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Abstract Many manifold learning procedures try to
embed a given feature data into a flat space of low di-

mensionality while preserving as much as possible the

metric in the natural feature space. The embedding pro-

cess usually relies on distances between neighboring fea-

tures, mainly since distances between features that are

far apart from each other often provide an unreliable

estimation of the true distance on the feature manifold

due to its non-convexity. Distortions resulting from us-

ing long geodesics indiscriminately lead to a known lim-

itation of the Isomap algorithm when used to map non-

convex manifolds. Presented is a framework for nonlin-

ear dimensionality reduction that uses both local and
global distances in order to learn the intrinsic geom-

etry of flat manifolds with boundaries. The resulting
algorithm filters out potentially problematic distances

between distant feature points based on the properties
of the geodesics connecting those points and their rela-

tive distance to the boundary of the feature manifold,
thus avoiding an inherent limitation of the Isomap algo-

rithm. Since the proposed algorithm matches non-local
structures, it is robust to strong noise. We show ex-

perimental results demonstrating the advantages of the
proposed approach over conventional dimensionality re-

duction techniques, both global and local in nature.
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1 Introduction

Analysis of high-dimensional data is encountered in nu-
merous pattern recognition applications. In many cases,

it appears that just a small number of dimensions is
needed to explain the high-dimensional data.

For example (Tenenbaum et al 2000), consider a
large set of images with an underlying parameter space

of a small dimension. One example for such a manifold
is the set of all images of an object sampled at certain

poses, after being centered. This manifold is represented
by vectors of a high dimension (e.g., the column stacked

images), but is of a much lower intrinsic dimensionality
– the Euler angles representing the pose of the object,

are one such possible parametrization.

Dimensionality reduction methods such as principal

component analysis (PCA, see Duda et al 2000) and
multidimensional scaling (MDS, see Borg and Groenen

1997) are often used to obtain a low dimensional rep-
resentation of the data, which is a commonly used pre-

processing stage in pattern recognition.

The principal components analysis algorithm lin-

early projects the points to a low dimensional space
by minimizing the least square fitting error. Multidi-

mensional scaling algorithms minimize the error in the
pairwise distances between data points, and are inti-

mately related to PCA (e.g., see Borg and Groenen
1997; Williams 2002).

While methods such as PCA assume the existence

of a linear map between the data points and the para-

metrization space, such a map often does not exist. Ap-
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plying linear dimensionality reduction methods to data

therefore results in a distorted representation.

Nonlinear dimensionality reduction (NLDR) meth-

ods attempt to describe a given high-dimensional set

of points as a low dimensional manifold by means of

a nonlinear map preserving certain properties of the

data. This kind of analysis has applications in numerous

fields, such as color perception, pathology tissue analy-

sis (Coifman et al 2005), enhancement of MRI images

(Diaz and Arencibia 2003), shape recognition (Elad and

Kimmel 2003), face recognition (Bronstein et al 2005),

motion understanding (Pless 2003), and biochemistry
(Keller et al 2005), to mention a few.

As the input data, we assume to be given N points

in the M -dimensional Euclidean space, {zi}N
i=1 ⊂ R

M .
The points constitute vertices of a proximity graph with

the set of edges E; the points zi, zj are neighbors if
(i, j) ∈ E. The data points are further assumed to be

samples of an m-dimensional manifold M ⊂ R
M , where

typically m ≪ M . This manifold together with the geo-

desic metric dM defined on M form a metric space. The
manifold is represented by a parametrization domain C
using the smooth bijective map ϕ : C ⊂ R

m → M.

The goal of NLDR methods is to uncover the para-

metrization of M. More precisely, we are looking for

a set of points {xi ≈ ϕ−1(zi)}
N
i=1 ⊂ C ⊂ R

m parame-

terizing the data. We will try to compute the N × m

matrix X representing the coordinates of the points in

the parametrization domain.

Many NLDR techniques attempt to find an

m-dimensional representation for the data, while pre-

serving local properties. For example, the locally lin-

ear embedding (LLE) algorithm (Roweis and Saul 2000)

tries to preserve the representation of each data point
as a linear combination of its neighbors. The Lapla-

cian eigenmap algorithm (Belkin and Niyogi 2002) uses
the Laplacian operator for selecting low dimensionality

coordinate functions based on its eigenfunctions. The
resulting coordinate system maps neighboring points

in M to neighboring points in R
m. The diffusion map

(Coifman et al 2005) generalize this framework in the

context of analysis of diffusion processes, making it
more robust to non-uniform sampling density. The Hes-

sian locally linear embedding (HLLE, Grimes and Donoho

2003) tries to use the proximity graph for finding co-

ordinate functions that have a minimal response to the
Hessian operator of the surface, obtaining a truly lo-

cally linear mapping.

Another class of algorithms preserves global prop-

erties, like the geodesic distances dM(zi, zj), approxi-

mated as shortest paths on the proximity graph. The

geodesic distance dM(zi, zj) is defined as

dM(zi, zj) = min
c′(zi,zj)

l(c′(zi, zj)),

where l(c′(zi, zj)) denotes the length of the curve c′(zi, zj),

and minimization over all curves c′(zi, zj) connecting zi

and zj is obtained by a geodesic

cM(zi, zj) = argmin
c′(zi,zj)

l(c′(zi, zj)).

