbf{A}=\mathbf{A} \boldsymbol{\Pi}$.
$\Rightarrow \forall i: \quad \mathbf{A \Pi u}_{i}=\lambda_{i} \boldsymbol{\Pi u}_{i}$
$\Rightarrow \Pi \mathbf{u}_{i}$ is an eigenvector of \mathbf{A} corresponding to λ_{i}.
A has simple spectrum $\Rightarrow \Pi \mathbf{u}_{i}= \pm \mathbf{u}_{i}$.
$\Pi \neq \mathbf{I} \Rightarrow \exists \mathbf{u}_{i}$ for which $\Pi \mathbf{u}_{i}=-\mathbf{u}_{i}$

Friendly graphs

Property: friendly graphs are asymmetric Proof: Let $\mathbf{A}=\mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^{\mathrm{T}}$ be friendly. Assume $\boldsymbol{\Pi} \neq \mathbf{I}$ permutation such that $\Pi \mathbf{A}=\mathbf{A} \boldsymbol{\Pi}$.
$\Rightarrow \forall i: \quad \mathbf{A} \Pi \mathbf{u}_{i}=\lambda_{i} \boldsymbol{\Pi} \mathbf{u}_{i}$
$\Rightarrow \Pi \mathbf{u}_{i}$ is an eigenvector of \mathbf{A} corresponding to λ_{i}.
A has simple spectrum $\Rightarrow \Pi \mathbf{u}_{i}= \pm \mathbf{u}_{i}$.
$\boldsymbol{\Pi} \neq \mathbf{I} \Rightarrow \exists \mathbf{u}_{i}$ for which $\Pi \mathbf{u}_{i}=-\mathbf{u}_{i}$
$\Rightarrow \mathbf{1}^{\mathrm{T}} \Pi \mathbf{u}_{i}=-\mathbf{1}^{\mathrm{T}} \mathbf{u}_{i}$.

Friendly graphs

Property: friendly graphs are asymmetric Proof: Let $\mathbf{A}=\mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^{\mathrm{T}}$ be friendly.
Assume $\boldsymbol{\Pi} \neq \mathbf{I}$ permutation such that $\Pi \mathbf{A}=\mathbf{A} \boldsymbol{\Pi}$.
$\Rightarrow \forall i: \quad \mathbf{A} \Pi \mathbf{u}_{i}=\lambda_{i} \boldsymbol{\Pi} \mathbf{u}_{i}$
$\Rightarrow \Pi \mathbf{u}_{i}$ is an eigenvector of \mathbf{A} corresponding to λ_{i}.
A has simple spectrum $\Rightarrow \Pi \mathbf{u}_{i}= \pm \mathbf{u}_{i}$.
$\boldsymbol{\Pi} \neq \mathbf{I} \Rightarrow \exists \mathbf{u}_{i}$ for which $\Pi \mathbf{u}_{i}=-\mathbf{u}_{i}$
$\Rightarrow \mathbf{1}^{\mathrm{T}} \boldsymbol{\Pi u}_{i}=-\mathbf{1}^{\mathrm{T}} \mathbf{u}_{i}$.
Π is a permutation $\Rightarrow \mathbf{1}^{\mathrm{T}} \boldsymbol{\Pi}=\mathbf{1}^{\mathrm{T}}$

Friendly graphs

Property: friendly graphs are asymmetric Proof: Let $\mathbf{A}=\mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^{\mathrm{T}}$ be friendly.
Assume $\boldsymbol{\Pi} \neq \mathbf{I}$ permutation such that $\Pi \mathbf{A}=\mathbf{A} \boldsymbol{\Pi}$.
$\Rightarrow \forall i: \quad \mathbf{A} \Pi \mathbf{u}_{i}=\lambda_{i} \boldsymbol{\Pi} \mathbf{u}_{i}$
$\Rightarrow \Pi \mathbf{u}_{i}$ is an eigenvector of \mathbf{A} corresponding to λ_{i}.
A has simple spectrum $\Rightarrow \Pi \mathbf{u}_{i}= \pm \mathbf{u}_{i}$.
$\Pi \neq \mathbf{I} \Rightarrow \exists \mathbf{u}_{i}$ for which $\Pi \mathbf{u}_{i}=-\mathbf{u}_{i}$
$\Rightarrow \mathbf{1}^{\mathrm{T}} \boldsymbol{\Pi u}_{i}=-\mathbf{1}^{\mathrm{T}} \mathbf{u}_{i}$.
Π is a permutation $\Rightarrow \mathbf{1}^{\mathrm{T}} \Pi \mathbf{u}_{i}=\mathbf{1}^{\mathrm{T}} \mathbf{u}_{i}$

Friendly graphs

Property: friendly graphs are asymmetric Proof: Let $\mathbf{A}=\mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^{\mathrm{T}}$ be friendly.
Assume $\boldsymbol{\Pi} \neq \mathbf{I}$ permutation such that $\Pi \mathbf{A}=\mathbf{A} \boldsymbol{\Pi}$.
$\Rightarrow \forall i: \mathbf{A \Pi u}_{i}=\lambda_{i} \boldsymbol{\Pi} \mathbf{u}_{i}$
$\Rightarrow \Pi \mathbf{u}_{i}$ is an eigenvector of A corresponding to λ_{i}.
A has simple spectrum $\Rightarrow \Pi \mathbf{u}_{i}= \pm \mathbf{u}_{i}$.
$\Pi \neq \mathbf{I} \Rightarrow \exists \mathbf{u}_{i}$ for which $\Pi \mathbf{u}_{i}=-\mathbf{u}_{i}$
$\Rightarrow \mathbf{1}^{\mathrm{T}} \boldsymbol{\Pi u}_{i}=-\mathbf{1}^{\mathrm{T}} \mathbf{u}_{i}$.
Π is a permutation $\Rightarrow 1^{\mathrm{T}} \Pi \mathbf{u}_{i}=\mathbf{1}^{\mathrm{T}} \mathbf{u}_{i}$
$\Rightarrow \mathbf{1}^{\mathrm{T}} \mathbf{u}_{i}=0$ in contradiction to friendliness

