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Abstract Motion-based segmentation is an important tool for the analysis of artic-
ulated shapes. As such, it plays an important role in mechanical engineering, com-
puter graphics, and computer vision. In this chapter, we study motion-based segmen-
tation of 3D articulated shapes. We formulate motion-based surface segmentation as
a piecewise-smooth regularization problem for the transformations between several
poses. Using Lie-group representation for the transformation at each surface point,
we obtain a simple regularized fitting problem. An Ambrosio-Tortorelli scheme of
a generalized Mumford-Shah model gives us the segmentation functional without
assuming prior knowledge on the number of parts or even the articulated nature
of the object. Experiments on several standard datasets compare the results of the
proposed method to state-of-the-art algorithms.
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1 Introduction

Articulated objects segmentation is a key problem in biomechanics [1], mechanical
engineering, computer vision [8, 36, 39, 28, 52], and computer graphics [33, 37,
57, 35, 65, 6, 64]. Related problems of deformation analysis [63, 4] and motion
segmentation [5, 20] have also been studied extensively in these disciplines. Algo-
rithms solving these problems try to infer the articulated motion of an object, given
several instances of the object in different poses. Simultaneously, the segmentation
of the object into rigid parts takes place along with motion estimation between the
corresponding parts in the various poses.

Most motion analysis techniques make some assumptions on the object to be
segmented. These usually concern the number or location of rigid parts in the artic-
ulated object. This can be in the form of a skeleton describing the topology of the
shape, or some other prior on the object structure. Such priors are usually formulated
in an ad hoc manner, but not based on the kinematic model commonly assumed for
near-rigid objects [1, 4]. In cases where such a prior is not available for the objects
in question, or where assumptions about the data are only approximate, this can lead
to errors in the segmentation and motion estimation.

Another common assumption, especially in graphics applications, is that of
known correspondences. In computer graphics, the problem is usually referred to
as dynamic mesh segmentation. While a matching technique between poses can be
combined with existing motion segmentation tools, a more complete formulation
for motion segmentation should handle the correspondence problem implicitly.

Clearly, the above assumptions are often too limiting in real-world applications,
and should be avoided as part of the basic problem formulation. We would like in-
stead to apply the intuition often used when studying real-life near-rigid objects,
about the existence of a representative rigid motion existing for each body part. We
wish, however, to avoid detecting the articulated parts in advance. Furthermore, in
some object, a clear partition into rigid parts may not exist for all of the surface. We
wish to obtain reasonable results in such a case. In other words, we would like to
obtain a “soft” segmentation of the surface, without knowing the number or location
of regions in advance, an explicit analysis of the surface features, or having addi-
tional priors on the various object parts. Also, we strive towards a formulation of
motion segmentation that incorporates an implicit handling of the correspondence
problem, given a reasonable initialization.

1.1 Main contribution.

In this chapter we try to remedy the shortcoming of existing approaches to articu-
lated motion estimation by combining the two tasks of motion estimation and seg-
mentation into a single functional. This scheme has been described in a recent con-
ference paper [48] and we now slightly expand upon it. Unlike existing methods,
we propose a principled variational approach, attempting to find a rigid transfor-
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mation at each surface point, between the instance surfaces, such that the overall
transformation is described by a relatively sparse set of such transformations, each
matching a rigid part of the object. The functional we propose regularizes the mo-
tion between the surfaces, and is guided by the fact that the parameters of the motion
transformations

(i) should describe the motion at each point with sufficient accuracy.
(ii) should vary smoothly within the (unknown) rigid parts.

(iii) can vary abruptly between rigid parts.

We see our main contribution in these :
A new framework: First, we propose an axiomatic variational framework for artic-
ulated motion segmentation. While focusing on the segmentation problem in this
chapter, our framework is more general and the proposed functionals can be easily
incorporated into other applications such as motion estimation, tracking, and surface
denoising.
Variational segmentation: We claim that using the right parameterization, taken
from the specific domain of rigid motion analysis, we can formulate the articu-
lated motion segmentation problem as a generalization of classical tools in varia-
tional computer vision. This allows for an elegant and simple solution within the
proposed framework, obtaining results competitive with domain-specific state-of-
the-art tools.
A novel visualization algorithm: Third, we suggest a spatially-coherent algorithm
for spatial visualization of group valued data on manifolds, which draws from the
same variational principles.