The Semidefinite embedding (Weinberger and Saul
2004) algorithm maximizes the variance in the data set

while keeping the local distances unchanged, thereby

approximately preserving geodesic distances in the man-

ifold. The problem is formulated and solved as a semidef-

inite programming (SDP, Ben-Tal and Nemirovski 2001)

problem, under constraints reflecting invariance to trans-

lation and local isometry of the manifold to Euclidean

space. Yet, the computational cost for solving an SDP

problem is O(N6) (see Ben-Tal and Nemirovski 2001,

for details), which is prohibitive even in medium-scale

problems. Attempts to overcome it by using landmarks

(Weinberger et al 2005) still incur high computational

complexity.

Brand (2005) describes an algorithm which utilizes
global distances in order to numerically stabilize and

robustify local embedding techniques, but the approach

presented is still mostly local in nature, assuming that

a few randomly selected longer acting connections are
enough to prevent the weaknesses of local techniques
while still keeping their attractive computational time.

Finally, the Isomap algorithm (Schwartz et al 1989;
Tenenbaum et al 2000) considers both local and global

invariants – the lengths of geodesics between points on
the manifold. Short geodesic distances are assumed to

be equal to Euclidean distances, and longer ones are ap-
proximated as shortest paths length on the proximity

graph, using standard graph search methods like Di-

jkstra’s algorithm (Dijkstra 1959; Cormen et al 1990).

The resulting distance measure, δij = δ(zi, zj), approx-

imates dM(zi, zj) under certain assumptions, as shown

by Bernstein et al (2001). Isomap then uses multidi-

mensional scaling, attempting to find an m-dimensional

Euclidean representation of the data, such that the Eu-

clidean distances between points are as close as possible

to the corresponding geodesic ones. For example, using
the L2 criterion (referred to as stress),

X∗ = argmin
X∈RN×m

∑

i<j

(dij(X) − δij)
2
,

where dij(X) = ‖xi−xj‖2 is the Euclidean distance be-
tween points xi and xj in R

m. Instead of Dijkstra’s al-

gorithm, higher accuracy algorithms such as fast march-
ing methods (Kimmel and Sethian 1998) can be used
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when dealing with surfaces, resulting in a more accu-

rate mapping (Zigelman et al 2002; Elad and Kimmel

2003).
The main advantage of Isomap is that it uses global

geometric invariants, which are relatively less sensitive

to measurement noise, compared to local ones. Yet,

its underlying assumption is that M is isometric to
C ⊂ R

m with the geodesic metric dC , induced by the

Riemannian structure of C. This metric is different in
general from the metric of R

m restricted to C, referred

to as the restricted metric and denoted by dRm |C . That

is, Isomap assumes δ(zi, zj) = dRm(xi,xj) for all i, j =
1, ..., N . If C is convex, the restricted metric dRm |C coin-

cides with the geodesic metric dC and Isomap succeeds
in recovering the parametrization of M. Otherwise, C
has no longer the Euclidean geometry and no isometric
map of the dataset to R

m can be found. The convex-

ity assumption of C appears to be too restrictive, as
many data manifolds have complicated topology. In-

deed, Grimes and Donoho (2002) showed examples of
data for which C is not convex, and pointed out that

Isomap fails in such cases. Lack of convexity may stem
from the structure of the data themselves or from in-

complete measurements. In any case, non-convex data
is sufficiently common so as to hinder the use of the

Isomap algorithm. A note about intrinsic convexity of

the manifold: If an isometric embedding of the manifold

into Euclidean space results in a convex region, another

isometric embedding cannot result in a non-convex re-

gion. This result is implicit in the discussion made by

Grimes and Donoho (2002), and can be shown by not-

ing that between each two points in Rm exists a single
curve with the same length as the line connecting them.

1.1 Contribution

In this paper, we claim that even when violating the
convexity assumption, one could still use non-local dis-

tances in order to stabilize and robustify the flatten-
ing procedure. We do that by detecting and ignoring

geodesic distances which may be inconsistent with the
underlying convexity assumption.

Our approach, hereinafter referred to as the topolog-

ically constrained isometric embedding (TCIE), allows

handling flat data manifolds with arbitrary boundaries
and “holes” that may often occur when sampling nat-

ural phenomena. A rough sketch of the approach has

been presented in a conference paper (Rosman et al

2006). Here, we provide a better picture of it, in terms

of the algorithms used, proofs of their validity, and com-

parison to existing techniques. We further present an

additional example for which a ground truth parame-

ter space is known and where our algorithm manages to

handle such non-convex data. We note that while our

approach bears some resemblance to methods for robus-

tifying Isomap against topological noise such as the ap-
proach presented by Choi and Choi (2007), which deals

with pointwise noise and its effect on the topology of
the embedded manifold, our paper tackles a more fun-

damental limitation of the Isomap algorithm apparent
even in an ideal noise-less setting.

The rest of this paper is organized as follows. In
Section 2, we introduce the algorithm and prove that it

rejects inconsistent geodesics. Section 3 discusses the
numerical implementation of the algorithm and sug-

gests ways to speed up its convergence. In Section 4, we
demonstrate our approach on synthetic data. Proofs of

supporting propositions are presented in the appendix.