Friendly graphs

Property: friendly graphs are asymmetric Proof: Let $\mathbf{A}=\mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^{\mathrm{T}}$ be friendly.
Assume $\Pi \neq \mathbf{I}$ permutation such that $\Pi \mathbf{A}=\mathbf{A} \Pi$.
$\Rightarrow \forall i: \quad \mathbf{A} \Pi \mathbf{u}_{i}=\lambda_{i} \boldsymbol{\Pi} \mathbf{u}_{i}$
$\Rightarrow \Pi \mathbf{u}_{i}$ is an eigenvector of \mathbf{A} corresponding to λ_{i}.
A has simple spectrum $\Rightarrow \Pi \mathbf{u}_{i}= \pm \mathbf{u}_{i}$.
$\boldsymbol{\Pi} \neq \mathbf{I} \Rightarrow \exists \mathbf{u}_{i}$ for which $\boldsymbol{\Pi} \mathbf{u}_{i}=-\mathbf{u}_{i}$
$\Rightarrow \mathbf{1}^{\mathrm{T}} \boldsymbol{\Pi} \mathbf{u}_{i}=-\mathbf{1}^{\mathrm{T}} \mathbf{u}_{i}$.
Π is a permutation $\Rightarrow 1^{\mathrm{T}} \boldsymbol{\Pi} \mathbf{u}_{i}=\mathbf{1}^{\mathrm{T}} \mathbf{u}_{i}$
$\Rightarrow \mathbf{1}^{\mathrm{T}} \mathbf{u}_{i}=0$ in contradiction to friendliness
Converse is not true (think of a regular asymmetric graph), but such graphs should be rare

Main result

Theorem: Let \mathbf{A} and \mathbf{B} be friendly isomorphic graphs. Then $\mathbf{P}^{*}=\boldsymbol{\Pi}^{*}$.

Main result

Theorem: Let \mathbf{A} and \mathbf{B} be friendly isomorphic graphs. Then $\hat{\Pi}=\mathbf{P}^{*}=\Pi^{*}$.

Main result

Theorem: Let \mathbf{A} and \mathbf{B} be friendly isomorphic graphs. Then $\hat{\Pi}=\mathbf{P}^{*}=\Pi^{*}$.

Checking isomorphism is hard

Main result

Theorem: Let \mathbf{A} and \mathbf{B} be friendly isomorphic graphs. Then $\hat{\Pi}=\mathbf{P}^{*}=\Pi^{*}$.

Checking isomorphism is hard
Checking friendliness is easy

Main result

Theorem: Let A and \mathbf{B} be friendly isomorphic graphs. Then $\hat{\Pi}=\mathbf{P}^{*}=\Pi^{*}$.

Checking isomorphism is hard
Checking friendliness is easy
Solve the relaxation: if $\mathbf{P}^{*} \mathbf{A}=\mathbf{B P} \mathbf{P}^{*}$ then the unique isomorphism is $\Pi^{*}=\mathbf{P}^{*}$.
Otherwise, no isomorphism exists.

Sketch of the proof

Input: two friendly graphs \mathbf{B} and $\mathbf{A}=\Pi^{* T} \mathbf{B} \Pi^{*}$

Sketch of the proof

Input: two friendly graphs \mathbf{B} and $\mathbf{A}=\boldsymbol{\Pi}^{* T} \mathbf{B} \Pi^{*}$
Convex quadratic program

$$
\min _{\mathbf{P}}\|\mathbf{P A}-\mathbf{B P}\|_{F}^{2} \text { s.t. } \mathbf{P} \mathbf{1}=\mathbf{1}
$$

with global minimizer $\mathbf{P}=\boldsymbol{\Pi}^{*}$.

Sketch of the proof

Input: two friendly graphs \mathbf{B} and $\mathbf{A}=\boldsymbol{\Pi}^{* T} \mathbf{B} \Pi^{*}$
Convex quadratic program

$$
\min _{\mathbf{P}}\|\mathbf{P A}-\mathbf{B P}\|_{F}^{2} \text { s.t. } \mathbf{P} \mathbf{1}=\mathbf{1}
$$

with global minimizer $\mathbf{P}=\boldsymbol{\Pi}^{*}$.
Show that the minimizer is unique

Sketch of the proof

Input: two friendly graphs \mathbf{B} and $\mathbf{A}=\boldsymbol{\Pi}^{* T} \mathbf{B} \Pi^{*}$
Convex quadratic program

$$
\min _{\mathbf{P}}\left\|\mathbf{P} \Pi^{* T} \mathbf{B} \Pi^{*}-\mathbf{B} \mathbf{P}\right\|_{F}^{2} \text { s.t. } \mathbf{P} \mathbf{1}=\mathbf{1}
$$

with global minimizer $\mathbf{P}=\boldsymbol{\Pi}^{*}$.
Show that the minimizer is unique

Sketch of the proof

Input: two friendly graphs \mathbf{B} and $\mathbf{A}=\boldsymbol{\Pi}^{* T} \mathbf{B} \Pi^{*}$
Convex quadratic program

$$
\min _{\mathbf{P}}\left\|\mathbf{P} \Pi^{* \mathrm{~T}} \mathbf{B}-\mathbf{B} \mathbf{P} \Pi^{* \mathrm{~T}}\right\|_{\mathrm{F}}^{2} \text { s.t. } \mathbf{P} \mathbf{1}=\mathbf{1}
$$

with global minimizer $\mathbf{P}=\boldsymbol{\Pi}^{*}$.
Show that the minimizer is unique

Sketch of the proof

Input: two friendly graphs \mathbf{B} and $\mathbf{A}=\boldsymbol{\Pi}^{* T} \mathbf{B} \Pi^{*}$
Convex quadratic program

$$
\min _{\mathbf{P}}\left\|\mathbf{P} \Pi^{* \mathrm{~T}} \mathbf{B}-\mathbf{B P} \Pi^{* \mathrm{~T}}\right\|_{\mathrm{F}}^{2} \text { s.t. } \mathbf{P} \boldsymbol{\Pi}^{* \mathrm{~T}} \mathbf{1}=\mathbf{1}
$$

with global minimizer $\mathbf{P}=\boldsymbol{\Pi}^{*}$.
Show that the minimizer is unique

Sketch of the proof

Input: two friendly graphs \mathbf{B} and $\mathbf{A}=\Pi^{* T} \mathbf{B} \boldsymbol{\Pi}^{*}$
Convex quadratic program reparametrized with $\mathbf{Q}=\mathbf{P} \Pi^{* T}$

$$
\min _{\mathrm{Q}}\|\mathrm{QB}-\mathrm{BQ}\|_{\mathrm{F}}^{2} \text { s.t. } \mathrm{Q} 1=\mathbf{1}
$$

with global minimizer $\mathrm{Q}=\boldsymbol{\Pi}^{*} \Pi^{* T}=\mathbf{I}$.
Show that the minimizer is unique

Sketch of the proof

$\min _{\mathbf{Q}}\|\mathrm{QB}-\mathrm{BQ}\|_{\mathrm{F}}^{2}$ s.t. $\mathrm{Q} 1=1$

Sketch of the proof

$$
\min _{\mathbf{Q}}\|\mathbf{Q B}-\mathbf{B Q}\|_{\mathrm{F}}^{2} \text { s.t. } \mathrm{Q} 1=1
$$