1.2 Relation to prior work.

Several previous works have attempted motion based segmentation of surfaces. We
mention but a few of these. Kompatsiaris et al. [36] use an estimation of the rigid
motion at each segment in order to segment the visible surface in a coarse-to-fine
manner. Arcila et al. [6] iteratively refine the segmentation for segments whose
transformation error is too large. Wuhrer and Brunton [64] use a dual tree repre-
sentation of the surface with weights between triangles set according to the dihedral
angles. Lee et al. [37] use a similar graph-based formulation, looking at deformation
matrices around each triangle.

The scheme we propose involves diffusing the transformations between poses
along the surface, in the spirit of the Ambrosio-Tortorelli scheme [2] for Mumford-
Shah segmentation [41]. The diffusion component of our scheme is a diffusion
process of Lie-group elements, which has recently attracted significant attention in
other applications [23, 54, 26]. In diffusing transformations on the surface, our work
is similar to that of Litke et al. [38], although the parameterization of the motion and
of the surface is different. In addition, we do not make an assumption on the surface
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topology; to that end, the proposed method diffuses transformations along the sur-
face, rather than representing the surface in an evenly sampled 2D parametrization
plane. When dealing with real-life deformable objects that seldom admit regular
global parametrization, such an assumption could be too restrictive.

The idea of combining soft segmentation and motion estimation has been at-
tempted before in the case of optical flow computation (see, e.g., [3, 16]). In optical
flow fields, however, the motion field is merely expected to be piecewise smooth.
For truly articulated objects one would expect piecewise-constant flow fields, when
expressed in the correct parametrization.

Finally, the functional can be extended with priors from general mesh segmen-
tation techniques. These are usually based on the geometry of the surface itself,
and obtain remarkable results for a variety of objects. We point the reader to
[9, 53, 18, 34], and references therein, for additional examples of mesh segmen-
tation algorithms. We do not, however, use an additional prior as such an addition
will prevent the isolated examination of the principles shown in this chapter.

2 Problem Formulation

We now proceed to define the problem we try to solve and the proposed model.

2.1 Articulation model.

We denote by X a 2-manifold representing a three-dimensional shape. We assume X
to have several embeddings into R3. Each of these embedding constitutes a pose of
the surface. In the following, we will denote by x : X →R3 the embedding of X into
R3, and use synonymously the notation x and x referring to a point on the manifold
and its Euclidean embedding coordinates, for a specific pose.

In the setting of rigid motion segmentation, we assume that X represents an ar-
ticulated shape, i.e., it can be decomposed into rigid parts S1, . . . ,Sp. These are
transformed between different poses of the objects by a rigid transformation. This
transformation, a rotation and a translation, is an isometry of R3. The rigid parts are
connected by nonrigid joints J1, . . . ,Jq, such that X =

⋃p
i=1 Si ∪

⋃q
k=1 Jk. An articu-

lation Y = AX is obtained by applying rigid motions Ti ∈ Iso(R3) to the rigid parts,
and non-rigid deformations Qk to the joints, such that AX =

⋃p
i=1 TiSi ∪

⋃q
k=1 QkJk.

2.2 Motion segmentation.

The problem of motion-based segmentation can be described as follows: given two
articulations of the shape, X and Y , extract its rigid parts. An extension to the case
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of multiple shape poses is straightforward. We therefore consider in the following
only a pair of shapes for the sake of simplicity and without loss of generality. A
strongly related question attempts to determine, given these articulations, the motion
parameters linking the poses of the object.

Assuming that the correspondence between the two poses X and Y is known,
given a point x ∈ X and its correspondent point y(x)∈Y , we can find a motion g ∈ G
such that gx = y, where G is some representation of coordinate transformations in
R3. This motion g may change, in the setting described above, for each surface
point. We therefore consider g to be a function g : X → G . We will simultaneously
use gx ∈R3 to denote the action of g(x) on the coordinates of the point x, as well as
consider the mapping given by g : X → G and its properties.