2 Topologically Constrained Isometric

Embedding

In order to construct an isometric embedding, the Isomap
algorithm assumes that C is a convex subset of R

m, and

relies on the assumption of an isometry between (C, dC)

and M in order to find the map from M to the metric

space (C, dC) by means of MDS (the stress in the so-

lution will be zero). This assumption is valid because

dC = dRm |C×C if C is convex. In case C is non-convex,

however, as there may exist pairs of points for which

dC 6= dRm |C×C . We call such pairs inconsistent. An ex-

ample of an inconsistent pair is shown in Figure 1. We

Fig. 1 Example of two points z1 and z2, for which the straight
line connecting the points after embedding into R

2 is shorter than
the geodesic cM(z1, z2) (solid black curve), due to non-convexity.

denote the set of all consistent pairs by

P = {(i, j) : dC(xi,xj) = dRm |C×C(xi,xj)} ⊆ IN × IN .



4

where IN = {1 . . . N}. In the TCIE algorithm, we

find a subset P̄ ⊆ P of pairs of points that can be

consistently represented by an MDS problem. The al-
gorithm is as follows

1: Compute the N × N matrix of geodesic distances

∆ = (δij).

2: Detect the boundary points ∂M of the data mani-

fold.
3: Detect a subset of consistent distances according to

either

P̄1 = {(i, j) : cM(zi, zj) ∩ ∂M = ∅},

(criterion 1), where cM(zi, zj) is the geodesic con-
necting zi and zj , or (criterion 2)

P̄2 = {(i, j) : dM(zi, zj) ≤ dM(zj , ∂M)+

dM(zi, ∂M)},

where dM(z, ∂M) = infz′∈∂M dM(z, z′) denotes the

distance of z from the boundary of M.

4: Solve the MDS problem for consistent pairs only,

X∗ = argmin
X

∑

i=0,i<j

wij(dij(X) − δij)
2,

where wij = 1 if (i, j) ∈ P̄ and wij = 0 otherwise.

The choice of ignoring inconsistent pairs identified by

either P̄1 or P̄2 can be generalized, for example, to

smoother weight functions. The three main steps of the

algorithm are (i) detection of boundary points, (ii) de-
tection of a set of consistent geodesics, (iii) solution of

a weighted MDS problem. In the sequel we will detail
each of these steps.

2.1 Detection of Boundary Points

Step 2 in the TCIE algorithm involves detection of

boundary points in multidimensional data. There ex-
ist many algorithms for the detection of boundaries in

point clouds. Most of the related papers focus on prac-
tical applications for surface processing and modeling

(see for example Boult and Kender 1986; Gopi 2002;
Freedman 2002; Belton and Lichti 2007), though some

algorithms emerged from the field of numerical solution
for PDEs (Haque and Dilts 2007), or metric geometry

(Chazal et al 2007), while other techniques for bound-
ary detection and local dimensionality estimation were

motivated by perceptual research (Guy and Medioni

1997; Tong et al 2004). Most of these methods are lim-

ited by design to specific intrinsic and extrinsic dimen-

sions (m and M respectively), although some methods

are more easily adaptable to higher dimensional data

(see for example Mordohai and Medioni 2005; Chazal

et al 2007). We show here a few methods for solving

this generic problem and refer the reader to existing

literature for a broader overview.

Fig. 2 An example of two neighborhoods of points in M, one of
which is close to the boundary ∂M. In the example, N = 20000,
and each neighborhood was chosen to include the 500 nearest
neighbors of a point on the manifold.

One approach for boundary detection on high di-
mensional manifolds is based on the observation that

each boundary point in an m-dimensional Riemannian
manifold is locally homeomorphic to a half-space of R

m,

where the boundary point is mapped to the hyperplane
bordering the half-space in R

m. An example of two such

neighborhoods is shown for a two-dimensional manifold
(surface) in Figure 2.

We therefore expect the boundary point to have all

its neighbors on one side of a single hyperplane in an
m-dimensional mapping of its neighborhood. Multidi-

mensional scaling of the neighborhood distances matrix
can be used to obtain such a mapping.

Looking at the normal direction to this hyperplane,

the mean of the neighboring points should be far from

the boundary point. The first boundary detection method
we present follows this line of thought.

1: for i = 1, ..., N do

2: Find the set N (i) of the K nearest neighbors of
the point i.

3: Apply MDS to the K×K matrix ∆K = (δk,l∈N (i))
and obtain a set of local coordinates x′

1, ...,x
′
K ∈

R
m, where x′

1 denotes the mapping of point i.
4: Compute µ(i) = 1

|N (i)|

∑

j∈N (i) xi, the mean of

the neighbors of x1. |N (i)| denotes the cardinal-

ity of N (i).

5: Set d1(i) to be the distance between x′
1 and µ(i),

normalized by the average distance between points

in x′
1, ...,x

′
K .

6: if d1(i) is larger than some threshold τa then

7: Label point i as boundary.

8: end if

9: end for
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The described method is similar to that of Belton

and Lichti (2007), where each coordinate is normalized

separately, based on the standard deviation of points
along the tangent space direction. Since our neighbor-

hoods are chosen according to a uniform metric, we only
normalized with respect to the neighbourhood diame-

ter.