First-order optimality condition: There exit n Lagrange multipliers $\boldsymbol{\alpha}$ such that

$$
\mathbf{0}=\nabla_{\mathbf{Q}} \mathcal{L}=\mathbf{Q B}^{2}+\mathbf{B}^{2} \mathbf{Q}-2 \mathbf{B Q B}+\boldsymbol{\alpha} \mathbf{1}^{\mathrm{T}}
$$

Sketch of the proof

$$
\min _{\mathbf{Q}}\|\mathbf{Q B}-\mathbf{B Q}\|_{\mathrm{F}}^{2} \text { s.t. } \mathrm{Q} 1=\mathbf{1}
$$

First-order optimality condition: using spectral representation $\mathbf{B}=\mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^{\mathrm{T}}$

$$
\mathbf{0}=\nabla_{\mathbf{Q}} \mathcal{L}=\mathbf{Q B}^{2}+\mathbf{B}^{2} \mathbf{Q}-2 \mathbf{B Q B}+\boldsymbol{\alpha} \mathbf{1}^{\mathrm{T}}
$$

Sketch of the proof

$$
\min _{\mathbf{Q}}\|\mathbf{Q B}-\mathbf{B Q}\|_{\mathrm{F}}^{2} \text { s.t. } \mathrm{Q} 1=\mathbf{1}
$$

First-order optimality condition: using spectral representation $\mathbf{B}=\mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^{\mathrm{T}}$

$$
\begin{aligned}
\mathbf{0}= & \mathbf{Q U} \boldsymbol{\Lambda}^{2} \mathbf{U}^{\mathrm{T}}+\mathbf{U} \boldsymbol{\Lambda}^{2} \mathbf{U}^{\mathrm{T}} \mathbf{Q} \\
& -2 \mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^{\mathrm{T}} \mathbf{Q U} \boldsymbol{\Lambda} \mathbf{U}^{\mathrm{T}}+\boldsymbol{\alpha} \mathbf{1}^{\mathrm{T}}
\end{aligned}
$$

Sketch of the proof

$$
\min _{\mathbf{Q}}\|\mathbf{Q B}-\mathbf{B Q}\|_{\mathrm{F}}^{2} \text { s.t. } \mathrm{Q} 1=1
$$

First-order optimality condition: using spectral representation $\mathbf{B}=\mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^{\mathrm{T}}$

$$
\begin{aligned}
\mathbf{0}= & \mathrm{U}^{\mathrm{T}} \mathbf{Q U} \boldsymbol{\Lambda}^{2}+\boldsymbol{\Lambda}^{2} \mathbf{U}^{\mathrm{T}} \mathbf{Q U} \\
& -2 \boldsymbol{\Lambda} \mathbf{U}^{\mathrm{T}} \mathbf{Q U} \boldsymbol{\Lambda}+\mathbf{U}^{\mathrm{T}} \boldsymbol{\alpha} \mathbf{1}^{\mathrm{T}} \mathbf{U}
\end{aligned}
$$

Sketch of the proof

$$
\min _{\mathbf{Q}}\|\mathbf{Q B}-\mathbf{B Q}\|_{\mathrm{F}}^{2} \text { s.t. } \mathrm{Q} 1=1
$$

First-order optimality condition: using spectral representation $\mathbf{B}=\mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^{\mathrm{T}}$

$$
\mathbf{0}=\mathbf{F} \boldsymbol{\Lambda}^{2}+\boldsymbol{\Lambda}^{2} \mathbf{F}-2 \boldsymbol{\Lambda} \mathbf{F} \boldsymbol{\Lambda}+\gamma \mathbf{v}^{\mathrm{T}}
$$

where $\mathbf{F}=\mathbf{U}^{\mathrm{T}} \mathbf{Q U}, \boldsymbol{\gamma}=\mathrm{U}^{\mathrm{T}} \boldsymbol{\alpha}, \mathbf{v}=\mathrm{U}^{\mathrm{T}} \mathbf{1}$

Sketch of the proof

First-order optimality condition:

$$
\mathbf{F} \boldsymbol{\Lambda}^{2}+\boldsymbol{\Lambda}^{2} \mathbf{F}-2 \boldsymbol{\Lambda} \mathbf{F} \boldsymbol{\Lambda}+\gamma \mathbf{v}^{\mathrm{T}}=\mathbf{0}
$$

Sketch of the proof

First-order optimality condition:

$$
F_{i j}\left(\lambda_{i}-\lambda_{j}\right)^{2}+v_{j} \gamma_{i}=0
$$

Sketch of the proof

First-order optimality condition:

$$
F_{i j}\left(\lambda_{i}-\lambda_{j}\right)^{2}+v_{j} \gamma_{i}=0
$$

In particular, for $i=j: v_{i} \gamma_{i}=0$

Sketch of the proof

First-order optimality condition:

$$
F_{i j}\left(\lambda_{i}-\lambda_{j}\right)^{2}+v_{j} \gamma_{i}=0
$$

In particular, for $i=j: v_{i} \gamma_{i}=0$
Due to friendliness $v_{i}=\mathbf{u}_{i}^{\mathrm{T}} \mathbf{1} \neq 0$

Sketch of the proof

First-order optimality condition:

$$
F_{i j}\left(\lambda_{i}-\lambda_{j}\right)^{2}+v_{j} \gamma_{i}=0
$$

In particular, for $i=j: v_{i} \gamma_{i}=0$
Due to friendliness $v_{i}=\mathbf{u}_{i}^{\mathrm{T}} \mathbf{1} \neq 0 \Rightarrow \gamma=\mathbf{0}$

Sketch of the proof

First-order optimality condition:

$$
F_{i j}\left(\lambda_{i}-\lambda_{j}\right)^{2}=0 \quad \text { for } i \neq j
$$

Sketch of the proof

First-order optimality condition:

$$
F_{i j}\left(\lambda_{i}-\lambda_{j}\right)^{2}=0 \quad \text { for } i \neq j
$$

Due to friendliness $\lambda_{i} \neq \lambda_{j}$

Sketch of the proof

First-order optimality condition:

$$
F_{i j}\left(\lambda_{i}-\lambda_{j}\right)^{2}=0 \quad \text { for } i \neq j
$$

Due to friendliness $\lambda_{i} \neq \lambda_{j} \Rightarrow \mathbf{F}$ is diagonal

Sketch of the proof

First-order optimality condition:

$$
F_{i j}\left(\lambda_{i}-\lambda_{j}\right)^{2}=0 \quad \text { for } i \neq j
$$

Due to friendliness $\lambda_{i} \neq \lambda_{j} \Rightarrow \mathbf{F}$ is diagonal

$$
1=\mathrm{Q} 1
$$

Sketch of the proof

First-order optimality condition:

$$
F_{i j}\left(\lambda_{i}-\lambda_{j}\right)^{2}=0 \quad \text { for } i \neq j
$$

