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Abstract. Partial similarity of shapes is a challenging problem arising in many impor-
tant applications in computer vision, shape analysis, and graphics, e.g. when one has
to deal with partial information and acquisition artifacts. The problem is especially
hard when the underlying shapes are non-rigid and are given up to a deformation. Par-
tial matching is usually approached by computing local descriptors on a pair of shapes
and then establishing a point-wise non-bijective correspondence between the two, tak-
ing into account possibly different parts. In this paper, we introduce an alternative
correspondence-less approach to matching fragments to an entire shape undergoing a
non-rigid deformation. We use region-wise local descriptors and optimize over the inte-
gration domains on which the integral descriptors of the two parts match. The problem
is regularized using the Mumford-Shah functional. We show an efficient discretiza-
tion based on the Ambrosio-Tortorelli approximation generalized to triangular point
clouds and meshes, and present experiments demonstrating the success of the proposed
method.

Key words: deformable shapes, partial matching, partial correspondence, partial similarity, diffu-
sion geometry, Laplace-Beltrami operator, shape descriptors, heat kernel signature, Mumford-Shah
regularization

1. Introduction

Many shape analysis applications arising in computer and vision and graphics require
matching of partially similar shapes [33]. Such problems typically arise in two scenarios.
On the one hand, partial similarity may be the right description of the similarity relation-
ship between two shapes (for example, consider a centaur shape: the centaur is partially
similar to a human because they share the human-like upper body, and at the same time,
partially similar to a horse because the share the horse-like lower body [29]). On the other
hand, many real-world data are degraded by acquisition imperfections and noise (missing
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views, holes, etc) that are especially acute when acquiring 3D scenes using a range sensing
device such as Microsoft Kinect, resulting in the need to work with partially given objects.
Such cases are common, for example, in face recognition, where the facial surface may be
partially occluded by hair [14], or in computational archeology where one often has to
deal with missing pieces [28].

In rigid shape analysis, introducing weights that reject corresponding points that are
too distant or whose normals are misaligned into the popular iterative closest point (ICP)
algorithm [7, 20] are able to deal with partial shape alignment. However, it is impossible
to guarantee how large and regular the resulting corresponding parts will be. In order to
cope with this problem, a Mumford-Shah [19,39]-like regularization allowing to explicitly
control the size of the rejected part and its regularity was used in [10], resulting in a robust
ICP algorithm allowing to match rigid shapes with significant dissimilar parts.

This approach is, in fact, a particular setting of the framework introduced by Bron-
stein et al. [11], in which non-rigid partial similarity is formulated as a multi-criterion
optimization problem, wherein one tries to find the corresponding parts in two shapes
by simultaneously maximizing significance and similarity criteria. The framework allows
plugging in different similarity (e.g., some intrinsic metric distortion [11, 13, 26, 37] for
non-rigid shapes, or Hausdorff-like distance [10] for rigid shapes) and significance (e.g.
part area [10, 11] or statistical occurrence of local shape descriptors [16]) criteria to ad-
dress different settings of the problem. The solution proposed in the mehtods above re-
quires the knowledge of correspondence between the shapes, and in the absence of a given
correspondence, can be solved by alternating between weighted correspondence finding
and maximization of part area. Such an alternating optimization scheme is computation-
ally very expensive.

A different class of methods not relying on correspondence are bags of features [46] ap-
proaches popular in image analysis recently adopted in 3D shape analysis [12,38,40,49].
The main idea is to represent the shape as a collection of some local feature descrip-
tors [17, 21, 25, 30, 32, 36, 38, 41, 45, 48, 51, 52] and quantize them in some vocabulary of
“geometric words” in order to compute a histogram representing the occurrence of differ-
ent geometric words in the shape (this method follows the “bag of words” approach in text
retrieval, hence the name). If the geometric vocabulary is large enough and the shapes
have significant common parts, it is possible to compare partially similar shapes. However,
if the similar parts are small, this method usually does not work. Furthermore, since the
bag of features representation looses the spatial information, it does not allow to identify
the parts that are similar in two shapes.

In this paper, we present an approach for correspondence-less partial matching of non-
rigid 3D point clouds and shapes that is, in a sense, a combination of the two aforemen-
tioned methods but because our method doesn’t require to calculate point-wise correspo-
dance it is less computationaly expensive. Our work is inspired by the recent work on
partial matching of images [22]. The main idea is to find similar parts by comparing part-
wise distributions of local descriptors (that can be thought of as “local bags of features”).
This removes the need of correspondence knowledge and greatly simplifies the problem.