The second algorithm is similarly motivated, yet is

more heuristic in nature. Directions are selected accord-

ing to neighboring points, this avoiding the need to ar-

tificially determine the normal direction, or using the

mean of the points, which may be sensitive to sampling.

Assuming that for an interior point, for all directions,
the distribution of projected points is homogeneous, the
algorithm tries to detect directions for which the pro-

jection of the sampled neighboring points has a single-

sided distribution. This scheme uses neighboring points

in order to determine directions of projection, voting

among possible directions in order to obtain a more ro-

bust classification. This may be done as follows,

1: for i = 1, ..., N do

2: Find the set N (i) of the K nearest neighbors of

the point i.
3: Apply MDS to the K×K matrix ∆K = (δkl∈N (i))

and obtain a set of local coordinates x′
1, ...,x

′
K ∈

R
m.

4: for j = 1, ..., K do

5: If
|{x∈N (i):〈x′

i−x
′

j ,x−x
′

i〉>0}|
|{x∈N (i):〈x′

i
−x

′

j
,x−x

′

i
〉≤0}|

≤ τc mark j as

candidate.

6: end for

7: if the number of candidate points is larger than

τd then

8: Label point i as boundary.

9: end if

10: end for

Another property, which may be useful in boundary

detection is the fact that a small neighborhood around

an interior point should be isotropic in shape and sam-

pling, whereas it should be anisotropic for a boundary

point, as seen in the example in Figure 2. Belton and

Lichti (2007), however, claim that directly using this

property in an algorithm would be too sensitive to non-

uniform sampling.

In our experiments, the proposed algorithms 2 and 3

performed similarly on noisy data. Other boundary de-

tection algorithms can be used as well. We expect a vot-

ing mechanism (Tong et al 2004) to be quite beneficial

for robust detection of the boundaries. For manifolds

with a large intrinsic dimensionality, dense sampling is

usually required for reliable boundary detection.

2.2 Detection of Inconsistent Geodesics

An important part of the TCIE algorithm is the detec-
tion of inconsistent pairs. We find all point pairs adher-

ing to consistency criteria (1) or (2), which include all
inconsistent pairs, as we shall prove.

The first consistency criterion requires us to check
whether geodesics touch the boundary. Once we have

detected the boundary points, we use a modification
of the Dijkstra algorithm (Dijkstra 1959), as summa-

rized below, using a notation similar to the one used by
Cormen et al (1990).

1: for zu ∈ M \ {zs} do

2: d (zs, zu) ← ∞
3: end for

4: d (zs, zs) ← 0

5: Let Q be a queue of remaining vertices, sorted ac-

cording to current distance to zs. Let S be the set of

all vertices whose distance to zs has already been

fixed by the algorithm. Set wij ← 1 for all point

pairs i, j.

6: while Q 6= ∅ do

7: Let zu be the minimum distance vertex stored in

Q
8: Add zu to S

9:

10: for zv ∈ Nu do

11: if d (zs, zv) > d (zs, zu) + dRM (zu, zv) then

12: d (zs, zv) ← d (zs, zu) + dRM (zu, zv)

13: if wsu = 0 or (zu ∈ ∂M and d(zs, zu) > 0)
then

14: wsv = 0
15: else

16: wsv = 1
17: end if

18: end if

19: end for

20: end while

Note that the second condition in line 13 of the

algorithm protects paths with only a boundary end

point from being removed. This way we eliminate only

geodesics for which the point of intersection with the

boundary is a midpoint. Similar modifications can be

made to the Bellman-Ford and Floyd algorithms, or

other dynamic programming algorithms (for example,

Kimmel and Sethian 1998). We note that for the cri-

terion defining P̄2, detection of inconsistent geodesics

is done simply by comparing the relevant geodesic dis-

tances.

In describing the algorithm, we assume a continuous
case, in which the manifold is sampled with some given

density. We make the same assumptions on the sam-
pling density and uniformity made by Bernstein et al
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(2001), who proved the convergence of the graph dis-

tances approximation, used by the Isomap algorithm

(Schwartz et al 1989; Tenenbaum et al 2000), to the geo-

desic distances on the manifold. Also note that the re-

quirement of a positive density function prevents prob-
lems that may occur in geodesics approximated by a

graph when the surface is sampled in a regular pattern
(as is the case with a Cartesian grid covering R

m). In

our case, there is also the question of whether or not
we remove too many geodesics. The answer is related
to the topology of the manifold.

In the continuous setting, our algorithm approxi-

mates an isometry ϕ−1 between M with the geodesic
metric δ and C ⊂ R

m with the geodesic metric dC . In the
case where C is a convex region, geodesics connecting

points in C are always straight lines, and the geodesic
metric is identical to the restricted Euclidean metric.

When C is no longer a convex region, P̄1 restricts our
choice of point pairs, selecting only consistent distances,

as shown by the following proposition.

Proposition 1 Let M be a manifold, isometric to C ⊆
R

m, and cM(·.·) denote geodesics in M. Then P̄1 =

{(i, j) : cM(zi, zj) ∩ ∂M = ∅} ⊆ P .

Therefore, for every geodesic in M which was not de-
tected as touching the boundary, the image under ϕ−1

is a line, which is approximated correctly by the MDS
procedure.