Due to friendliness $\lambda_{i} \neq \lambda_{j} \Rightarrow \mathbf{F}$ is diagonal

$$
\mathbf{1}=\mathrm{Q} \mathbf{1}=\mathrm{UFU}^{\mathrm{T}} \mathbf{1}
$$

Sketch of the proof

First-order optimality condition:

$$
F_{i j}\left(\lambda_{i}-\lambda_{j}\right)^{2}=0 \quad \text { for } i \neq j
$$

Due to friendliness $\lambda_{i} \neq \lambda_{j} \Rightarrow \mathbf{F}$ is diagonal

$$
\mathbf{1}=\mathrm{Q} \mathbf{1}=\mathrm{UFU}^{\mathrm{T}} \mathbf{1} \Rightarrow \mathrm{U}^{\mathrm{T}} \mathbf{1}=\mathbf{F U}^{\mathrm{T}} \mathbf{1}
$$

Sketch of the proof

First-order optimality condition:

$$
F_{i j}\left(\lambda_{i}-\lambda_{j}\right)^{2}=0 \quad \text { for } i \neq j
$$

Due to friendliness $\lambda_{i} \neq \lambda_{j} \Rightarrow \mathbf{F}$ is diagonal

$$
\mathbf{1}=\mathbf{Q} \mathbf{1}=\mathrm{UFU}^{\mathrm{T}} \mathbf{1} \Rightarrow \mathbf{U}^{\mathrm{T}} \mathbf{1}=\mathbf{F U}^{\mathrm{T}} \mathbf{1}
$$

$$
\Rightarrow \mathbf{v}=\mathbf{F} \mathbf{v} \text { with } v_{i} \neq 0
$$

Sketch of the proof

First-order optimality condition:

$$
F_{i j}\left(\lambda_{i}-\lambda_{j}\right)^{2}=0 \quad \text { for } i \neq j
$$

Due to friendliness $\lambda_{i} \neq \lambda_{j} \Rightarrow \mathbf{F}$ is diagonal

$$
\mathbf{1}=\mathbf{Q} \mathbf{1}=\mathrm{UFU}^{\mathrm{T}} \mathbf{1} \Rightarrow \mathbf{U}^{\mathrm{T}} \mathbf{1}=\mathbf{F U}^{\mathrm{T}} \mathbf{1}
$$

$$
\Rightarrow \mathbf{v}=\mathbf{F} \mathbf{v} \text { with } v_{i} \neq 0 \Rightarrow \mathbf{F}=\mathbf{I}
$$

Sketch of the proof

First-order optimality condition:

$$
F_{i j}\left(\lambda_{i}-\lambda_{j}\right)^{2}=0 \quad \text { for } i \neq j
$$

Due to friendliness $\lambda_{i} \neq \lambda_{j} \Rightarrow \mathbf{F}$ is diagonal
$\mathbf{1}=\mathbf{Q} \mathbf{1}=\mathbf{U F U}^{\mathrm{T}} \mathbf{1} \Rightarrow \mathbf{U}^{\mathrm{T}} \mathbf{1}=\mathbf{F U}^{\mathrm{T}} \mathbf{1}$
$\Rightarrow \mathbf{v}=\mathbf{F} \mathbf{v}$ with $v_{i} \neq 0 \Rightarrow \mathbf{F}=\mathbf{I}$
$\Rightarrow \mathbf{Q}=\mathbf{U F U}^{\mathrm{T}}=\mathbf{I}$

Inexact graph matching

Friendliness:

- A has simple spectrum
- no eigenvectors of \mathbf{A} are orthogonal to the constant vector 1

Theorem: Let \mathbf{A} and \mathbf{B} be friendly isomorphic graphs. Then $\hat{\Pi}=\mathbf{P}^{*}=\mathbf{\Pi}^{*}$.

Inexact graph matching

Strong friendliness:

- A has δ-separated spectrum
- every eigenvector \mathbf{u}_{i} of \mathbf{A} satisfied $\left|\mathbf{u}_{i}^{\mathrm{T}} \mathbf{1}\right|>\epsilon$

Theorem: Let \mathbf{A} and \mathbf{B} be strongly friendly ρ-isomorphic graphs with $\rho=\rho(\epsilon, \delta)$. Then $\left\|\mathbf{P}^{*}-\boldsymbol{\Pi}^{*}\right\|_{\infty}<\frac{1}{2}$.
ρ-isomorphic $\Leftrightarrow \exists \boldsymbol{\Pi}^{*}:\left\|\boldsymbol{\Pi}^{*} \mathbf{A}-\mathbf{B} \boldsymbol{\Pi}^{*}\right\|_{\mathrm{F}}^{2} \leq \rho$

Inexact graph matching

Strong friendliness:

- A has δ-separated spectrum
- every eigenvector \mathbf{u}_{i} of \mathbf{A} satisfied $\left|\mathbf{u}_{i}^{\mathrm{T}} \mathbf{1}\right|>\epsilon$

Theorem: Let \mathbf{A} and \mathbf{B} be strongly friendly ρ-isomorphic graphs with $\rho=\rho(\epsilon, \delta)$. Then $\left\|\mathbf{P}^{*}-\boldsymbol{\Pi}^{*}\right\|_{\infty}<\frac{1}{2}$.

Proof using results from regular perturbation theory of linear equations

Inexact graph matching

Strong friendliness:

- A has δ-separated spectrum
- every eigenvector \mathbf{u}_{i} of \mathbf{A} satisfied $\left|\mathbf{u}_{i}^{\mathrm{T}} \mathbf{1}\right|>\epsilon$

Theorem: Let \mathbf{A} and \mathbf{B} be strongly friendly ρ-isomorphic graphs with $\rho=\rho(\epsilon, \delta)$. Then
$\hat{\boldsymbol{\Pi}}=\boldsymbol{\Pi}^{*}$.
Proof using results from regular perturbation theory of linear equations

Inexact graph matching

Strong friendliness:

- A has δ-separated spectrum
- every eigenvector \mathbf{u}_{i} of \mathbf{A} satisfied $\left|\mathbf{u}_{i}^{\mathrm{T}} \mathbf{1}\right|>\epsilon$

Theorem: Let \mathbf{A} and \mathbf{B} be strongly friendly ρ-isomorphic graphs with $\rho=\rho(\epsilon, \delta)$. Then
$\hat{\boldsymbol{\Pi}}=\boldsymbol{\Pi}^{*}$.
If $\left\|\mathbf{P}^{*} \mathbf{A}-\mathbf{B P}^{*}\right\|_{\mathrm{F}}^{2}<\rho(\epsilon, \delta)$ then $\hat{\boldsymbol{\Pi}}$ is the globally optimal approximate isomorphism. Otherwise, no ρ-isomorphism exists.