This paper is an extended version of [42] where the framework was presented. Here,
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our main focus is on computation on point clouds – a type of geometry representation
very popular in computer vision applications, e.g., when acquiring 3D objects with a range
scanner. We provide more detailed development of the theoretical and numerical parts of
the method and show extensive experimental results. The rest of the paper is organized
is as follows. In Section 2, we review the mathematical background of diffusion geometry,
which is used for the construction of local descriptors. Section 3 deals with the partial
matching problem and Section 4 addresses its discretization. Section 5 presents experi-
mental results. Finally, Section 6 concludes the paper.

2. Background

We model a shape as a two-dimensional compact Riemannian manifold X (possibly
with a boundary) equipped with a metric tensor g, defined as a positive-definite bilinear
form (inner product) gx(·, ·) = 〈·, ·〉x on the tangent space Tx X . Given a smooth scalar
field f : X → R on the manifold, its gradient is defined as the vector field ∇ f satisfying
f (x+d x) = f (x)+ gx(∇ f (x), d x) for every point x and every infinitesimal tangent vector
d x ∈ Tx X . The metric tensor g defines the Laplace-Beltrami operator ∆g that satisfies

∫

f∆gh da = −
∫

gx(∇ f ,∇h)da (2.1)

for any pair of smooth scalar fields f , h : X → R; here da denotes integration with respect
to the standard area measure on X . This formula is also known as the Stokes identity. The
Laplace-Beltrami operator is positive semi-definite and self-adjoint. Furthermore, it is an
intrinsic property of X , i.e., it is expressible solely in terms of g. In the case when the
metric g is Euclidean, ∆g becomes the standard Laplacian. In the following, we use the
shorter notation ∆ omitting the reference to the metric g, which is implied from context.

By virtue of the spectral theorem, there exists an orthonormal basis on L2(X ) consisting
of the eigenfunctions φ0,φ1, . . . of the Laplace-Beltrami operator (i.e., solutions to ∆φi =
λiφi , where 0 = λ0 ≤ λ1 ≤ . . . are the corresponding eigenvalues). This basis can be
interpreted analogously to the Fourier basis, and the eigenvalues λi as frequencies. Reuter
et al. [43] used the spectrum (eigenvalues) of the Laplace-Beltrami operator as global
deformation-invariant shape descriptors, referred to as shapeDNA. However, there exists
a non-trivial class of shapes that are iso-spectral but not isometric; the existence of such
shapes was formulated by Kac as a famous question “can we hear the shape of the drum?”

2.1. Diffusion equation and heat kernel signatures

The Laplace-Beltrami operator gives rise to the heat equation,
�

∆+
∂

∂ t

�

u(x , t) = 0, (2.2)

which describes diffusion processes and heat propagation on the manifold. Here, u(x , t)
denotes the distribution of heat at time t at point x . The initial condition to the equation is
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some heat distribution u(x , 0), and if the manifold has a boundary, appropriate boundary
conditions (e.g. Neumann or Dirichlet) must be specified. The solution of (2.2) with a
point initial heat distribution u0 (x) = δ(x , x ′) is called the heat kernel and denoted here
by ht(x , x ′). The value of ht(x , x ′) is the amount of heat transported from x ′ to x over time
t, and can also be interpreted as the transition probability density of a Brownian motion
of length t on the manifold. Using a signal processing analogy, ht can be thought of as the
“impulse response” of the heat equation. Using spectral expansion, the heat kernel can be
represented as [31],

ht(x , x ′) =
∑

k≥0

e−λk tφk(x)φk(x), (2.3)

which gives an efficient ways to compute the heat kernel numerically: one only needs to
find the discretization of the Laplace-Beltrami operator eigenfunctions. This can be done
efficiently on different representations of the shape, in particular, triangular meshes and
point clouds. This issue is discussed in detail in Section 4.

The diagonal of the heat kernel ht(x , x) expresses the probability density of remaining
at a point x after time t. The value ht(x , x), sometimes referred to as the auto-diffusivity
function, is related to the Gaussian curvature K(x) through

ht(x , x) =
∑

k≥0

e−λk tφ2
k(x)≈

1

4πt

�

1+
1

6
K(x)t +O (t2)

�

. (2.4)

This relation coincides with the well-known fact that heat tends to diffuse slower at points
with positive curvature, and faster at points with negative curvature. Under mild tech-
nical conditions, the set {ht(x , x)}t>0 is fully informative in the sense that it allows to
reconstruct the Riemannian metric of the manifold [48].

Sun et al. [48] and Gebal et al. [25] proposed constructing point-wise descriptors re-
ferred to as heat kernel signatures (HKS) by taking the values of the discrete auto-diffusivity
function at point x at multiple times, p(x) = (ht1

(x , x), ..., htd
(x , x)), where t1, ..., td are

some fixed time values. Such a descriptor is a vector of dimensionality d at each point.
Since the heat kernel is an intrinsic quantity, the HKS is invariant to isometric transforma-
tions of the shape.

