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Abstract

Natural objects can be subject to various transformations yet still preserve properties that we refer to as invariants.
Here, we use definitions of affine invariant arclength for surfaces in R3 in order to extend the set of existing non-rigid
shape analysis tools. We show that by re-defining the surface metric as its equi-affine version, the surface with its
modified metric tensor can be treated as a canonical Euclidean object on which most classical Euclidean processing
and analysis tools can be applied. The new definition of a metric is used to extend the fast marching method technique
for computing geodesic distances on surfaces, where now, the distances are defined with respect to an affine invariant
arclength. Applications of the proposed framework demonstrate its invariance, efficiency, and accuracy in shape
analysis.

1. Introduction

Modeling 3D shapes as Riemannian manifold is a
ubiquitous approach in many shape analysis applica-
tions. In particular, in the recent decade, shape de-
scriptors based on geodesic distances induced by a Rie-
mannian metric have become popular. Notable ex-
amples of such methods are the canonical forms [7]
and the Gromov-Hausdorff [9, 14, 2] and the Gromov-
Wasserstein [13, 6] frameworks, used in shape compar-
ison and correspondence problems. Such methods con-
sider shapes as metric spaces endowed with a geodesic
distance metric, and pose the problem of shape similar-
ity as finding the minimum-distortion correspondence
between the metrics. The advantage of the geodesic
distances is their invariance to inelastic deformations
(bendings) that preserve the Riemannian metric, which
makes them especially appealing for non-rigid shape
analysis. A particular setting of finding shape self-
similarity can be used for intrinsic symmetry detection
in non-rigid shapes [17, 25, 12, 24].

The flexibility in the definition of the Riemannian

metric allows extending the invariance of the afore-
mentioned shape analysis algorithms by constructing a
geodesic metric that is also invariant to global transfor-
mations of the embedding space. A particularly gen-
eral and important class of such transformations are the
affine transformations. Such transformations are a com-
mon local model for perspective distortions in images
[15], and affine invariance is a necessary property of
image descriptors. In 3D shape analysis, global affine
transformations play an important role in paleontologi-
cal research studying bones of prehistoric creatures that
may be squeezed by earth pressure [8]. Furthermore,
photometric properties of 3D shapes and images can be
treated as embedding coordinates in high-dimensional
spaces that include both geometric and color coordi-
nates [20, 11]. Photometric transformations can be thus
represented as geometric transformations of the respec-
tive coordinates ,for example, affine transformations in
the Lab color space correspond to brightness, contrast,
hue, and saturation transformations. Affine-invariant
metrics are thus useful for a description of the object
that is invariant to color transformations.
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Many frameworks have been suggested to cope with
the action of the affine group in a global manner, try-
ing to undo the affine transformation in large parts of
a shape or a picture. While the theory of affine invari-
ance is known for many years [4] and used for curves
[18] and flows [19], no numerical constructions appli-
cable to general two-dimensional manifolds have been
proposed.

In this paper, we construct an (equi-)affine-invariant
Riemannian geometry for 3D shapes. So far, such met-
rics have been defined for convex surfaces; we extend
the construction to surfaces with non-vanishing Gaus-
sian curvature. By defining an affine-invariant Rie-
mannian metric, we can in turn define affine-invariant
geodesics, which result in a metric space with a stronger
class of invariance. This new metric allows us to de-
velop efficient computational tools that handle non-rigid
deformations as well as equi-affine transformations. We
demonstrate the usefulness of our construction in a
range of shape analysis applications, such as shape pro-
cessing, construction of shape descriptors, correspon-
dence, and symmetry detection.

2. Background

We model a shape (X, g) as a compact complete two-
dimensional Riemannian manifold (surface) X with a
metric tensor g. The metric g can be identified with
an inner product 〈·, ·〉x : TxX × TxX → R on the tan-
gent plane TxX at point x. We further assume that
X is embedded into R3 by means of a regular map
x : U ⊆ R2 → R3, so that the metric tensor can be
expressed in coordinates as

gi j =
∂xT

∂ui

∂x
∂u j

, (1)

where ui are the coordinates of U.
The metric tensor relates infinitesimal displacements

in the parametrization domain U to displacement on the
manifold

dp2 = g11du1
2 + 2g12du1du2 + g22du2

2. (2)

This, in turn, provides a way to measure length struc-
tures on the manifold. Given a curve C : [0,T ]→ X, its
length can be expressed as

`(C) =

∫ T

0
〈Ċ(t), Ċ(t)〉1/2C(t)dt, (3)

where Ċ denotes the velocity vector.