Experimental validation on 1000 strongly friendly graphs

Unfriendly graphs

Adjacency matrix has d non-simple eigenspaces

$$
\underbrace{\lambda_{1}=\lambda_{2}=\cdots=\lambda_{i_{1}}}_{\text {multiplicity } m_{1}+1}<\underbrace{\lambda_{i_{1}+1}=\cdots=\lambda_{i_{1}+i_{2}}}_{\text {multiplicity } m_{2}+1}<\cdots
$$

Unfriendly graphs

Adjacency matrix has d non-simple eigenspaces

$$
\begin{aligned}
& \underbrace{\lambda_{1}=\lambda_{2}=\cdots=\lambda_{i_{1}}}_{\text {multiplicity } m_{1}+1}<\underbrace{\lambda_{i_{1}+1}=\cdots=\lambda_{i_{1}+i_{2}}}_{\text {multiplicity } m_{2}+1}<\cdots \\
& m=m_{1}+m_{2}+\cdots+m_{d}
\end{aligned}
$$

Unfriendly graphs

Adjacency matrix has d non-simple eigenspaces

$$
\underbrace{\lambda_{1}=\lambda_{2}=\cdots=\lambda_{i_{1}}}_{\text {multiplicity } m_{1}+1}<\underbrace{\lambda_{i_{1}+1}=\cdots=\lambda_{i_{1}+i_{2}}}_{\text {multiplicity } m_{2}+1}<\cdots
$$

$$
m=m_{1}+m_{2}+\cdots+m_{d}
$$

Basis vectors of each eigenspace are selected such that either
none of them is orthogonal to 1 ; or all are orthogonal to 1

Unfriendly graphs

Adjacency matrix has d non-simple eigenspaces

$$
\underbrace{\lambda_{1}=\lambda_{2}=\cdots=\lambda_{i_{1}}}_{\text {multiplicity } m_{1}+1}<\underbrace{\lambda_{i_{1}+1}=\cdots=\lambda_{i_{1}+i_{2}}}_{\text {multiplicity } m_{2}+1}<\cdots
$$

$$
m=m_{1}+m_{2}+\cdots+m_{d}
$$

Basis vectors of each eigenspace are selected such that either
none of them is orthogonal to 1 (non-hostile); or all are orthogonal to 1 (hostile)

Unfriendly graphs

Adjacency matrix has d non-simple eigenspaces
$\underbrace{\lambda_{1}=\lambda_{2}=\cdots=\lambda_{i_{1}}}_{\text {multiplicity } m_{1}+1}<\underbrace{\lambda_{i_{1}+1}=\cdots=\lambda_{i_{1}+i_{2}}}_{\text {multiplicity } m_{2}+1}<\cdots$
$m=m_{1}+m_{2}+\cdots+m_{d}$
Basis vectors of each eigenspace are selected such that either
none of them is orthogonal to 1 (non-hostile); or all are orthogonal to 1 (hostile)
$k=\#$ of hostile eigenspaces

Unfriendly graphs

Adjacency matrix has d non-simple eigenspaces
$\underbrace{\lambda_{1}=\lambda_{2}=\cdots=\lambda_{i_{1}}}_{\text {multiplicity } m_{1}+1}<\underbrace{\lambda_{i_{1}+1}=\cdots=\lambda_{i_{1}+i_{2}}}_{\text {multiplicity } m_{2}+1}<\cdots$
$m=m_{1}+m_{2}+\cdots+m_{d}$
Basis vectors of each eigenspace are selected such that either
none of them is orthogonal to 1 (non-hostile); or all are orthogonal to 1 (hostile)
$k=\#$ of hostile eigenspaces
Unfriendliness degree: $m+k$

Matching of unfriendly graphs

First-order optimality condition:

$$
F_{i j}\left(\lambda_{i}-\lambda_{j}\right)^{2}+v_{j} \gamma_{i}=0 \quad v_{i}=\mathbf{u}_{i}^{\mathrm{T}} \mathbf{1}
$$

Pseudo-stochasticity constraint:

$$
\sum_{j} F_{i j} v_{j}=v_{i}
$$

Matching of unfriendly graphs

First-order optimality condition:

$$
\left(\begin{array}{ccc}
\left(\lambda_{i}-\lambda_{1}\right)^{2} & & \\
& \ddots & \\
& & \left(\lambda_{i}-\lambda_{n}\right)^{2}
\end{array}\right) \mathbf{f}_{i}+\gamma_{i} \mathbf{v}=\mathbf{0}
$$

Pseudo-stochasticity constraint:

$$
\mathbf{v}^{\mathrm{T}} \mathbf{f}_{i}=v_{i}
$$

for each i-th row $\mathbf{f}_{i}=\left(F_{i 1}, \ldots, F_{i n}\right)^{\mathrm{T}}$

Matching of unfriendly graphs

First-order optimality condition:

$$
\left(\begin{array}{ccc}
\left(\lambda_{i}-\lambda_{1}\right)^{2} & & \\
& \ddots & \\
& & \left(\lambda_{i}-\lambda_{n}\right)^{2}
\end{array}\right) \mathbf{f}_{i}+\gamma_{i} \mathbf{v}=\mathbf{0}
$$

Pseudo-stochasticity constraint:

$$
\mathbf{v}^{\mathrm{T}} \mathbf{f}_{i}=v_{i}
$$

for each i-th row $\mathbf{f}_{i}=\left(F_{i 1}, \ldots, F_{\text {in }}\right)^{\mathrm{T}}$
n systems with $n+1$ equations and variables each

Case I: non-hostile eigenspace

\mathbf{u}_{i} belongs to a non-hostile eigenspace

First-order optimality condition:

$$
\left(\begin{array}{lll}
\left(\lambda_{i}-\lambda_{1}\right)^{2} & & \\
& \ddots & \\
& & \left(\lambda_{i}-\lambda_{n}\right)^{2}
\end{array}\right) \mathbf{f}_{i}+\gamma_{i} \mathbf{v}=\mathbf{0}
$$

Pseudo-stochasticity constraint:

$$
\mathbf{v}^{\mathrm{T}} \mathbf{f}_{i}=v_{i}
$$

Case I: non-hostile eigenspace

\mathbf{u}_{i} belongs to a non-hostile eigenspace $\Rightarrow v_{i} \neq 0$

First-order optimality condition:

$$
\left(\begin{array}{ccc}
\left(\lambda_{i}-\lambda_{1}\right)^{2} & & \\
& \ddots & \\
& & \left(\lambda_{i}-\lambda_{n}\right)^{2}
\end{array}\right) \mathbf{f}_{i}+\gamma_{i} \mathbf{v}=\mathbf{0}
$$