A scale-invariant version of the HKS descriptor (SI-HKS) was proposed in [17]. First,
the heat kernel is sampled logarithmically in time. Next, the logarithm and a derivative
with respect to time of the heat kernel values are taken to undo the multiplicative constant.
Finally, taking the magnitude of the Fourier transform allows to undo the scaling of the time
variable. This yields the modified heat kernel of the form

ĥω(x , x ′) =

�

�

�

�

�

F
¨

∂ log ht(x , x ′)
∂ log t

«

(ω)

�

�

�

�

�

, (2.5)

where ω denotes the frequency variable of the Fourier transform. The SI-HKS is ob-
tained by replacing ht with ĥω from (2.5), yielding p(x) = (ĥω1

(x , x), ..., ĥωd
(x , x)), where

ω1, . . . ,ωd are some fixed frequency values.
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2.2. Schrödinger equation and wave kernel signatures

Aubry et al. [4] proposed a different physical model, considering a quantum mechani-
cal particle on the manifold governed by the Schrödinger equation,

�

i∆+
∂

∂ t

�

ψ(x , t) = 0, (2.6)

whereψ(x , t) denotes the complex wave function. The squared absolute value of the wave
function |ψ(x , t)|2 represents the probability to find the particle at point x at time t.

Let us assume the quantum particle has initial energy distribution f (e). Since energy
is directly related to frequency (i.e., the eigenvalues of the Laplace-Beltrami operator), we
will denote f (λ) with some abuse of physical terminology. The solution of the Schrödinger
equation can be expressed in the spectral domain as

ψ(x , t) =
∑

k≥1

e−iλk t f (λk)φk(x). (2.7)

Integrating over all times, the average probability

p(x) = lim
T→∞

1

T

∫ T

0

|ψ(x , t)|2d t =
∑

k≥1

f 2(λk)φ
2
k(x), (2.8)

to measure the particle at point x is obtained. Fixing some family of energy distributions,
e.g.,

fe(λ)∝ exp

�

−
(log e− logλ)2

2σ2

�

(2.9)

it is possible to compute the wave kernel signature (WKS) p(x) = (pe1
(x), , ped

(x)) for each
point of the shape, where e1, . . . , ed are some fixed energy values.

2.3. Optimal kernels and descriptor learning

Observing equations (2.4) and (2.8) from which the HKS and WKS descriptors are
derived, one can see that both have the form

p(x) =
∑

k≥1

K(λk)φ
2
k(x), (2.10)

and can be represented as a family of filters K(λ) applied to the eigenvalues of the Laplace-
Beltrami operator [1,8].

Aflalo et al. [1] and Bronstein [8] showed that a family of optimal filters can be con-
structed for a specific class of shapes an deformations from the spectral characteristics of
the discriminative features (the “signal”) and the influence introduced by the deforma-
tions (the “noise”). This construction resembles in its spirit the Wiener filter that passes
frequency bands with high signal-to-noise ratio, while attenuating those where the signal
content is low compared to the energy of the noise. While it is usually difficult to model
these statistical properties axiomatically, the authors showed that they can be learned from
examples using standard metric learning algorithms [47].
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2.4. Point Feature Histograms

Besides descriptors based on diffusion geometry for meshes and point clouds there are
other local descriptors that rely on the curvature and normals of the underlying surface,
like spin images [30] and curvature maps [24]. Wahl et al. [50] proposed a descriptor
that is based on a histogram of pairwise features at each point’s k nearest neighbours. The
basic features that are chosen are angles between normals and distances between points,
but more features can be used moments and curvatures. The construction of the descriptor
is described in detail in Section 4. Rusu et al [44] showed that these local descriptors
based on normal’s information only are informative about the underlying surface and rigid
transformations invariant. They also proposed a slight modification to the PFH descriptor
(that they called FPFH [44]) in order to be able to calculate it efficiently while retaining
its discriminative properties.

2.5. Bags of features

Ovsjanikov et al. [40] and Toldo et al. [49] proposed constructing global shape de-
scriptors from local descriptors using the bag of features paradigm [46]. In this approach,
a fixed “geometric vocabulary” {p1, ...,pv} is computed by means of an off-line clustering
of the descriptor space. Next, each point descriptor is represented in the vocabulary using
vector quantization, yielding a point-wise v-dimensional distribution of the form

π(x)∝ e−‖p(x)−pl‖2/2σ2
. (2.11)

The distribution is normalized in such a way that the elements of π(x) sum to one. In the
case of σ = 0, hard vector quantization is used, and πl(x) = 1 for pl being the closest
element of the geometric vocabulary to p(x) in the descriptor space, and zero elsewhere.
The bag of features global shape descriptor is then computed as the histogram of quantized
descriptors over the entire shape. of dimensionality v is then computed as

p̄(X ) =

∫

X

π(x)da. (2.12)

In [12], this construction was extended to joint distributions of spatially-close descrip-
tors, referred to as spatially-sensitive bags of features or “geometric expressions”.