We note that typical representations of motion in R3 contain more than 3 degrees
of freedom. In this sense, they are over-parameterized [44], and thus some measure
of regularity is required in order to avoid ambiguity as well as favor a meaningful
solution. On the other hand, we note that since the articulated parts of the shape
move rigidly, if we choose an appropriate motion representation (as detailed below),
two points x,x′ ∈ Si will undergo the same transformation, from which it follows that
g(x)|x∈Si

= const. One possibility is to adopt a constrained minimization approach,
forcing g(X) = Y , where g(X) is a notation for the set g(x)x(x) for all x ∈ X . This
approach, however, needs to somehow handle the set of joints, for which such a
constraint may be meaningless. In general, restricting the feasible set of solutions
by such constraints or even constraints involving an error in the data may be harmful
for the overall result. In order to avoid this, another possible approach is to take an
unconstrained, yet regularized, variational formulation,

min
g:X→G

λED(g)+ρ(g), (1)

where ρ denotes a smoothness term operating on the motion parameters field. This
term is expected to be small for fields g which are piecewise constant on the mani-
fold X . While an appropriate parameterization of motion g, and regularization term
ρ(g) are crucial, we also require a data term that will encourage consistency of the
transformation field g with the known surface poses. Specifically, we wish to favor
a transformation field where the point x is taken by its transformation g(x) to a point
on the other surface. ED(g) is our fitting term which measures this consistency with
the data.

ED(g) =
∫

X
‖g(x)x−y(x)‖2da, (2)

where y(x) ∈ R3 denotes the coordinate of the point y(x) ∈ Y corresponding to x,
g(x) is the transformation at x, and da is a measure on X . We have assumed in the
discussion so far that the correspondence between X and Y is known, which is usu-
ally not true. We can solve for the correspondence as part of the optimization in an
efficient manner. We will mention this issue in Section 4.1. We use the term corre-
sponding point y(x) since, as in the case of iterative closest point (ICP) algorithms
[19, 11], several approaches for pruning erroneous or ineffective matches exist [51].
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Minimizing the functional with respect to g,y(x) from a reasonable initial solu-
tion allows recovery of the articulated parts by clustering g into regions of equal
value. Yet another choice of a data term is a semi-local fitting term, is a semi-local
one,

ED,SL(g) =
∫

X

∫
y∈N (x)

‖g(x)x′−y(x′)‖2da′da, (3)

where N (x) denotes a small neighborhood around the point x (we took N (x) to be
the 12 nearest neighbors). This fitting term, by itself, formulates a local ICP process.
The functional (1) equipped with the semi-local data term can be considered as the
geometrical fitting equivalent of the combined global-local approach for optic flow
estimation [15].

The simplest representation of motion is a linear motion model, affectively set-
ting G to be the group of translation, or G = R3. This results in the motion model
gx = x+ t = y for some t ∈ R3. However, such a simplistic model fails to cap-
ture the piecewise constancy of the motion field in most cases. Instead of turning
to a higher order approximation model such as the affine over-parameterized model
[43], or to more elaborate smoothness priors [58], we look for a relatively simple
model that will capture natural motions with a simple smoothness prior. Thus we
turn to a slightly different motion model, naturally occuring in motion research.

2.3 Lie-groups.

One parametrization often used in computer vision and robotics [59, 40, 35, 26] is
the representation of rigid motions by the Lie-group SE(3) and the corresponding
Lie-algebra se(3), respectively. Works by Brockett [12], Park et al. [45] and Zefran
et al. [60, 61] strongly relate Lie-groups, both in their global and differential de-
scription, to robotics and articulated motions. We give a very brief introduction to
the subject and refer the reader to standard literature on the subject (e.g., [42, 27])
for more information.

Lie-groups are topological groups with a smooth manifold structure such that the
group action G ×G 7→ G and the group inverse are differentiable maps.

For every Lie-group, we can canonically associate a Lie-algebra g. A Lie-algebra
is as a vector space endowed with a Lie brackets operator [·, ·] : G ×G →G , describ-
ing the local structure of the group. The Lie-algebra associated with a Lie-group can
be mapped diffeomorphically via the exponential map onto a neighborhood of the
identity operator and its tangent space.

This property will allow us express neighboring elements in the Lie-group in a
vector space, and thereby define derivatives, regularity, and diffusion operators on
the group valued data.