Pseudo-stochasticity constraint:

$$
\mathbf{v}^{\mathrm{T}} \mathbf{f}_{i}=v_{i}
$$

Case I: non-hostile eigenspace

\mathbf{u}_{i} belongs to a non-hostile eigenspace $\Rightarrow v_{i} \neq 0$

$$
\Rightarrow \gamma_{i}=0
$$

First-order optimality condition:

$$
\left(\begin{array}{ccc}
\left(\lambda_{i}-\lambda_{1}\right)^{2} & & \\
& \ddots & \\
& & \left(\lambda_{i}-\lambda_{n}\right)^{2}
\end{array}\right) \mathbf{f}_{i}=\mathbf{0}
$$

Pseudo-stochasticity constraint:

$$
\mathbf{v}^{\mathrm{T}} \mathbf{f}_{i}=v_{i}
$$

Case I: non-hostile eigenspace

\mathbf{u}_{i} belongs to a non-hostile eigenspace $\Rightarrow v_{i} \neq 0$

$$
\Rightarrow \gamma_{i}=0
$$

First-order optimality condition:

$$
\left(\begin{array}{ccc}
\left(\lambda_{i}-\lambda_{1}\right)^{2} & & \\
& \ddots & \\
& & \left(\lambda_{i}-\lambda_{n}\right)^{2}
\end{array}\right) \mathbf{f}_{i}=\mathbf{0}
$$

Pseudo-stochasticity constraint:

$$
\mathbf{v}^{\mathrm{T}} \mathbf{f}_{i}=v_{i}
$$

Rank- m_{i} deficient!

Case II: hostile eigenspace

\mathbf{u}_{i} belongs to a hostile eigenspace

First-order optimality condition:

$$
\left(\begin{array}{ccc}
\left(\lambda_{i}-\lambda_{1}\right)^{2} & & \\
& \ddots & \\
& & \left(\lambda_{i}-\lambda_{n}\right)^{2}
\end{array}\right) \mathbf{f}_{i}+\gamma_{i} \mathbf{v}=\mathbf{0}
$$

Pseudo-stochasticity constraint:

$$
\mathbf{v}^{\mathrm{T}} \mathbf{f}_{i}=v_{i}
$$

Case II: hostile eigenspace

\mathbf{u}_{i} belongs to a hostile eigenspace $\Rightarrow v_{i}=0$

First-order optimality condition:

$$
\left(\begin{array}{ccc}
\left(\lambda_{i}-\lambda_{1}\right)^{2} & & \\
& \ddots & \\
& & \left(\lambda_{i}-\lambda_{n}\right)^{2}
\end{array}\right) \mathbf{f}_{i}+\gamma_{i} \mathbf{v}=\mathbf{0}
$$

Pseudo-stochasticity constraint:

$$
\mathbf{v}^{\mathrm{T}} \mathbf{f}_{i}=v_{i}
$$

Case II: hostile eigenspace

\mathbf{u}_{i} belongs to a hostile eigenspace $\Rightarrow v_{i}=0$
$\Rightarrow \gamma_{i}$ undetermined
First-order optimality condition:

$$
\left(\begin{array}{ccc}
\left(\lambda_{i}-\lambda_{1}\right)^{2} & & \\
& \ddots & \\
& & \left(\lambda_{i}-\lambda_{n}\right)^{2}
\end{array}\right) \mathbf{f}_{i}=-\gamma_{i}\left(\begin{array}{c}
\vdots \\
\mathbf{0} \\
\vdots
\end{array}\right)
$$

Pseudo-stochasticity constraint:

$$
\mathbf{v}^{\mathrm{T}} \mathbf{f}_{i}=0
$$

Case II: hostile eigenspace

\mathbf{u}_{i} belongs to a hostile eigenspace $\Rightarrow v_{i}=0$
$\Rightarrow \gamma_{i}$ undetermined
First-order optimality condition:

$$
\left(\begin{array}{ccc}
\left(\lambda_{i}-\lambda_{1}\right)^{2} & & \\
& \ddots & \\
& & \left(\lambda_{i}-\lambda_{n}\right)^{2}
\end{array}\right) \mathbf{f}_{i}=-\gamma_{i}\left(\begin{array}{c}
\vdots \\
\mathbf{0} \\
\vdots
\end{array}\right)
$$

Pseudo-stochasticity constraint:

$$
\mathbf{v}^{\mathrm{T}} \mathbf{f}_{i}=0
$$

Rank- $\left(m_{i}+1\right)$ deficient!

Matching of unfriendly graphs

For an $(m+k)$-unfriendly graph, the system

$$
\begin{aligned}
& F_{i j}\left(\lambda_{i}-\lambda_{j}\right)^{2}+v_{j} \gamma_{i}=0 \\
& \sum_{j} F_{i j} v_{j}=v_{i}
\end{aligned}
$$

is rank- $(m+k)$ deficient!

Matching of unfriendly graphs

For an $(m+k)$-unfriendly graph, the system

$$
\begin{aligned}
& F_{i j}\left(\lambda_{i}-\lambda_{j}\right)^{2}+v_{j} \gamma_{i}=0 \\
& \sum_{j} F_{i j} v_{j}=v_{i}
\end{aligned}
$$

is rank- $(m+k)$ deficient!
Solution space is $(m+k)$-dimensional.

Matching of unfriendly graphs

For an $(m+k)$-unfriendly graph, the system

$$
\begin{aligned}
& F_{i j}\left(\lambda_{i}-\lambda_{j}\right)^{2}+v_{j} \gamma_{i}=0 \\
& \sum_{j} F_{i j} v_{j}=v_{i}
\end{aligned}
$$

is rank- $(m+k)$ deficient!
Solution space is $(m+k)$-dimensional.
Some solutions may belong to Voronoi cells of permutations that are not isomorphisms!

Matching of unfriendly graphs

For an $(m+k)$-unfriendly graph, the system

$$
\begin{aligned}
& F_{i j}\left(\lambda_{i}-\lambda_{j}\right)^{2}+v_{j} \gamma_{i}=0 \\
& \sum_{j} F_{i j} v_{j}=v_{i}
\end{aligned}
$$

is rank- $(m+k)$ deficient!
Convex relaxation + projection can produce wrong solutions!

Seeds and attributes

Seeds (known correspondences): collection of q real functions $\mathbf{C}=\left(\mathbf{c}_{1}, \ldots, \mathbf{c}_{q}\right)$ on the vertex set of A with corresponding functions $\mathbf{D}=\left(\mathbf{d}_{1}, \ldots, \mathbf{d}_{q}\right)$ on \mathbf{B}.

Seeds and attributes

Seeds (known correspondences): collection of q real functions $\mathbf{C}=\left(\mathbf{c}_{1}, \ldots, \mathbf{c}_{q}\right)$ on the vertex set of A with corresponding functions $\mathbf{D}=\left(\mathbf{d}_{1}, \ldots, \mathbf{d}_{q}\right)$ on \mathbf{B}.