3. Partial matching

In what follows, we assume to be given two shapes X and Y with corresponding point-
wise descriptor fields p and q defined on them (here we adopt the raw HKS descriptors,
though their quantized variants or any other intrinsic point-wise descriptors can be used
as well). Assuming that Y is a part of an unknown shape that is intrinsically similar to X ,
we aim at finding a part X ′ ⊆ X having the same area A of Y such that the integral shape
descriptors computed on X ′ and Y coincide as closely as possible. In order to prevent the
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parts from being fragmented and irregular, we penalize for their boundary length. The
entire problem can be expressed as minimization of the following energy functional

E(X ′) =











∫

X ′
pda− q











2

+λr L(∂ X ′) (3.1)

under the constraint A(X ′) = A, where A denotes area and q=

∫

Y

qda. The first term of

the functional constitutes the data term while the second one is the regularity term whose
influence is controlled by the parameter λr.

Discretization of the above minimization problem with a crisp set X ′ results in combi-
natorial complexity. To circumvent this difficulty, in [9, 10] it was proposed to relax the
problem by replacing the crisp part X ′ by a fuzzy membership function u on X , replac-
ing the functional E by a generalization of the Mumford-Shah functional [39] to surfaces.
Here, we adopt this relaxation as well as the approximation of the Mumford-Shah func-
tional proposed by Ambrosio and Tortorelli [2]. This yields the problem of the form

min
u,ρ,σ

D(u) +λrR(u;ρ) s.t.

∫

X

uda = A, (3.2)

with the data term

D(u) =











∫

X

puda− q











2

(3.3)

and the Ambrosio-Tortorelli regularity term

R(u;ρ) =
λs

2

∫

X

ρ2‖∇u‖2da+λbε

∫

X

‖∇ρ‖2da+
λb

4ε

∫

X

(1−ρ)2da, (3.4)

where ρ is the so-called phase field indicating the discontinuities of u, and ε > 0 is a
parameter.

The first term of R above imposes piece-wise smoothness of the fuzzy part u governed
by the parameter λs. By setting a sufficiently large λs, the parts become approximately
piece-wise constant as desired in the original crisp formulation (3.1). The second term of
R is analogous to the boundary length term in (3.1) and converges to the latter as ε→ 0.

We minimize (3.2) using alternating minimization comprising the following two itera-
tively repeated steps:
Step 1: fix ρ and solve for u

min
u











∫

X

puda− q











2

+λr
λs

2

∫

X

ρ2‖∇u‖2da s.t.

∫

X

uda = A. (3.5)

We initialize this step with ρ = 1 thus achieving the Tikhonov regularization from the first
step!



8 J. Pokrass, A. M. Bronstein, M. M. Bronstein

Step 2: fix the part u and solve for ρ

min
ρ

λs

2

∫

X

ρ2‖∇u‖2da+λbε

∫

X

‖∇ρ‖2da+
λb

4ε

∫

X

(1−ρ)2da. (3.6)

4. Discretization and numerical aspects

We represent a compact manifold X isometrically embedded in R3, as the sample points
{x1, . . . ,xm} on X , and denote by a= (a1, . . . , am)T the corresponding area elements at each
point (the computation of the ai ’s is described later). A = diag{a} denote the diagonal
m×m matrix created out of a. The membership function u is sampled at each point and
represented as the vector u= (u1, . . . , um)T. Similarly, the phase field is represented as the
vector ρ = (ρ1, . . . ,ρm)T.

We quantify the sampling density of the underlying smooth manifold in terms of its
extrinsic geometry. For that purpose, we define the medial axis of X as the closure of the
set of points that have at least two closest points in X . For any point x ∈ X , the local feature
size at x, is the closest distance from x to the medial axis of X . The reach % of X is the
infimum of the local feature size over entire X . We say that the point cloud {x1, . . . ,xm}
is an ε-sampling of X if for any point y ∈ X , there exists xi such that ‖y − xi‖ ≤ ε%.
The point cloud is an (ε,δ)-sampling of X if it is an ε-sampling of X and for every xi ,x j ,
‖x j − xi‖ ≥ δ%. In other words, a (ε, δ)-sampling of X is a δ%-separated ε%-net in it.

4.1. Descriptors

We tried several descriptors including HKS, SI-HKS, WKS, PFH, FPFH. We have seen
best results using HKS, PFH and FPFH.