In the case where C is no longer a subset of a Eu-
clidean space, but rather part of a manifold C′ endowed

with another metric, we claim that selecting only point
pairs from P̄2 still leaves us only with consistent pairs.

Proposition 2 For C and C′ as described above,

P̄2 = {(i, j) : dM(zi, zj) ≤ dM(zj , ∂M) + dM(zi, ∂M)}

⊆ P

Proofs of Propositions 1 and 2 are given in the ap-
pendix.

Note that for a parametrization manifold C′ with
an arbitrary Riemannian metric, the MDS procedure

would not be able to give us the correct mapping. This
would require the use of a more general procedure, as

done by Bronstein et al (2006a). Criterion 2 may still
be useful in cases where the metric on C′ is close to
Euclidean, and yet we only want to use geodesics which
do not leave C.

2.3 Weighted LS-MDS

The final stage of our approach is solving the MDS

problem for the subset P̄i, i ∈ {1, 2} of distances. One

way to include only consistent point pairs in the opti-

mization is to use the weighted stress,

X∗ = argmin
X

∑

i=0,i<j

wij(dij(X) − δij)
2,

where wij = 1 if (i, j) ∈ P̄ and wij = 0 otherwise. This
allows us, by choosing the right weights, to minimize

the error only for consistent geodesics.
The geodesics that were not marked as inconsistent

have their weights set to one. We also allow a positive

weight for short geodesics, in order to keep the con-
nectivity of the manifold, even at boundary points. All

other geodesics have their weights set to zero. We then
use the Scaling by Majorizing a Complicated Function

(SMACOF) algorithm, as detailed in subsection 3.1, to
minimize the weighted stress.

We note that the correctness of these conditions de-
pends on the assumption that our manifold is isometric

to a subregion of an Euclidean space, similarly to the
underlying assumption of Isomap.

3 Implementation Considerations

For determining the shortest paths we used the Di-

jkstra algorithm implementation supplied by Tenen-
baum et al (2000), with the Isomap code, to which the

detection of geodesics touching boundary points was
added. The remaining components of the TCIE algo-

rithm were implemented in MATLAB. In practice, the

Dijkstra algorithm takes less than 10% of the total run-

ning time for 2000 points, with asymptotic complexity

of O(N2 log N). Solving the MDS optimization problem

consumes most of the time (although O(N2) per itera-
tion). The boundary detection takes O(N2), but with

much smaller constants. We note that while the number
of SMACOF iterations is not invariant to the number

of samples, in practice it rises slowly with increase of
N , depending on the topology of the manifold and the

noise level.

3.1 The SMACOF algorithm

We now turn to the problem of minimizing the weighted
stress function,

s(X) =
∑

i<j

wij(dij(X) − δij)
2,

which known as the least-squares MDS, or LS-MDS,
problem. Trying to solve the LS-MDS problem, we con-

sider the gradient of s(X) with respect to X, which can
be written (Borg and Groenen 1997) as

∇s(X) = 2VX − 2B(X)X,



7

where V and B are matrices whose elements are given

by

(V)ij =

{

−wij if i 6= j
∑

k 6=i wik if i = j

and

(B)ij =







−wijδijd
−1
ij (X) if i 6= j and dij(X) 6= 0

0 if i 6= j and dij(X) = 0

−
∑

k 6=i bik if i = j

In order to minimize the stress function, the follow-

ing iterative scheme was proposed by Guttman (1968);
de Leeuw (1977, 1984, 1988). From the first-order opti-
mality condition, one obtains the iteration equation

X(k+1) = V†B(X(k))X(k). (1)

Iteratively performing the transformation (1) converges

to a local minimum of the stress cost function. This pro-
cess is known as the SMACOF algorithm (see e.g. Borg

and Groenen 1997). It can be shown to be equivalent
to a weighted gradient descent with constant step size

(Bronstein et al 2006b).

A remarkable property of the SMACOF algorithm is

that it guarantees a monotonously decreasing sequence

of stress values, which is uncommon when constant-

step gradient descent is used. This property is shown by

developing the iteration formula (1) using a technique

known as iterative majorization. At the same time, the
convergence of the SMACOF algorithm is slow, and a

large number of iterations may be required for high ac-
curacy, depending on the size of the data set and the

metric used.

3.2 Numerical Properties and Convergence

The LS-MDS optimization problem is a non-convex one,

and as such convex optimization methods might con-

verge to local minima (Trosset and Mathar 1997). In

our experiments, we have seen that removing more dis-

tances from the stress function caused the problem to

be liable to local convergence. Such local minima ap-

pear as a fold over, or a flip in the obtained mapping.

In general, the number of remaining weights depends on

the surface topology, as well as the number of sampled

points in the surface 1.

We reduce the risk of local convergence by start-

ing from a classical scaling (as mentioned by Trosset
et. al. (Kearsley et al 1998; Aharon and Kimmel 2006))

1 Typically, in our experiments W contained between 6% to
18% nonzero weights.

or unweighted least squares scaling solution. This al-

lows the algorithm to avoid some of the local minima.

Although the solutions found by classical scaling and

LS-MDS may differ, under the assumption of correct

distance approximation, the solutions are likely to have
a similar structure. Another possible benefit of using

classical scaling prior to least square scaling is to use
the recursive subspaces property of the classical MDS in

order to approximately determine the intrinsic dimen-
sion of the manifold prior to its exact embedding. The

estimated dimension can be used both in the weighted
least-squares mapping stage and for the detection of
boundary points. The validity of such an approxima-

tion for non-convex manifolds is beyond the scope of
this paper and is deferred to future work.