2.1. Geodesics
Minimal geodesics are the minimizers of `(C), giving

rise to the geodesic distances

dX(x, x′) = min
C∈Γ(x,x′)

`(C) (4)

where Γ(x, x′) is the set of all admissible paths between
the points x and x′ on the surface X, where due to com-
pleteness assumption, the minimizer always exists.

Structures expressible solely in terms of the metric
tensor g are called intrinsic. For example, the geodesic
can be expressed in this way. The importance of intrin-
sic structures stems from the fact that they are invari-
ant under isometric transformations (bendings) of the
shape. In an isometrically bent shape, the geodesic dis-
tances are preserved – a property allowing to use such
structures as invariant shape descriptors [7].

2.2. Fast marching
The geodesic distance dX(x0, x) can be obtained as

the viscosity solution to the eikonal equation ‖∇d‖2 = 1
(i.e., the largest d satisfying ‖∇d‖2 ≤ 1) with bound-
ary condition at the source point d(x0) = 0. In the
discrete setting, a family of algorithms for finding the
viscosity solution of the discretized eikonal equation by
simulated wavefront propagation is called fast march-
ing methods [10]. On a discrete shape represented as a
triangular mesh with N vertices, the general structure
of fast marching closely resembles that of the classi-
cal Dijkstra’s algorithm for shortest path computation in
graphs, with the main difference in the update step. Un-
like the graph case where shortest paths are restricted to
pass through the graph edges, the continuous approxi-
mation allows paths passing anywhere in the mesh tri-
angles. For that reason, the value of d(x0, x) has to be
computed from the values of the distance map at two
other vertices forming a triangle with x. Computation
of the distance map from a single source point has the
complexity of O(N log N) [23]. On parametric surfaces,
the fast marching can be carried out by means of a raster
scan and efficiently parallelized, which makes it espe-
cially attractive for GPU-based computation [21, 3].

3. Affine-invariant geometry

An affine transformation x 7→ Ax + b of the three-
dimensional Euclidean space can be parametrized using
twelve parameters: nine for the linear transformation
A, and additional three, b, for a translation, which we
will omit in the following discussion (here, we assume
vectors to be column). Volume-preserving transforma-
tions, known as special or equi-affine are restricted by
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det A = 1. Such transformations involve only eleven
parameters. In the following, when referring to affine
transformations and affine invariance, we will imply
volume-preserving (equi-)affine transformations.

An equi-affine metric can be defined through the
parametrization of a curve on the surface. Let C be the
coordinates of a curve on the surface X parametrized by
p. By the chain rule,

Cp = x1
du1

dp
+ x2

du2

dp

Cpp = x1
d2u1

dp2 + x2
d2u2

dp2 + x11

(
du1

dp

)2

+

2x12
du1

dp
du2

dp
+ x22

(
du2

dp

)2

, (5)

where, for brevity, we denote xi = ∂x
∂ui

, xi j = ∂2x
∂ui∂u j

, Cp =

dC
dp , and Cpp = d2C

dp2 . As volumes are preserved under
the equi-affine group of transformations, we define the
invariant arclength p through

f (X) det(x1, x2,Cpp) = 1, (6)

where f (X) is a normalization factor for parameteri-
zation invariance (i.e., invariance with respect to the
choice of p), and the determinant is applied on a matrix
formed by the column vectors x1, x2, and Cpp. Since xi

is parallel to xi
dui
dp it follows that

det(x1, x2, αx1 + βx2) = 0 ∀α , β, (7)

and plugging (5) into (6) using (7) yields the equi-affine
arclength

dp2 = f (X) det(x1, x2, x11du2
1 +

2x12du1du2 + x22du2
2)

= f (X)
(
g̃11du2

1 + 2g̃12du1u2 + g̃22du2
2

)
,(8)

where g̃i j = det(x1, x2, xi j).
In order to evaluate f (X) such that the quadratic form

(8) will also be parameterization invariant, we introduce
an arbitrary parameterization ū1 and ū2, for which x̄i =
∂x
∂ūi

and x̄i j = ∂2x
∂ūi∂ū j

. The relation between the two sets of
parameterizations can be expressed using the chain rule

x̄1 = xū1 = xu1 u1ū1 + xu2 u2ū1 (9)
x̄2 = xū2 = xu1 u1ū2 + xu2 u2ū2 .