Heat Kernel Signatures (HKS) The computation of the discrete heat kernel ht(xi ,x j)
requires computing discrete eigenvalues and eigenfunctions of the discrete Laplace-Beltrami
operator. The latter can be computed directly using the finite elements method (FEM) [43],
or by discretization of the Laplace operator on the point cloud followed by its eigendecom-
position. Here, we adopt the latter approach following the spirit of the point cloud data
(PCD) Laplacian discretizations [6] [35]. Both approaches are based on the findings of
Belkin et al. [5] that the Laplace operator can be approximated using the Gaussian kernel
in the ambient Euclidean space,

∆ f (x) = lim
h→0

1

4πh2

∫

X

exp

�

−
‖x− y‖2

4h

�

�

f (x)− f (y)
�

da(y) (4.1)

where f is a scalar function defined on the point cloud and da is the standard area measure
of the underlying manifold (volume form induced by the Riemannian structure). Thus, in
the discrete setting it is needed to approximate the above integral on a point cloud. It is
shown in [18] that

∫

X
gda can be approximated by the discrete sum

∑m
i=1 g(yi)ai with the
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ai ’s being the area measure elements calculated by projecting xi ’s neighbouring points to
its local tangent plane and taking the area of the Voronoi cell containing xi . It is shown
in [18] that for an (ε,δ)-sampling and h= ε1/(2+ξ) with any positive constant ξ,











m
∑

i=1

g(yi)ai −
∫

X

g(y)dµ(y)











∞

= O (ε+ ε3/δ2), (4.2)

implying that for δ = Ω(ε3/2−ξ) with any positive constant ξ,
∑m

i=1 g(yi)ai converges to
∫

X
g(y)da(y) in the sense of the L∞ norm as ε ↓ 0.
Rewriting equation (4.1) in discrete form we get,

(∆ f )i =
∑

j

wi j( fi − f j)a j (4.3)

where fi = f (xi), and wi j are weights defined as

wi j =
1

4πh2 exp

�

−
‖xi − x j‖2

4h

�

(4.4)

for x j ∈ N (xi), and vanish elsewhere. Here, as the neighborhood N (xi) we use the k-th
nearest neighbors of xi (we used k = 8 and h set to square root of the average distance
between samples in all the neighborhoods).

The area elements ai are calculated in the following way: At each point xi , a tangent
plane to the surface was constructed by fitting a plane to a local neighbourhood of xi using
the algorithm described in [27]. Then, xi ’s neighbouring points were projected to the
tangent plane, and triangulated using Delaunay triangulation. The area elements ai were
defined as one third of the resulting xi 1-ring area.In case the point cloud is endowed with
a known mesh structure, it can be used instead in the calculation of the area elements.

In matrix notation, (4.3) can be written as ∆f = Lf, where L is the m×m discretized
Laplace-Beltrami operator, and f = ( f1, . . . , fm)T. As by construction of N (xi) the weights
wi j are not symmetric, we use the symmetrized version w̃i j =

1
2
(wi j+w ji). Then, we define

W=
�

diag
n

∑

l 6= j w̃il

o

− w̃i j

�

obtaining a symmetric matrix W.
The discrete eigenfunctions and eigenvalues of L are found by solving the generalized

eigendecomposition [34]

WΨ = A−1ΨΛ, (4.5)

where A = diag{ai}, Λ = diag{λl} is the diagonal matrix of the generalized eigenvalues,
and Ψ = (ψ j(x i)) is the matrix of the corresponding eigenvectors. It is easy to verify
that every generalized eigenvalue λ j is also an eigenvalue of the Laplacian L with the
corresponding eigenvector φ j = A−1ψ j . Once the eigendecomposition of the Laplacian
has been discretized, the HKS descriptor is calculated according to (2.4). Other spectral
descriptors are computed in a similar way. In our experiments we used 300 eigenvalues,
and normalized the HKS descriptor vector.
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Point Feature Histogram (PFH) PFH at point xl is constructed by calculating a his-
togram of angular variations of normals between all pairs of points in the local neighbour-
hood N (xl). The process consists of the following steps. Normals nl , are calculated for
each point xl using the algorithm described in [27]. Then, for each pair xi ,x j ∈ N (xl) and
their estimated normals ni ,n j , where xi is chosen to be the point with the smaller angle
between ni and x j − xi . Define

u = ni , v = (x j − xi)× u, w = u× v

And the pairwise feature Fl
ij as

α = arctan(w · n j ,u · ni)

β = v · n j

γ = u ·
x j − xi

||x j − xi||2
(4.6)

Finally, the set {Fl
ij}ij∈N (xl) is binned into a histogram. Since the coordinates of Fl are

measures of angles between normals. It is easy to divide each coordinate into same number
(b) of bins. We chose b = 5, thus resulting in 53 = 125 fully correlated feature space.