Using the unweighted LS-MDS problem to avoid
local minima, and then gradually changing the prob-

lem into the weighted one has the flavor of graduated
non-convexity (Blake and Zisserman 1987). Using such

a gradual approach for changing between the full and
weighted MDS problems did not seem to significantly

improve robustness to local convergence in our exper-
iments, and ways of better utilizing such an approach

remain a subject for future research.

3.3 Convergence Acceleration by Vector Extrapolation

Methods and Multiresolution

To speed up the convergence of the SMACOF itera-
tions, we employ vector extrapolation, as described in

Rosman et al (2008). Vector extrapolation methods use
a sequence of solutions at subsequent iterations of the

optimization algorithm and extrapolate the limit of the

iterations sequence. While these algorithms were de-

rived assuming a linear iterative scheme, in practice,

they work well also for nonlinear schemes, such as some

processes in computational fluid dynamics (Sidi 1991).

For further details, we refer to works by Cabay and

Jackson (1976), Mes̆ina (1977), Eddy (1979) and Smith

et al (1987), as well as to a technical report where vector

extrapolation acceleration of multidimensional scaling
is detailed (Rosman et al 2008).

The main idea of vector extrapolation is, given a se-
quence of solutions X(k) from iterations k = 0, 1, ..., to

approximate the limit limk→∞ X(k), which should co-
incide with the optimal solution X∗. The extrapolation

X̂(k) is constructed as an affine combination of the last
K + 1 iterates, X(k)..X(k+K)

X̂(k) =

K
∑

j=0

γjX
(k+j);

K
∑

j=0

γj = 1.

The coefficients γj can be determined in various ways.

In the reduced rank extrapolation (RRE) method, which
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is the extrapolation method used in the present study,

γj are obtained by the solution of the minimization

problem,

min
γ0,..,γK

‖
K

∑

j=0

γj∆X(k+j)‖, s.t.

K
∑

j=0

γj = 1,

where ∆X(k) = X(k+1) − X(k). This minimization can

be shown to seek for a solution minimizing the residual

in the linear case.

An efficient implementation of the RRE and mini-

mal polynomial extrapolation (MPE) algorithms is de-

scribed by Sidi (1991). The algorithm proceeds as fol-

lows:

1: Choose the integers k and n, and input the vectors

xn,xn+1, . . . ,xn+k.

2: Form the N×k+1 matrix U
(n)
k whose k+1 columns

are ∆X(k+j), j = 0, . . . , k.

3: Solve the overdetermined linear system U
(n)
k γ = 0,

where γ = [γ0, γ1, . . . , γk]T, by least squares, sub-

ject to the constraint
∑k

i=0 γi = 1 (RRE).

4: Compute the vector sn,k =
∑k

i=0 γixn+i as approx-
imation to limi→∞ xi = s.

After obtaining sn,k, we use it as an initial solution

for additional iterations of the SMACOF algorithm, fol-

lowed by extrapolation, and so forth. This is known as

cycling, and is a commonly used technique for extrap-

olating nonlinear sequences (Smith et al 1987).

Another way to accelerate the solution of the MDS

problem is using multiresolution (MR) methods (see

e.g. Chalmers 1996; Platt 2004; Silva and Tenenbaum

2004; Bronstein et al 2006b; Brandes and Pich 2007).

The main idea is to subsequently approximate the solu-
tion by solving the MDS problem at different resolution

levels.
At each level, we work with a grid consisting of

points with indices ΩL ⊂ ΩL−1 ⊂ . . . ⊂ Ω0 = {1, ..., N},
such that |Ωl| = Nl. At the lth level, the data is repre-

sented as an Nl×Nl matrix ∆l, obtained by extracting
the rows and columns of ∆0 = ∆, corresponding to the

indices Ωl. The solution X∗
l of the MDS problem on the

lth level is transferred to the next level l − 1 using an

interpolation operator P l−1
l , which can be represented

as an Nl−1 × Nl matrix.

1: Construct the hierarchy of grids Ω0, . . . , ΩL and in-

terpolation operators P 0
1 , . . . , PL−1

L .

2: Start with some initial X
(0)
L at the coarsest grid,

and l = L.

3: for l=L,L-1,. . . 0 do

4: Solve the lth level MDS problem

X∗
l = argmin

Xl∈R
Nl×m

∑

i,j∈Ωl

wij(dij(Xl) − δij)
2

using SMACOF iterations initialized with X
(0)
l .

Fig. 3 Convergence (in terms of stress value) of basic SMA-
COF (top, dashed gray), SMACOF with RRE (top, black), SMA-
COF with multiresolution acceleration (bottom, dashed gray),
and SMACOF with both RRE and multiscale (bottom, black),
as a function of approximate CPU time, in seconds. Convergence
at each scale was stopped at the same relative change of the stress
value.