It can be shown [1, 4] using the Jacobian

J =

(
u1ū1 u2ū1

u1ū2 u2ū2

)
, (10)

that

ḡ11dū2
1 + 2ḡ12dū1dū2 + ḡ22dū2

2

=
(
g̃11du2 + 2g̃12dudv + g̃22dv2

)
det(J), (11)

and

ḡ11ḡ22 − ḡ2
12 =

(
g̃11g̃22 − g̃2

12

)
det4(J), (12)

where ḡi j = det(x̄1, x̄2, x̄i j). From (11) and (12) we con-
clude that

ḡ11dū2
1 + 2ḡ12dū1dū2 + ḡ22dū2

2∣∣∣ḡ11ḡ22 − ḡ2
12

∣∣∣ 1
4

=
g̃11du2 + 2g̃12dudv + g̃22dv2∣∣∣g̃11g̃22 − g̃2

12

∣∣∣ 1
4

, (13)

and derive the affine invariant parameter normalization

f (X) = |g̃|−1/4 , (14)

which defines the equi-affine pre-metric tensor [4, 19]

ĝi j = g̃i j |g̃|−1/4 . (15)

The pre-metric tensor (15) applies only for strictly
convex surfaces [4]; a similar difficulty appeared in
equi-affine curve evolution. There the arc-length was
determined by the absolute value of the geometric struc-
ture [18]. In two dimensions the problem is more acute
as we can encounter non-positive definite metrics in
concave, and hyperbolic regions.

We propose fixing the metric by flipping the main
axes of the operator, if needed. In practice, we restrict
the eigenvalues of the tensor to be positive. From the
eigendecomposition in matrix notation, Ĝ = UΓUT of
ĝ where U is orthogonal and Γ = diag{γ1, γ2}, we com-
pose a new metric G, such that

G = U|Γ|UT (16)

is positive definite and equi-affine invariant, for surfaces
with non-vanishing Gaussian curvature.

4. Discretization

We model the surface X as a triangular mesh, and
construct three coordinate functions x(u, v), y(u, v), and
z(u, v) for each triangle. While this can be done prac-
tically in any representation, we use the fact that a tri-
angle and its three adjacent neighbors, can be unfolded
to the plane, and produce a parameter domain. The co-
ordinates of this planar representation are used as the
parametrization with respect to which the first funda-
mental form coefficients are computed at the barycenter
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Standard Equi-affine

Standard Equi-affine

Figure 3: Distance maps from different source points calculated using the standard (second to fourth columns) and the proposed equi-affine
geodesic metric (fifth to seventh columns) on a reference surface (first and third rows) and its affine (second row) and isometric deformation+affine
transformation (fourth row). Thirds and sixth rows show the global histogram of geodesic distances before and after the transformation (green and
blue curves). The overlap between the histograms is an evidence of invariance.

of the simplex (Figure 1). Using the six base functions
1, u, v, uv, u2, and v2 we can construct a second-order
polynomial for each coordinate function. This step is
performed for every triangle of the mesh (Algorithm 1).

Once the coefficients D are known, evaluating the
equi-affine metric, as seen in Figure 1, becomes straight
forward using:

xu =

 D21 + D41v + 2D51u
D22 + D42v + 2D52u
D23 + D43v + 2D53u

 ;

xv =

 D31 + D41v + 2D61u
D32 + D42v + 2D62u
D33 + D43v + 2D63u

 ;

xuu =
[
2D51 2D5,2 2D53

]T ;
xuu =

[
2D61 2D6,2 2D63

]T ;
xuv = xvu = [D41 D42 D43]T .

Calculating geodesic distances was well studied in
past decades. Several fast and accurate numerical
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Figure 1: The three neighboring triangles together with the central one
are unfolded flat to the plane. The central triangle is canonized into a
right isosceles triangle while the rest of its three neighboring triangles
follow the same planar affine transformation. Finally, the six surface
coordinate values at the vertices are used to interpolate a quadratic
surface patch from which the metric tensor is computed.

Figure 2: Geodesic level sets of the distance function computed from
the tip of the tail, using the standard (left) and the proposed equi-affine
(right) geodesic metrics.

Algorithm 1: Equi-affine-invariant metric dis-
cretization.