Attributes: q-dimensional vector-valued vertex attributes $\mathbf{C}=\left(\mathbf{c}_{1}^{\mathrm{T}}, \ldots, \mathbf{c}_{n}^{\mathrm{T}}\right)^{\mathrm{T}}$.

Seeds and attributes

Seeds (known correspondences): collection of q real functions $\mathbf{C}=\left(\mathbf{c}_{1}, \ldots, \mathbf{c}_{q}\right)$ on the vertex set of A with corresponding functions $\mathbf{D}=\left(\mathbf{d}_{1}, \ldots, \mathbf{d}_{q}\right)$ on \mathbf{B}.

Attributes: q-dimensional vector-valued vertex attributes $\mathbf{C}=\left(\mathbf{c}_{1}^{\mathrm{T}}, \ldots, \mathbf{c}_{n}^{\mathrm{T}}\right)^{\mathrm{T}}$.

Covariant with a preferred isomorphism: $\Pi^{*} \mathbf{C}=\mathbf{D}$.

Seeds and attributes

Seeds (known correspondences): collection of q real functions $\mathbf{C}=\left(\mathbf{c}_{1}, \ldots, \mathbf{c}_{q}\right)$ on the vertex set of A with corresponding functions $\mathbf{D}=\left(\mathbf{d}_{1}, \ldots, \mathbf{d}_{q}\right)$ on \mathbf{B}.
Columns of \mathbf{C} and $\Pi^{*} \mathbf{D}$ are corresponding functions (e.g., indicator of vertices).

Attributes: q-dimensional vector-valued vertex attributes $\mathbf{C}=\left(\mathbf{c}_{1}^{\mathrm{T}}, \ldots, \mathbf{c}_{n}^{\mathrm{T}}\right)^{\mathrm{T}}$.

Covariant with a preferred isomorphism: $\Pi^{*} \mathbf{C}=\mathbf{D}$.

Seeds and attributes

Seeds (known correspondences): collection of q real functions $\mathbf{C}=\left(\mathbf{c}_{1}, \ldots, \mathbf{c}_{q}\right)$ on the vertex set of A with corresponding functions $\mathbf{D}=\left(\mathbf{d}_{1}, \ldots, \mathbf{d}_{q}\right)$ on \mathbf{B}.
Columns of \mathbf{C} and $\Pi^{*} \mathbf{D}$ are corresponding functions (e.g., indicator of vertices).

Attributes: q-dimensional vector-valued vertex attributes $\mathbf{C}=\left(\mathbf{c}_{1}^{\mathrm{T}}, \ldots, \mathbf{c}_{n}^{\mathrm{T}}\right)^{\mathrm{T}}$.
Rows of \mathbf{C} and $\Pi^{*} \mathbf{D}$ are corresponding attributes.
Covariant with a preferred isomorphism: $\Pi^{*} \mathbf{C}=\mathbf{D}$.

Seeded/attributed graph matching

Convex Relaxation

$$
\min _{\mathbf{P}}\|\mathbf{P A}-\mathbf{B P}\|_{\mathrm{F}}^{2} \text { s.t. } \mathbf{P} \mathbf{1}=\mathbf{1}
$$

Seeded/attributed graph matching

Convex Relaxation of seeded/attributed matching

$$
\min _{\mathbf{P}}\|\mathbf{P A}-\mathbf{B P}\|_{\mathrm{F}}^{2}+\mu\|\mathbf{P C}-\mathbf{D}\|_{\mathrm{F}}^{2} \text { s.t. } \mathbf{P} \mathbf{1}=\mathbf{1}
$$

Seeded/attributed graph matching

Convex Relaxation of seeded/attributed matching

$$
\min _{\mathbf{P}}\|\mathbf{P A}-\mathbf{B P}\|_{\mathrm{F}}^{2}+\mu\|\mathbf{P C}-\mathbf{D}\|_{\mathrm{F}}^{2} \text { s.t. } \mathbf{P} 1=\mathbf{1}
$$

penalty on attributes disagreement penalty on seeds correspondence

Main result

Theorem: Let A and B be isomorphic graphs related by Π^{*}. Let \mathbf{C} and $\mathbf{D}=\Pi^{*} \mathbf{C}$ be corresponding seeds/attributes, with \mathbf{D} further satisfying for every non-simple eigenspace of \mathbf{B} spanned by $\mathbf{u}_{i}, \ldots, \mathbf{u}_{i+m_{i}}$

- $\mathrm{DD}^{\mathrm{T}} \mathbf{u}_{j} \neq \mathbf{0} \forall j=i, \ldots, i+m_{i}$ if eigenspace is hostile; or
- $\mathbf{D D}^{\mathrm{T}} \mathbf{u}_{j} \neq \mathbf{1} \frac{\mathbf{u}_{i}^{\mathrm{T}} \mathbf{D D}^{\mathrm{T}} \mathbf{u}_{j}}{\mathbf{1}^{\mathrm{T}} \mathbf{u}_{i}} \forall j=i+1, \ldots, i+m_{i}$ otherwise.
Then, $\mathbf{P}^{*}=\boldsymbol{\Pi}^{*}$ is the unique solutuon of the relaxation for every $\mu>0$.

Sketch of the proof

Input: two graphs \mathbf{B} and $\mathbf{A}=\boldsymbol{\Pi}^{* T} \mathbf{B} \boldsymbol{\Pi}^{*}$ with seeds/attributes C and $\mathrm{D}=\Pi^{*} \mathrm{C}$

Sketch of the proof

Input: two graphs \mathbf{B} and $\mathbf{A}=\boldsymbol{\Pi}^{* T} \mathbf{B} \Pi^{*}$ with seeds/attributes C and $\mathrm{D}=\boldsymbol{\Pi}^{*} \mathrm{C}$

Convex quadratic program
$\min _{\mathbf{P}}\|\mathbf{P A}-\mathbf{B P}\|_{\mathbf{F}}^{2}+\mu\|\mathbf{P C}-\mathbf{D}\|_{\mathrm{F}}^{2}$ s.t. $\mathbf{P} \mathbf{1}=\mathbf{1}$
with global minimizer $\mathbf{P}=\boldsymbol{\Pi}^{*}$.

Sketch of the proof

Input: two graphs \mathbf{B} and $\mathbf{A}=\boldsymbol{\Pi}^{* T} \mathbf{B} \Pi^{*}$ with seeds/attributes C and $\mathrm{D}=\boldsymbol{\Pi}^{*} \mathrm{C}$

Convex quadratic program reparametrized with $\mathbf{Q}=\mathbf{P} \boldsymbol{\Pi}^{* T}$
$\min _{\mathbf{Q}}\|\mathbf{Q B}-\mathbf{B Q}\|_{\mathrm{F}}^{2}+\mu\|\mathbf{Q D}-\mathbf{D}\|_{\mathrm{F}}^{2}$ s.t. $\mathbf{Q} 1=\mathbf{1}$ with global minimizer $\mathbf{Q}=\mathbf{I}$.