5: Interpolate the solution to the next resolution
level, X

(0)
l−1 = P l−1

l (X∗
l )

6: end for

We use a modification of the farthest point sam-

pling (FPS) (Gonzalez 1985; Hochbaum and Shmoys
1985; Eldar et al 1997) strategy to construct the grids,

in which we add more points from the boundaries, to
allow correct interpolation of the fine grid using the

coarse grid elements. We use linear interpolation with
weights obtained by solving a least squares fitting prob-

lem, with a regularization term ensuring all available
nearest neighbors are used.

The multiresolution scheme can be further acceler-

ated by applying vector extrapolation methods at each

resolution level. In our experiments we used the RRE

method, giving us a three-fold speedup beyond a simple

multiresolution scheme.
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σ = 5 σ = 12.5

Fig. 4 Left to right: Swiss roll surface contaminated by Gaussian
noise with σ = 5 and σ = 12.5. Detected boundary points are
shown as red crosses.

4 Results

In order to assess the performance of the proposed ap-

proach, a few experiments were performed. In the first
experiment, we used the Swiss roll surface with a large

rectangular hole, sampled at 1200 points. Flattening
was performed for points sampled on the manifold with

additive i.i.d. Gaussian noise in each coordinate of each
point. Two instances of the surface with different noise
variances are shown in Figure 4.

We compare the proposed algorithm to Isomap, LLE,
Laplacian eigenmaps, diffusion maps and Hessian LLE,

in Figures 5 and 62. Our algorithm finds a represen-
tation of the manifold with relatively small distortion.

Adding i.i.d. Gaussian noise to the coordinates of the
sampled points, our method remains accurate compared

to other popular algorithms that exhibit large distor-
tions. This can be seen, for example, for 1200 points,

with σ = 5, 12.5, in Figure 6, where for comparison,
diam(M) ≈ 2500. The algorithm was allowed to con-

verge until the relative change in the weighted stress

was below some threshold. Tests with higher noise levels

were also performed, with similar results. This includes

noise levels at which the boundary detection quality

deteriorated. Using multiscale further reduces the com-

putational cost of the solution by a factor of two, for

the problem shown in the example. We note that the

speedup depends on both the manifold topology and

metric, as well as the problem size. The reduction in

computational effort was typical for all the problems

we tested, up to 2550 points. Computation time, was

about a few minutes, from two minutes for 1200 points,

to about 6 on 2550 points, on an AMD OpteronTM run-

ning at 2600 MHz.

We note the relevant question of whether or not the

algorithm performs well even when non-uniform and

noisy sampling of the manifold results in false pos-

itive detection of boundary points, as may occur in

real-life applications. Another experiment was meant to

2 We used the same number of neighboring points (12) in all
algorithms.

check specifically this point of sensitivity to misclassi-

fied boundary and interior points. In this experiment an

increasing percentage of the points’ labeling (boundary

or interior) was flipped. This did not, however, signifi-

cantly affect the mapping of the surface, as can be seen
in Figure 7.

In the next experiment we map a set of rendered
images of the Stanford bunny. For this set of images

we have a known natural parametrization, given by the
set of locations of the cameras used to render the ob-

ject. The images were compared using an L2 metric.
The mapping resulting from TCIE and Isomap, as well

as the distribution of the camera centers, are shown in
Figure 8. A hole was cut in the middle of the manifold

of viewing angles, in order to test the effect of non-

convexity on the resulting mappings. While the map-

ping is topologically equivalent to a subregion of the
underlying parametrization space of Euler angle coor-

dinates, the metric used depends on the albedo and the
surface normal at each viewpoint and the projection

shape, and as such, it is reasonable to expect only a lo-
cal isometry transforming the Euler angles coordinates

to the mapping obtained by our algorithm. We note,
however, that the mapping obtained by TCIE does not

inflate the hole as the one obtained by Isomap.

We also note that some of the boundary point de-

tections are indeed false and yet, the mapping obtained
is quite reasonable. An explanation for this behavior
is that in the presence of of false positive boundary

points, the algorithm simply relies on a more limited,

yet non-local, support of distances for each point. The

short distances still used, and a reasonable initialization

obtained using the full weights (same as Isomap) allow
us to obtain a less distorted mapping. Such behavior of

the algorithm is further explored in Figure 7.

Finally, another application in which Isomap has

been found useful is texture mapping (Zigelman et al
2002). We demonstrate the usefulness of the modified

weights suggested by our approach in Figure 9. In this
experiment, 500 landmark points (de Silva and Tenen-

baum 2002) were embedded, and used to map 2266 sur-
face points.

For other example applications of the proposed al-

gorithm, the reader is referred to the technical report
(Rosman et al 2009).

5 Conclusions

We presented a new framework for nonlinear dimen-

sionality reduction, applicable to flat data manifolds

with non-convex boundaries and non-trivial topology.

We showed that by a careful selection of the geodesics
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LLE Laplacian Eigenmaps Hessian LLE Diffusion maps Isomap TCIE

Fig. 5 Embedding of the Swiss roll contaminated by Gaussian noise with σ = 5, as produced by LLE, Laplacian eigenmaps, Hessian
LLE, diffusion maps, Isomap, and our algorithm. Detected boundary points are shown as red crosses.

LLE Laplacian Eigenmaps Hessian LLE Diffusion maps Isomap TCIE

Fig. 6 Embedding of the Swiss roll contaminated by Gaussian noise with σ = 12.5, as produced by LLE, Laplacian eigenmaps,
Hessian LLE, diffusion maps, Isomap, and our algorithm. Detected boundary points are shown as red crosses.