In this chapter, we are specifically interested in the special orthogonal (rota-
tion) matrix group SO(3) and the Euclidean group SE(3) to represent rigid motions.
These can be represented in matrix forms, where SO(3) is given as
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SO(3) =
{

R ∈ R3×3,RT R = I
}
, (4)

and SE(3) is given by

SE(3) =
{(

R t
0 1

)
,R ∈ SO(3), t ∈ R3

}
. (5)

The Lie-algebra of SO(3), so(3) consists of skew-symmetric matrices,

so(3) =
{

A ∈ R3×3,AT =−A
}
, (6)

whereas the Lie-algebra of SE(3) can be identified with the group of 4×4 matrices
of the form

se(3) =
{(

A t
0 0

)
,A ∈ so(3), t ∈ R3

}
, (7)

where so(3) is the set of 3×3 skew-symmetric matrices.
In order to obtain piecewise constant description over the surface for the rela-

tively simple case of articulated object, we would like the points at each object part
to have the same representative. Under the assumption of G = SE(3), this desired
property holds. We note, however, that the standard parameterization of small rigid
motions has 6 degrees of freedom, while the number of degrees of freedom required
to describe point motion is mere 3. Thus, this parameterization clearly constitutes
an over-parameterized motion field [43] for articulated surfaces.

We now turn to the regularization term, ρ(g), and note that the formulation given
in Equation 1 bears much resemblance to total variation (TV) regularization com-
mon in signal and image processing [49]. Total variation regularization does not,
however, favor distinct discontinuity sets. This property of TV regularization is re-
lated to the staircasing effect. Furthermore, in the scalar case, discontinuity sets
form closed curves, which may not be the case in some surfaces with large joint
areas. Instead, a model that better suits our segmentation problem is the Mumford-
Shah segmentation model [41]. This model can be implemented using an Ambrosio-
Tortorelli scheme [2], which can be easily generalized for the case of maps between
general manifolds such as maps from surfaces into motion manifolds. We further
describe the regularization chosen in Section 3.

We also note that due to the non-Euclidean structure of the group, special care
should be taken when parameterizing such a representation [40, 26, 54, 35], as dis-
cussed in Section 4.2.

3 Regularization of Group-Valued Functions on Surfaces

Ideally, we would like the transformation field defined on the articulated surface to
be piecewise smooth, if not piecewise constant. Therefore, a suitable regularization
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of the transformation parameters is required. Since the Lie-group G as a Riemannian
manifold, it is only natural to turn to regularization functionals defined on maps
between manifolds of the form g : X → G .

A classical functional defined over such maps is the well-known Dirichlet energy
[24],

ρDIR(g) =
1
2

∫
X
〈∇g,∇g〉g(x)da =

1
2

∫
X

tr
(
g−1∇g

)2
da, (8)

where ∇g denotes the intrinsic gradient of g on X , 〈·, ·〉g(x) is the Riemannian metric
on G at a point g(x), and da is the area element of X . This functional is the more
general form of the Tikhonov regularization (for Euclidean spaces X and G ), and its
properties are well defined for general manifolds, as studied by Eells [24].

Minimizers of the Dirichlet energy are called harmonic maps. These result from
a diffusion process, and are often used for surface matching [67, 62].

3.1 Ambrosio-Tortorelli scheme.

Unfortunately, the Dirichlet energy favors smooth maps defined on X , whereas our
desired solution has discontinuities at the boundaries of rigid parts. We would, in-
tuitively, want to prevent diffusion across these discontinuity curves. This can be
obtained by adding a diffusivity function v : X → [0,1] to the Dirichlet functional,
leading to the generalized Ambrosio-Tortorelli scheme [2] for Mumford-Shah reg-
ularization [41].

ρAT(g) =
∫

X

(
1
2

v2〈∇g,∇g〉g + ε〈∇v,∇v〉+ (1− v)2

4ε

)
da, (9)

where ε is a small positive constant. This allows us to extend our outlook in several
ways. The Mumford-Shah functional replaces the notion of a set of regions with
closed simple boundary curves with general discontinuity sets. It furthermore gen-
eralizes our notion of constant value regions with that of favored smoothness inside
the areas defined by these discontinuity curves. This is in order to handle objects
which deviate from articulated motion, for example in flexible regions or joints.