Input: 3 × 6 matrix P of triangle vertex coordinates
in R3 (each column Pi represents the
coordinates of a vertex, the first three
columns belonging to the central triangle).

Output: 6 × 3 matrix of coefficients D
1 Flatten the triangles to a plane, such that each

vertex Pi becomes Qi ∈ R2, and (i) the first vertex
becomes the origin, C1 = [0 0]T ; (ii) edge lengths
are preserved, d(Ci,C j) = d(Pi,P j) for all i and j;
and (iii) the orientation is unchanged,
sign CT

i C j = sign PT
i P j.

2 Construct a new parameterization Ĉi = MCi, where
M = [C2 C3]−1.

3 Calculate the coefficients D = N−1PT of each
coordinate polynomial, where u = Ĉi1, v = Ĉi2, and
N is a 6 × 6 matrix with each row defined as
Ni = [1 u v uv u2 v2].

schemes [10, 22, 26] can be used off-the-shelf for this
purpose. We use FMM technique, after locally rescaling
each edge according to the equi-affine metric.

The (affine invariant) length of each edge is defined
by L2(dx, dy) = g11dx2+2g12dxdy+g22dy2. Specifically,
for our canonical triangle with vertices at (0, 0), (1, 0)
and (0, 1) we have L2

1 = g11, L2
2 = g22 and L2

3 =

g11−2g12 +g22. Each edge may appear in more than one
triangle. In our experiments we use the average length
as an approximation, while verifying that the triangle
inequality holds. In Figures 2 and 3 we compare be-
tween geodesic distances induced by the standard and
our affine-invariant metric.

5. Results

The equi-affine metric can be used in many existing
methods that process geodesic distances. In what fol-
lows, we show several examples for embedding the new
metric in known applications such as voronoi tessella-
tion, canonical forms, non-rigid matching and symme-
try detection.

5.1. Voronoi tessellation

Voronoi tessellation is a partitioning of (X, g) into
disjoint open sets called Voronoi cells. A set of k
points (xi ∈ X)k

i=1 on the surface defines the Voronoi
cells (Vi)k

i=1 such that the i-th cell contains all points on
X closer to xi than to any other x j in the sense of the
metric g. Voronoi tessellations created with the equi-
affine metric commute with equi-affine transformations
as visualized in Figure 4

5.2. Canonical forms

Methods considering shapes as metric spaces with
some intrinsic (e.g. geodesic) distance metric is an im-
portant class of approaches in shape analysis. Geodesic
distances are particularly appealing due to their invari-
ance to inelastic deformations that preserve the Rieman-
nian metric.

Elad and Kimmel [7] proposed a shape recognition
algorithm based on embedding the metric structure of a
shape (X, dX) into a low-dimensional Euclidean spaces.
Such a representation, referred to as canonical form, al-
lows undoing the degrees of freedom due to all possible
isometric non-rigid shape deformations and translating
them into a much simple Euclidean isometry group. For
example, the Hausdorff distance can be used to compare
two canonical forms.

Given a shape sampled at N points and an N × N
matrix of pairwise geodesic distances, the computation
of the canonical form consists of finding a configura-
tion of N points z1, . . . , zN in Rm such that ‖zi − z j‖2 ≈

dX(xi, x j). This problem is known as multidimensional
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Figure 4: Voronoi cells generated by a fixed set of 20 points on a shape undergoing an equi-affine transformation. The standard geodesic metric
(left) and its equi-affine counterpart (right) were used. Note that in the latter case the tessellation commutes with the transformation.

scaling (MDS) and can be posed as a non-convex least-
squares optimization problem of the form

{z1, . . . , zN} =

argmin
z1,...,zN

∑
i> j

|‖zi − z j‖2 − dX(xi, x j)|2. (17)

The invariance of the canonical form to shape trans-
formations depends on the choice of the distance met-
ric dX . Figure 5 shows an example of a canonical form
of the human shape undergoing different bendings and
affine transformations of varying strength. The canoni-
cal form was computed using the geodesic and the pro-
posed equi-affine distance metric. One can clearly see
the nearly perfect invariance of the latter. Such a strong
invariance allows to compute correspondence of full
shapes under a combination of inelastic bendings and
affine transformations.