0% 10% 20% 30%

Fig. 7 Embedding of the Swiss roll contaminated by Gaussian noise with σ = 12.5, as produced by our algorithm, where 0%,10%,20%
and 30% of the points had their boundary label flipped. Detected boundary points are shown as red crosses.

we can robustly flatten non-convex manifolds. Since the

proposed method uses global information it is less sen-

sitive to noise than methods that use local distances

between the data points, as confirmed in our experi-

ments. The optimization scheme used by one approach

benefits from vector extrapolation methods and mul-

tiresolution optimization.

In future work, we intend to generalize our results

to non-Euclidean spaces. We would like to improve its

computational efficiency using multigrid methods (Bron-

stein et al 2006b). Another issue we intend to explore is

the robustness to changes in the sampling density of the

manifold. Finally, we note that the main limitation of

the proposed algorithm is its memory complexity and

sensitivity to local minima, and we are currently inves-

tigating ways to overcome these limitations.

Appendix A

Proof of Proposition 1

Let (i, j) ∈ P̄1. To prove the proposition, it is suffi-

cient to show that the pair of points (i, j) is consistent,

i.e., (i, j) ∈ P . Let cM(zi, zj) be the geodesic connect-

ing zi and zj in M, and let cC(xi,xj) be its image under

ϕ−1 in C. Since cM(zi, zj) ∩ ∂M = ∅ and because of

the isometry, cC(xi,xj) ⊂ int(C), where int(C) denotes

the interior of C.

Assume that (i, j) is inconsistent. This implies that

dC(xi,xj) 6= dRm(xi,xj). Because of the way the geo-

desic metric is defined, dC(xi,xj) > dRm(xi,xj). The

uniqueness of cRm(xi,xj) states that cC(xi,xj) cannot

be a straight line (there exists a single straight line con-

necting each two points in Euclidean geometry). There-
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TCIE, complete manifold TCIE, with hole
Isomap

Viewpoint angles

Fig. 8 A manifold mapped using L2 distances between 2550 images rendered from various viewpoints of the Stanford bunny. Left to
right: (a) the mapping obtained by TCIE for the view points (using 12-nearest neighbors neighborhoods), (b) the mapping obtained
by TCIE when a hole was formed in the set of view angles, (c) the mapping obtained by Isomap for the partial manifold, and (d) the
partial set of the two Euler angles that parameterize the viewpoints. Red points mark the detected boundary points. The normalized
stress obtained by TCIE was 1.9, compared to 1027.9 obtained by Isomap.

( )B xε

'x

x

''x

Fig. 10 An illustrations of points x, x′, x′′ used in the proof of
Proposition 1

fore, there exits a point x ∈ cC(xi,xj), in whose prox-

imity cC(xi,xj) is not a straight line.

Since cC(xi,xj) ⊂ int(C), and int(C) is an open set,
there exists a Euclidean ball Bǫ(x) with the Euclidean

metric dRm around x of radius ǫ > 0. Let us take two
points on the segment of the geodesic within the ball,

x′,x′′ ∈ cC(xi,xj) ∩ Bǫ(x), as illustrated in Figure 10.
The geodesic cC(x′,x′′) coincides with the segment of

cC(xi,xj) between x′,x′′. Yet, this segment is not a
straight line, therefore we can shorten the geodesic by

replacing this segment with cRm(x′,x′′), in contradic-
tion to the fact that cC(x1,x2) is a geodesic. Therefore,

(i, j) ∈ P .

In the more general case, where (M, dM) is not iso-

metric to a subregion of a Euclidean space, the criterion

defining P̄2 ensures that if the manifold is isometric to

a subregion C of a space C′ with Riemannian metric, we
only select geodesics for which the geodesic metric and
the metric of C′ restricted to C identify. This is the case

assumed by Proposition 2.

Proof of Proposition 2 Assume we have a pair of

points for which the geodesic and the restricted metric

on C are not the same, (i, j) /∈ P . Clearly,

dC(xi,xj) > dC′(xi,xj), (2)

because of the way the geodesic metric is defined. On

the other hand observe that the geodesic connecting the

two points in C is not equal to the geodesic connecting

them in C′. Specifically, the geodesic in C′ must cross

the boundary of C (otherwise the distances would be

equal). This results in the inequality

dC′(xi,xj) > dC(xi, ∂C) + dC(xj , ∂C).

Where the segments connecting xi and xi to ∂C are

inside int(C). Here we assume there is only one excur-

sion outside of C. Combining Inequality 2, we obtain

dC(xi,xj) > dC(xi, ∂C) + dC(xj , ∂C),

and therefore (i, j) /∈ P̄2.
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TCIE Isomap TCIE Isomap

TCIE Isomap TCIE Isomap

Fig. 9 Texture mapping obtained using the weights suggested by TCIE and using uniform weights (as suggested by Isomap). Geodesics
are computed by the fast marching method. Using the weights suggested by TCIE significantly reduces the mapping distortions. Each
row shows the same surface both with and without a large hole cut in the surface. The upper row shows the mapped surface, using
two textures, and the lower row shows the parametrization domain, obtained using TCIE and using uniform weights respectively.
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