Furthermore, the generalized Ambrosio-Tortorelli scheme allows us to explicitly
reason about places in the flow where the nonlinear nature of the data manifold man-
ifests itself. Suppose we have a solution (g∗,v∗) satisfying our piecewise-constancy
assumptions of g, and a diffusivity function with 0 at region boundaries and 1 else-
where. At such a solution, we expect two neighboring points which belong to dif-
ferent regions to have a very small diffusivity value v connecting them, effectively
nullifying the interaction between far-away group elements which is dependent on
the mapping used for the logarithm map at each point, and hence can be inaccurate
[30, 40]. While such a solution (g∗,v∗) may not be a minimizer of the functional, it
serves well to explain the intuition motivating the choice of the functional.
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3.2 Diffusion of Lie-group elements.

In order to efficiently compute the Euler-Lagrange equation corresponding to the
generalized Ambrosio-Tortorelli functional (9), we transform the neighborhood of
each point into the corresponding Lie-algebra elements before applying the diffu-
sion operator. Using Lie-algebra representation of differential operators for rigid
motion has been used before in computer vision [54], numerical PDE computations
[30], path planning and optimal control theory [40, 35].

The Euler-Lagrange equation for the generalized Dirichlet energy measuring the
map between two manifolds is given as [24]

∆X gα +Γ α
βγ

〈
∇gβ ,∇gγ

〉
g(x)

= 0, (10)

where α,β γ enumerate the local coordinates of our group manifold, se(3), and we
use Einstein’s notation according to which corresponding indices are summed over.
Γ α

βγ are the Christoffel symbols of SE(3), which express the Riemannian metric’s
local derivatives. We refer the reader to [22] for an introduction to Riemannian ge-
ometry. Finally, ∆X denotes the Laplace-Beltrami operator on the surface X .

In order to avoid computation of the Christoffel symbols, we transform the point
and its neighbors using the logarithm map at that point in SE(3). The diffusion op-
eration is now affected only by the structure of the surface X . After applying the
diffusion operator, we use the exponential map in order to return to the usual repre-
sentation of the transformation. While this approach may suffer at discontinuities,
where the logarithm and exponential maps are less accurate, it is at these continu-
ities that we expect the diffusivity function v to be very small, perventing numerical
instability. In practice, as we will demonstrate, this did not a significant problem.

4 Numerical Considerations

We now describe the algorithm for articulated motion estimation based on the min-
imization of the functional

E(g,v) = λEDATA(g)+ρAT (g,v), (11)

where EDATA(g) is the matching term defined by Equation 2, and ρAT (g,v) is de-
fined in Equation 9. The main steps of the algorithm are outlined as Algorithm 1.
Throughout the algorithm we parameterize g(x) based on the first surface, given as
a triangulated mesh, with vertices {xi}N

i=1, and an element from SE(3) defined at
each vertex. The triangulation is used merely to obtain a more consistent numerical
diffusion operator, and can be avoided, for example by point-cloud based Laplacian
approximations [10]. Special care is made in the choice of coordinates during the
optimization as explained in Section 4.2.
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4.1 Initial Correspondence Estimation

As in other motion segmentation and registration algorithms, some initialization of
the matching between the surfaces must be used. One approach [6] is to use non-
rigid surface matching for initialization. Another possibility, in the case of high
framerate range scanners [65], is to exploit temporal consistency by 3D tracking.
Yet another possible source for initial matches incorporates motion capture marker
systems. Such sparse initial correspondence lends itself to interpolation of the mo-
tion field, in order to initialize a local ICP algorithm, and match the patch around
each source point to the target mesh. In Figure 4, we use 30 matched points for
initialization. This number of points is within the scope of current motion capture
marker systems, or of algorithms for global nonrigid surface matching such as spec-
tral methods [32, 39, 50, 47], or the generalized multidimensional scaling (GMDS)
algorithm [13].

We expect that a better initial registration, as can be obtained e.g. using a smooth-
ness assumption, or by pruning unsuitable candidates [51], will reduce the number
of markers needed.

4.2 Diffusion of Lie-Group Elements

Rewriting the optimization over the functional in Equation 11 in a fractional step ap-
proach [66], we update the parameters w.r.t. each term of the functional in a suitable
representation. The treatment of regularized data fitting in a fractional step approach
is also similar to the approach taken by Thirion’s demons algorithm [56, 46].