Fast Point Feature Histogram (FPFH) The FPFH [44] is a more relaxed version of
PFH that is faster to compute. Instead of computing the histogram in the b3 space, the
histograms of α,β ,γ are calculated separately and than concatenated to form a descriptor.
The feature Fl (4.6) is not calculated for every pair inN (xl) but only between xl and other
points in N (xl). A histogram as described above is calculated only from these points and
the resulting descriptor is called SPFH(xl) from these descriptors the FPFH is constructed
using the following formuala

F PFH(xl) = SPFH(xl) +
∑

xi∈N (xl )

1

wi
SPFH(xi) (4.7)

where the weight wi represents the distance between xl and xi . The number of bins chosen
for each coordinate of Fl was 11 thus resulting in descriptor of length 33.

Both FPFH and FPH are rotation and translation invariant thus are better choice for
matching rigid shapes as they are faster to calculate than the HKS descriptor less sensitive
to boundary effects and from our tests produce good results.

4.2. Data term

We define P as the d × m matrix of point-wise descriptors on X (stored in columns),
thus the sum of all the descriptors according to the membership function u can be written
as,

∫

X

puda ≈ PAu (4.8)
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Hence, data term (3.3) discretization takes the following form

D(u) = ‖PAu− q‖2 = uTATPTPAu− 2qTPAu+ qTq. (4.9)

4.3. Gradient norm

Let us denote by N (xi) the 1-ring of some point xi on the shape formed by t vertices
x1, . . . ,xt ordered e.g. in clock-wise order (to simplify notation, we assume without loss of
generality consecutive indices). For meshes, the 1-ring or xi is defined by all the vertices
of triangles that share xi . For point clouds, the 1-ring is calculated by estimating the tan-
gent plane at xi , projecting its neighbours to the plane, performing delunay triangulation
on the plane and selecting the vertices that resulted being in in the 1-ring on the plane.
Afterwards, we pick some j-th triangle in N (xi) formed by the central vertex xi and the
vertices x j and xk for k = j mod t + 1. Let X j = (x j − xi ,xk − xi) be the vectors describing
the triangle, hence, X j is a 3× 2 matrix. We calculate triangle’s area from X j by defining

α j =
1
2

Æ

det(XT
j X j).

In order to calculate, the gradient of the function u on triange j. We first, construct
a matrix D j that calculates the difference of values of u on the vertices of triangle j i.e.
D ju = (u j − ui , uk − ui)T. To do this we set D j to be a sparse 2 × m matrix with +1 at
indices (1, j) and (2, k), and −1 at (1, i) and (2, i). The membership function u at a point
x within the triangle can be expressed in the above notation as u(x) = (D ju)Tδ, where
δ = (δ1,δ2)T is the vector of barycentric coordinates of the point x, such that x = X jδ.
Since the function u(x) is linear within the triangle, its gradient is constant and its norm
can be expressed as

‖∇u‖2 = max
(D ju)Tdδ

dx
= max
‖dx‖=1

(D ju)
Tdδ, (4.10)

where dδ is a small displacement in barycentric coordinates, and dx is the corresponding
displacement on the triangle. Observing that dx = X jdδ, by multiplying both sides by the
pseudo-inverse of X j one has dδ = (XT

j X j)−1XT
j dx, yielding

‖∇u‖2 = max
‖dx‖=1

(D ju)
T(XT

j X j)
−1XT

j dx = (D ju)
T(XT

j X j)
−1D ju. (4.11)

The latter can be in turn cast as the norm ‖∇u‖2 = gT
j g j of the gradient vector

g j = (XT
j X j)

−1/2D ju = E ju. (4.12)

The area element corresponding to xi is given by ai =
1
3
(α1 + · · · + αt), and finally the

gradient at xi can be expressed by averaging the g j ’s with the weights α j . This yields

∇u da ≈
1

3

t
∑

j=1

α jg j =
1

3

t
∑

j=1

α jE ju=
1

3
1T









α1E1
...

αtEt









u

=
1

3
((α1, . . . ,αt)⊗ I)Eu, (4.13)
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where 1 is a 2t×1 vector of ones, E is the 2t×m matrix stacking E j ’s, I is the 2×2 identity
matrix, and ⊗ denotes the Kroenecker product (α1, . . . ,αt)⊗ I = (α1I, . . . ,αtI). Denoting
by Gi the 2×m matrix 1

3
((α1, . . . ,αt)⊗ I)E corresponding to the vertex xi , we can write

∇u da ≈ Giu.
Let us now consider all the points of the shape. We have

∫

X

ρ2‖∇u‖2da ≈
m
∑

i=1

ρ2
i

ai
uTGT

i Giu. (4.14)

Introducing a 2m×m matrix

G =

�

diag

¨

1
p

a1
, . . . ,

1
p

am

«

⊗ I

�









G1
...