Sketch of the proof

Input: two graphs \mathbf{B} and $\mathbf{A}=\boldsymbol{\Pi}^{* T} \mathbf{B} \boldsymbol{\Pi}^{*}$ with seeds/attributes C and $\mathrm{D}=\boldsymbol{\Pi}^{*} \mathbf{C}$

Convex quadratic program reparametrized with $\mathbf{Q}=\mathbf{P} \Pi^{* T}$
$\min _{\mathbf{Q}}\|\mathbf{Q B}-\mathbf{B Q}\|_{\mathrm{F}}^{2}+\mu\|\mathbf{Q D}-\mathbf{D}\|_{\mathrm{F}}^{2}$ s.t. $\mathbf{Q} 1=\mathbf{1}$
with global minimizer $\mathbf{Q}=\mathbf{I}$.
Show that the minimizer is unique

Sketch of the proof

First-order optimality condition:
 $\mathbf{Q B}^{2}+\mathbf{B}^{2} \mathbf{Q}-2 \mathbf{B Q B}+\mu \mathbf{Q D D}{ }^{\mathrm{T}}-\mu \mathbf{D D}^{\mathrm{T}}+\boldsymbol{\alpha} \mathbf{1}^{\mathrm{T}}=\mathbf{0}$

Pseudo-stochasticity constraint: Q1 = 1

Sketch of the proof

First-order optimality condition:

$$
\begin{aligned}
& \mathbf{F} \boldsymbol{\Lambda}^{2}+\boldsymbol{\Lambda}^{2} \mathbf{F}-2 \boldsymbol{\Lambda} \mathbf{F} \boldsymbol{\Lambda}+\mu \mathbf{F G}-\mu \mathbf{G}+\gamma \mathbf{v}^{\mathrm{T}}=\mathbf{0} \\
& \text { with } \mathrm{G}=\mathbf{U}^{\mathrm{T}} \mathbf{D} \mathbf{D}^{\mathrm{T}} \mathbf{U}
\end{aligned}
$$

Pseudo-stochasticity constraint: $\mathbf{F v}=\mathbf{v}$

Sketch of the proof

First-order optimality condition:

$$
\begin{aligned}
& \mathbf{F} \boldsymbol{\Lambda}^{2}+\boldsymbol{\Lambda}^{2} \mathbf{F}-2 \boldsymbol{\Lambda} \mathbf{F} \boldsymbol{\Lambda}+\mu \mathbf{F G}-\mu \mathbf{G}+\gamma \mathbf{v}^{\mathrm{T}}=\mathbf{0} \\
& \text { with } \mathrm{G}=\mathrm{U}^{\mathrm{T}} \mathbf{D D ^ { \mathrm { T } } \mathrm { U } \succeq 0}
\end{aligned}
$$

Pseudo-stochasticity constraint: $\mathrm{Fv}=\mathrm{v}$

Adding attributes/seeds increases rank

Main result

Theorem: Let $\mathbf{D}=\mathbf{\Pi}^{*} \mathbf{C}$ satisfying for every non-simple eigenspace $\operatorname{sp}\left\{\mathbf{u}_{i}, \ldots, \mathbf{u}_{i+m_{i}}\right\}$

- $\mathrm{DD}^{\mathrm{T}} \mathbf{u}_{j} \neq 0 \forall j=i, \ldots, i+m_{i}$ if eigenspace is hostile; or
- $\mathbf{D D}^{\mathrm{T}} \mathbf{u}_{j} \neq 1 \frac{\mathbf{u}_{i}^{\mathrm{T}} \mathbf{D D}^{\mathrm{T}} \mathbf{u}_{j}}{\mathbf{1}^{\mathrm{T}} \mathbf{u}_{i}} \forall j=i+1, \ldots, i+m_{i}$ otherwise.
Then, $\mathbf{P}^{*}=\boldsymbol{\Pi}^{*}$ is the unique solutuon of relaxation.

Main result

Theorem: Let $\mathbf{D}=\mathbf{\Pi}^{*} \mathbf{C}$ satisfying for every non-simple eigenspace $\operatorname{sp}\left\{\mathbf{u}_{i}, \ldots, \mathbf{u}_{i+m_{i}}\right\}$

- $\mathrm{DD}^{\mathrm{T}} \mathbf{u}_{j} \neq 0 \forall j=i, \ldots, i+m_{i}$ if eigenspace is hostile; or
- $\mathrm{DD}^{\mathrm{T}} \mathbf{u}_{j} \neq 1 \frac{\mathbf{u}_{i}^{\mathrm{T}} \mathrm{DD}^{\mathrm{T}} \mathbf{u}_{j}}{\mathbf{1}^{\mathrm{T}} \mathbf{u}_{i}} \forall j=i+1, \ldots, i+m_{i}$ otherwise.
Then, $\mathbf{P}^{*}=\boldsymbol{\Pi}^{*}$ is the unique solutuon of relaxation.
$m+k$ linearly independent seeds are required.

Experimental validation on 1000 symmetric graphs

Questions

- Relaxation space: We used $\mathbf{P 1}=1$. Do we need $\mathbf{P} \geq 0$? do we need $\mathbf{P}^{\mathrm{T}} \mathbf{1}=\mathbf{1}$? Practical consequences?

Questions

- Relaxation space: We used $\mathbf{P 1}=1$. Do we need $\mathbf{P} \geq 0$? do we need $\mathbf{P}^{\mathrm{T}} \mathbf{1}=\mathbf{1}$? Practical consequences?
- Better use of geometry: adjacency matrices are, e.g., metric? low dimensional? smooth? bounded curvature?

Questions

- Relaxation space: We used $\mathbf{P 1}=1$. Do we need $\mathbf{P} \geq 0$? do we need $\mathbf{P}^{\mathrm{T}} \mathbf{1}=\mathbf{1}$? Practical consequences?
- Better use of geometry: adjacency matrices are, e.g., metric? low dimensional? smooth? bounded curvature?
- Symmetry breaking: add low-rank noise to unfriendly eigenspaces of A to make it friendly. Will the relaxation still work?

Questions

- Relaxation space: We used $\mathbf{P 1}=1$. Do we need $\mathbf{P} \geq 0$? do we need $\mathbf{P}^{\mathrm{T}} \mathbf{1}=\mathbf{1}$? Practical consequences?
- Better use of geometry: adjacency matrices are, e.g., metric? low dimensional? smooth? bounded curvature?
- Symmetry breaking: add low-rank noise to unfriendly eigenspaces of A to make it friendly. Will the relaxation still work?
- Finding all isomorphisms (in particular, all symmetries of a graph).