Using the transformation described in Section 3, the update step with respect to
the regularization now becomes [26]

gk+1/2 = exp
(
−dt

δρAT

δ g̃

)
gk,vk+1 = vk −dt

δρAT

δv
(12)

where exp(A) = I +A+A2/2!+A3/3!+ . . . denotes the matrix exponential, g̃ de-
notes the logarithm transform of g, and dt denotes the time step. δρAT

δ g̃ denotes the
variation of the regularization term ρAT (g) w.r.t. the Lie-algebra local representa-
tion of the solution, describing the Euler-Lagrange descent direction. g(x) and the
neighboring transformations are parameterized by a basis for matrices in se(3), after
applying the logarithm map at g(x). The descent directions are given by

δρAT

δ g̃i
= v2∆X (g̃i)+ v〈∇v,∇g̃i〉 (13)

δρAT

δv
= 〈∇g,∇g〉g(x)v+2ε∆X (v)+

(v−1)
2ε

,
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where g̃i denote the components of the logarithmic representation of g. The dis-
cretization we use for ∆X is a cotangent one suggested by [21], which has been
shown to be convergent for relatively smooth and well-parameterized surfaces. It is
expressed as

∆X (u)≈ 3
Ai

∑
j∈N1(i)

cotαi j + cotβi j

2
[u j −ui] , (14)

for a given function u on the surface X , where N1(i) denotes the mesh neighbors
of point i, and αi j,βi j are the angles opposing the edge i j in its neighboring faces.
Ai denotes the area of the 1-ring around i in the mesh. After a gradient descent step
w.r.t. the diffusion term, we take a step w.r.t. the data term.

gk+1 = PSE(3)

(
gk+1/2 −dt

δEDATA

δg

)
, (15)

where PSE(3)(·) denotes a projection onto the group SE(3) obtained by correcting
the singular values of the rotation matrix. We compute the gradient w.r.t. a basis for
small rotation and translation matrices comprised of the regular basis for translation
and the skew-matrix approximation of small rotations. We then reproject the up-
date onto the manifold. This keeps the inaccuracies associated with the projecting
manifold-constrained data [17, 30, 40, 26] at a reasonable level.

Finally, we note that we may not know in advance the points y(x) which match
X in Y . The correspondence can be updated based on the current transformations in
an efficient manner similarly to the ICP algorithm. In our implementation we used
the ANN library [7] for approximate nearest-neighbor search queries. We did not
incorporate, however, any selective pruning of the matching candidates. These are
often used in order to robustify such the ICP algorithm against ill-suited matches
but are beyond the scope of this chapter.

Algorithm 1 Articulated Surface Segmentation and Matching
1: Given an initial correspondence.
2: for k = 1,2, . . . , until convergence do
3: Update gk+1/2,vk+1 w.r.t. the diffusion term, according to Equation 12.
4: Obtain gk+1 according to the data term, using Equation 15.
5: Update yk+1(x), the current estimated correspondence of the deformed surface.
6: end for

4.3 Visualizing Lie-Group Clustering on Surfaces

Finally, we need to mention the approach taken to visualize the transformations as
the latter belong to a six-dimensional non-Euclidean manifold. Motivated by the
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widespread use of vector quantization in such visualizations, we use a clustering
algorithm with spatial regularization. Instead of minimizing the Lloyd-Max quanti-
zation [31] cost function, we minimize the function

EV IS(gi,Ri) = ∑
i

∫
Ri

‖g−gi‖2da+
∫

∂Ri

v2(s)ds, (16)

where ∂Ri denotes the set of boundaries between partition regions {Ri}N
i=1, gi are the

group representatives for each region, and v2(s) denotes the diffusivity term along
the region boundary. The representation of members in SE(3) is done via its embed-
ding into R12, with some weight given to spatial location, by looking at the product
space R3×SE(3)⊂R15. Several (about 50) initializations are performed, as is often
customary in clustering, with the lowest cost hypothesis kept. The visualization is
detailed as Algorithm 2

Algorithm 2 Spatially-consistent clustering algorithm
1: for j = 1,2, . . . , for a certain number of attempts do
2: Use k-means on the spatial-feature space embedding, R3 × SE(3) ⊂ R15, to get an initial

clustering.
3: Use the clusters in order to optimize a spatially-regularized vector quantization measure,

C = min
gi,∂Ri

∫
X
‖g−gi‖2da+

∫
∂Ri

v2(s)ds,

where ∂Ri denotes the set of boundaries between clustered regions, gi are the transforma-
tion representatives for each region, and v2(s) denotes the diffusivity term along the region
boundary.