Gm









(4.15)

allows to rewrite the former integral as

∫

X

ρ2‖∇u‖2da ≈ ‖(diag{ρ} ⊗ I)Gu‖2. (4.16)

4.4. Discretized alternating minimization

Using the tools we described above we can finally construct the two steps of the alter-
nating minimization problem (3.5)–(3.6). The first step of the discretized minimization
problem (3.5), is preformed when ρ is fixed, and optimal u is being searched for that ρ

min
u

uT
�

ATPTPA+λr
λs

2
GT(diag{ρ2} ⊗ I)G

�

u− 2qTPAu s.t. aTu= A (4.17)

The second step is preformed when u is fixed, thus yielding the optimal ρ. Recall that,
at a vertex xi ,

‖∇u‖2da ≈
1

ai
uTGT

i Giu= si (4.18)

Using this notation, we obtain the following discretization of the integrals in the regular-
ization term

∫

X

ρ2‖∇u‖2da ≈
m
∑

i=1

ρ2
i si = ρTdiag{s1, . . . , sm}ρ = ρTS(u)ρ (4.19)

∫

X

‖∇ρ‖2da ≈ ‖Gρ‖2 = ρTGTGρ (4.20)
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and
∫

X

(1−ρ)2da ≈ ρTAρ − 2aTρ + 1Ta (4.21)

The discretized minimization problem (3.6) with respect to ρ becomes

min
ρ
ρT
�

λs

2
S(u) +λbεG

TG+
λb

4ε
A
�

ρ −
λb

2ε
aTρ (4.22)

This is an unconstrained quadratic problem, and has the following closed-form solution

ρ =
�

2
λsε

λb
S(u) + 4ε2GTG+A

�−1

a (4.23)

5. Results

In order to test our approach, we performed several partial matching experiments
on data from the SCAPE dataset [3] †, TOSCA dataset [15] ‡, range scans from NIST
SHREC’10 range dataset [23] and range scans obtained by the Kinect sensor. TOSCA set
contains synthetic shapes undergoing simulated articulation transformations, SCAPE con-
tains high-quality scans of real people assuming real poses, SHREC’10 range scans contains
various models captured from arbitrary view directions. Groundtruth correspondence be-
tween the transformed shapes is available for the TOSCA dataset. Though some datasets
contained triangulated data, in all experiments the processing was performed on the raw
point clouds only.

In our experiments, all the shapes were downsampled to approximately 2500 vertices.
Parts were cut by taking a geodesic circle of random radius around a random center point.
For each part, the normalized HKS, PFH, FPFH descriptors were calculated at each point
belonging to the part. To avoid boundary effects (Figure 1), descriptors close to the bound-
ary were ignored when calculating q in (3.1). The distance from the boundary was selected
in accordance to the time scales of the HKS and the sampling density. For small scale values
the descriptors differ significantly between the full and partial shapes due to insufficient
sample density. For large scale values, the influence of the boundary, affects the heat kernel
at larger distances (Figure 1). We used ten linearly spread samples of the heat kernel in the
range [30, 50] for the HKS, and neighbourhood of 8 (and radius 15) for the FPFH and the
PFH descriptors, as visualized in Figure 2. This range of time scales and neighbourhood
sizes was found to be informative enough while minimizing the boundary effects.

We observed fast convergence of the alternating minimization procedure (Figure 3).
After only two iterations, the membership function u typically ceased changing signifi-
cantly. This is due to the initialization of step one with ρ = 1, and achieving the Tikhonov
regularization on the first step, hence, having a smooth solution in the very beginning of

†Available online at http://ai.stanford.edu/~drago/Projects/scape/
‡Available online at http://tosca.cs.technion.ac.il
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Figure 1: The L2 di�erence between descriptors computed on the full shape and the partial
shape. Note that the di�erence is maximal on the boundary decaying away from it; the error
decay speed depends on the neighbourhood size chosen for computation of the features. For
the HKS it also depends on the chosen scale.

the process. The phase map ρ assumed the values close to 1 in places of low gradient of the
membership function u, and less than 1 in high gradient areas (Figure 3). The importance
of the regularization step is evident observing the change in u in Figure 3.