5.3. Non rigid matching
Two non-rigid shapes X,Y can be considered similar

if there exists an isometric correspondence C ⊂ X × Y
between them, such that ∀x ∈ X there exists y ∈ Y with
(x, y) ∈ C and vice-versa, and dX(x, x′) = dY (y, y′) for
all (x, y), (x′, y′) ∈ C, where dX , dY are geodesic distance
metrics on X,Y . In practice, no shapes are truly isomet-
ric, and such a correspondence rarely exists; however,
one can attempt finding a correspondence minimizing
the metric distortion,

dis(C) = max
(x,y)∈C

(x′,y′)∈C

|dX(x, x′) − dY (y, y′)|. (18)

The smallest achievable value of the distortion is called
the Gromov-Hausdorff distance [5] between the metric
spaces (X, dX) and (Y, dY ),

dGH(X,Y) =
1
2

inf
C

dis(C), (19)

and can be used as a criterion of shape similarity.
The choice of the distance metrics dX , dY defines

the invariance class of this similarity criterion. Us-
ing geodesic distances, the similarity is invariant to in-
elastic deformations. Here, we use geodesic distances
induced by our equi-affine Riemannian metric tensor,
which gives additional invariance to affine transforma-
tions of the shape.

Bronstein et al. [2] showed how (19) can be effi-
ciently approximated using a convex optimization algo-
rithm in the spirit of multidimensional scaling (MDS),
referred to as generalized MDS (GMDS). Since the in-
put of this numeric framework are geodesic distances
between mesh points, all that is needed to obtain an
equi-affine GMDS is one additional step where we
substitute the geodesic distances with their equi-affine
equivalents. Figure 6 shows the correspondences ob-
tained between an equi-affine transformation of a shape
using the standard and the equi-affine-invariant versions
of the geodesic metric.

5.4. Intrinsic symmetry

Raviv et al. [17] introduced the notion of intrin-
sic symmetries for non-rigid shapes as self-isometries
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Figure 5: Embedding into R3 of a human shape and its equi-affine transformations of varying strength. Classical scaling was used with a matrix
of geodesic (left) and equi-affine geodesic (right) distances. In the latter case, canonical forms remain approximately invariant up to a rigid
transformation.

Figure 6: The GMDS framework is used to calculate correspondences
between a shape and its isometry (left) and isometry followed by an
equi-affine transformation (right). Matches between shapes are de-
picted as identically colored Voronoi cells. Standard distance (first
row) and its equi-affine-invariant counterpart (second row) are used
as the metric structure in the GMDS algorithm. Inaccuracies obtained
in the first case are especially visible in the legs and arms.

of a shape with respect to a deformation-invariant (e.g.
geodesic) distance metric. These self-isometries can be
detected by trying to identify local minimizers of the
metric distortion or other methods proposed in follow-
up publications [16, 25, 12, 24].

Here, we adopt the framework of [17] for equi-affine
intrinsic symmetry detection. Such symmetries play an
important role in paleontological applications [8]. Equi-
affine intrinsic symmetries are detected as local min-
ima of the distortion, where the equi-affine geodesic
distance metric is used. Figure 7 shows that using
the traditional metric we face a decrease in accuracy
of symmetry detection as the affine transformation be-
comes stronger (the accuracy is defined as the average
geodesic distance between the detected and the ground-
truth symmetry). Such a decrease does not occur using
the equi-affine metric.

6. Conclusions

We introduced a framework for the construction of
(equi-) affine-invariant Riemannin metric and the asso-
ciated geodesic geometric, and showed that it can be
utilized to construct affine-invariant shape descriptors,
find non-rigid correspondence between shapes, and de-
tect intrinsic symmetry. Handling affine transforma-
tions of the ambient space is important in some appli-
cations where the data acquisition process introduces
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Figure 7: As the affine transformation becomes stronger, the quality of
the symmetry detection decreases when the standard geodesic metric
is used. On the other hand, detection quality is nearly unaffected by
the transformations when using the equi-affine geodesic metric.

affine transformations (e.g. ultrasonic medical imaging)
or where the object has undergone skew (e.g. dinosaur
fossils). An important class of applications where affine
invariance is of high importance is the geometric repre-
sentation of photometric information in images and 3D
shapes by means of high-dimensional embeddings. We
plan to explore these applications in future works. Ad-
ditional point to address is scale invariance which will
make our construction fully affine-invariant.

It is important to note that our construction addresses
affine invariance locally though the construction of a
Riemannian metric, which in theory would allow invari-
ance to a more generic class of spatially-varying affine
transformations. Such a situation is typical in image
analysis, where affine transformations are a local model
for more general view point transformations.
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