4: If C is lower than the lowest C found so far, keep the hypothesis.
5: end for
6: return current best hypothesis.

While this visualization algorithm coupled with a good initialization at each point
can be considered as a segmentation algorithm in its own right, it is less general as it
assumes a strict separation between the parts. One possible question that can be raise
concerned the meaning behind vector quantization of points belonging to a manifold
through its embedding into Euclidean space. In our case, since we are dealing with
relatively well-clustered points (most of the points in a part move according to a
single transformation in SE(3)), the distances on the manifold are not large and
are therefore well-approximated by Euclidean ones. We further note, however, that
the diffusion process lowered the score obtained in Equation 16 in the experiments
we conducted, indicating a consistency between the two algorithms in objects with
well-defined rigid parts.
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5 Results

We now show the results of our method, in terms of the obtained transformations
clusters and the Ambrosio-Tortorelli diffusivity function. In Figure 1 we show the
segmentation obtained by matching two human body poses taken from the TOSCA
dataset [14]. We visualize the transformations obtained using the clustering algo-
rithm described in subsection 4.3. We initialized the transformations on the surface
by matching the neighborhood of each surface point to the other poses using the
true initial correspondence. The results of our method seem plausible, except for
the missing identification of the right leg, which is due to the fact that its motion is
limited between the two poses.

Figure 1 also demonstrates the results of comparing four poses of the same sur-
face, this time with the patch-based data term described by (3). In our experiments
the patch-based term gave a cleaner estimation of the motion, as is observed in the
diffusivity function. We therefore demonstrate the results of minimizing the func-
tional incorporating this data term. We also show the diffusivity function, which
hints at the location of boundaries between parts, and thus justifies the assumption
underlying Algorithm 2.

In Figure 2,3 we show the results of our algorithm on a set of 6 poses of a horse
and camel surfaces taken from [55]. In this figure we compare our results to those
of Wuhrer and Brunton [64], obtained on a similar set of poses with 10 frames. The
results of our method seem to be quite comparable to those obtained by Wuhrer
and Brunton, despite the fact that we use only 6 poses. We also note that both the
diffusion scheme and the visualization algorithm gave a meaningful result for the
tail part, which is not rigid and does not have a piecewise-rigid motion model.

In Figure 4 we demonstrate our algorithm, with an initialization of 30 simu-
lated motion capture marker points, where the displacement is known. The relatively
monotonous motion range available in the dynamic mesh sequence leads to a less
complete, but still quite meaningful, segmentation of the horse, except for its head.

We also note the relatively low number of poses required for segmentation – in
both Figure 2 and Figure 4 we obtain good results despite the fact that we use only
a few poses, six and eight respectively.

Finally, in Figure 4 we demonstrate initialization of our method based on a sparse
point set, with 30 known correspondence points. The points are arbitrarily placed
using farthest point sampling [25, 29]. This demonstrates a possibility of initializ-
ing the algorithm using motion capture markers, coupled with a 3D reconstruction
pipeline, for object part analysis. While the examples shown in this chapter are syn-
thetic, this example shows that the algorithm can be initialized with data obtained
in a realistic setup.
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Fig. 1 Segmenting a human figure. Top row: the set of poses used. Bottom row, left to right: the
transformations obtained from the two left most poses, the transformations obtained from all four
poses using Equation 3 as a data term, and the Ambrosio-Tortorelli diffusivity function based on
four poses.

Fig. 2 Segmenting a horse dynamic surface motion based on six different poses. Top row: the
poses used. Bottom row, left to right: a visualization of the transformations of the surface obtained
by our method, and the segmentation results obtained by [64], and the diffusivity function v.

6 Conclusion

In this chapter we present a new method for motion-based segmentation of articu-
lated objects, in a variational framework. The method is based on minimizing a gen-
eralized Ambrosio-Tortorelli functional regularizing a map from the surface onto the
Lie-group SE(3). The results shown demonstrate the method’s effectiveness, and
compare it with state-of-the-art articulated motion segmentation algorithms. The
functional we suggest can be easily tailored to specific problems where it can be con-
trasted and combined with domain-specific algorithms for articulated object analy-
sis. In future work we intend to adapt the proposed algorithm to real data from range
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Fig. 3 Segmenting a camel dynamic surface motion based on six different poses. Top row: the
poses used. Bottom row, left to right: a visualization of the transformations of the surface obtained
by our method and the diffusivity function v.