Figure 4 shows the influence of the parameter λr, controlling the impact of the regular-
ization. For too small values of λr, no good match is obtained because the searched part is
not exactly the same in the shape. As the influence of the regularization increase the mem-
bership functions becomes smoother and closer to the correct match. Matches obtained
due to symmetry decrease. However, increasing λr further causes incorrect matching due
to low data term influence. Increasing it even more starts smoothing the result (rightmost
column) until eventually making the membership function uniform over the entire shape.

Figures 5 show examples of matching results using the FPFH and HKS descriptors. It
can be seen that due to invariance of the descriptors to transformations the symmetric
parts in the shape are also matched. This phenomena is greater for the HKS descriptor as
it is also invariant to isometric transformations. In order to visualize this we’ve adjusted
the threshold for the membership function to be 0.25. By adjusting the the regularization
term correctly it is possible to remove the matching of similar as parts as in Figure 4.
Throughout the experiments we didn’t notice much difference in matching results between
the FPFH and PFH descriptors.

Figure 6 shows the result of the membership function when trying to match range
scans representing an object captured from different views. Using the FPFH descriptor the
method matched a side facing head to a front facing head and other side facing head. It is
interesting to see that although the front side differ in area, has occlusion of points due to
the viewing angle, the method still matched it due to regularization and rough similarities
of the descriptors on the head scanned from different angles. Same experiment with the
HKS descriptor produced poor results this is due to high influence of the boundary effect
on the HKS descriptor.

Figures 7–9 show examples of matching results after thresholding. The membership
function u was thresholded in such a way to make the resulting area as close as possible to
the area of the query region.

The robustness of the method is shown in Figures 6–9, where it is capable to find cor-
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Figure 2: A comparison of the descriptors at di�erent locations, when calculated on part of
shape(dashed line) and on full shape (solid line). The blue and red colors refer to points far and
close to the boundary (see Figure 1).

rect matching even if the shape undergoes deformations or is degraded by geometric and
topological noise (Figure 9). Furthermore, correct matching is obtained between shapes
that have only roughly similar features (e.g. male and female shapes, or shapes from
TOSCA and SCAPE datasets, scans from different angles), as can be seen in Figures 6 and
8. This behavior largely depends on the typical feature size, which is determined by select-
ing the scale parameter of the HKS descriptor and the neighbourhood sizes of the PFH and
FPFH descriptors.

Table 2 summarizes a quantitative evaluation that was performed on a subset of the
TOSCA database, for which ground truth correspondence and its bilaterally symmetric
counterpart are available. This subset included a male, a dog and a horse shape classes
with different geometric, topological and noise deformations (98 shapes in total). The
query set was generated by selecting a part from a deformed shape (1000 queries in each
deformation category) and matched to the null shape with parameters and thresholds as
described above.

5.1. Complexity

The code used in the experiments was implemented in Matalb with time-critical parts
written in C with the Mex interface. The quadratic programming problem (3.5) in Step 1
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Figure 3: Convergence of the alternating minimization procedure. Depicted are the membership
function u (top row) and the phase �eld ρ (bottom row). The �rst column displays result of
step one when ρ is initialized to zero (no regularization at all). The second column is the result
of the �rst step when ρ = 1 is used as the initialization. The third column depicts the result
after completing two full iterations of the alternating minimization.

was solved using the QPC§ solver implementing a dual active set method. The experiments
were run on a 2.3GHz Intel Core2 Quad CPU, 2GB RAM in Win7 32bit environment. The
running time (including re-sampling and descriptor calculation) per part was about 40−
−120 seconds; a detailed breakdown of the running time is summarized in Table 1.

6. Conclusions

We presented a framework for finding partial similarity between range scans, point
clouds and shapes which does not rely on explicit correspondence. The method is based
on regularized matching of region-wise local descriptors, and can be efficiently imple-
mented. Experimental results show that our approach performs well with different kind of

§Available online at http://sigpromu.org/quadprog
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Figure 4: The in�uence of the parameter λr, controlling the impact of regularization. The
leftmost �gure depicts a query part; �gures on the right are the membership function u for
increasing values of λr.

Table 1: Average runtime (in seconds) for di�erent stages in the proposed method: Laplacian
construction, eigendecomposition, cost matrix generation for the QP solver, and two iterations
of the minimization process. Note, that for FPFH/PFH descriptors we don't need the laplacian
and the eigen values decomposition

Points Laplacian Eigen. decomp. QP generation Minimization

1000 1.06 5.15 3.31 4.36
2000 1.74 19.92 9.61 18.15
3000 2.57 39.45 19.45 47.04

descriptors and in challenging matching scenarios, such as the presence of geometric and
topological noise and occlusions. In the future work, we will efficiently implement this
method and test in on full cluttered scenes, then extend the method to the setting of two
partially-similar full shapes, in which two similar parts have to be found in each shape,
and then consider a multi-part matching (puzzle) scenario.
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