Fig. 4 Segmenting a horse dynamic surface motion with a given sparse initial correspondences.
Top row: the eight random poses used. Bottom row, left to right: the set of points used for initial-
izing the transformations, and a visualization of the transformations obtained, and the diffusivity
function v.

scanners, and explore initialization methods as well as use the proposed framework
in other applications such as articulated surfaces tracking and denoising.
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Group-valued Regularization for Motion Segmentation of Articulated Shapes 17

23. R. Duits and B. Burgeth. Scale spaces on Lie groups. In Scale Space and Var. Methods in
Comp. Vis., volume 4485 of LNCS, pages 300–312, Berlin, Heidelberg, 2007. Springer-Verlag.

24. J. J. Eells and J. H. Sampson. Harmonic mappings of Riemannian manifolds. American J. of
Math, 86(1):106–160, 1964.

25. T. F. Gonzalez. Clustering to minimize the maximum intercluster distance. Theor. Comput.
Sci., 38:293–306, 1985.

26. Y. Gur and N. A. Sochen. Regularizing flows over lie groups. J. of Math. in Imag. and Vis.,
33(2):195–208, 2009.

27. B. C. Hall. Lie Groups, Lie Algebras,and Representations, An Elementary Introduction.
Springer-Verlag, 2004.

28. S. Hauberg, S. Sommer, and K. S. Pedersen. Gaussian-like spatial priors for articulated track-
ing. In European Conf. Comp. Vis., volume 6311 of LNCS, pages 425–437. Springer-Verlag,
2010.

29. D. Hochbaum and D. Shmoys. A best possible approximation for the k-center problem. Math-
ematics of Operations Research, 10(2):180–184, 1985.

30. A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett, and A. Zanna. Lie group methods. Acta Numer-
ica, pages 215–365, 2000.

31. A. K. Jain. Fundamentals of digital image processing. Prentice-Hall, Inc., Upper Saddle
River, NJ, USA, 1989.

32. V. Jain and H. Zhang. Robust 3D shape correspondence in the spectral domain. In Proc. of
Shape Modeling International, pages 118–129. IEEE Computer Society, 2006.

33. D. L. James and C. D. Twigg. Skinning mesh animations. SIGGRAPH, 24(3):399–407, Aug.
2005.

34. E. Kalogerakis, A. Hertzmann, and K. Singh. Learning 3D Mesh Segmentation and Labeling.
ACM Trans. on Graphics, 29(4), 2010. Article 102.

35. M. Kobilarov, K. Crane, and M. Desbrun. Lie group integrators for animation and control of
vehicles. ACM Trans. Graph., 28(2):1–14, 2009.

36. I. Kompatsiaris, D. Tzovaras, and M. G. Strintzis. Object articulation based on local 3D motion
estimation. In Proc. of ECMAST, pages 378–391, London, UK, 1999. Springer-Verlag.

37. T.-Y. Lee, Y.-S. Wang, and T.-G. Chen. Segmenting a deforming mesh into near-rigid compo-
nents. Vis. Comput., 22(9):729–739, 2006.

38. N. Litke, M. Droske, M. Rumpf, and P. Schröder. An image processing approach to sur-
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50. M. R. Ruggeri, G. Patanè, M. Spagnuolo, and D. Saupe. Spectral-driven isometry-invariant
matching of 3D shapes. Int. J. of Comp. Vis., 89(2-3):248–265, 2010.

51. S. Rusinkiewicz and M. Levoy. Efficient variants of the ICP algorithm. In Third International
Conference on 3D Digital Imaging and Modeling (3DIM), pages 145–152, June 2001.

52. B. Sapp, A. Toshev, and B. Taskar. Cascaded models for articulated pose estimation. In
European Conf. Comp. Vis., pages 406–420. Springer-Verlag, 2010.

53. A. Shamir. A survey on mesh segmentation techniques. Computer Graphics Forum,
27(6):1539–1556, 2008.

54. R. Subbarao and P. Meer. Nonlinear mean shift over Riemannian manifolds. Int. J. of Comp.
Vis., 84(1):1–20, 2009.
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