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Abstract 3D models of humans are commonly used within
computer graphics and vision, and so the ability to distinguish
between body shapes is an important shape retrieval problem.
We extend our recent paper which provided a benchmark for
testing non-rigid 3D shape retrieval algorithms on 3D human
models. This benchmark provided a far stricter challenge than
previous shape benchmarks. We have added 145 new models
for use as a separate training set, in order to standardise the
training data used and provide a fairer comparison. We have
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also included experiments with the FAUST dataset of human
scans. All participants of the previous benchmark study have
taken part in the new tests reported here, many providing
updated results using the new data. In addition, further par-
ticipants have also taken part, and we provide extra analysis
of the retrieval results. A total of 25 different shape retrieval
methods are compared.

Keywords Benchmark - 3D shape retrieval - Non-rigid
3D shape retrieval - 3D humans

1 Introduction

The ability to recognise a deformable object’s shape, regard-
less of the pose of the object, is an important requirement in
shape retrieval. When evaluated on previous benchmarks. the
highest performing methods achieved perfect nearest neigh-
bour accuracy (Lian et al. 2011, 2015), making it impossible
to demonstrate an improvement in approaches for this mea-
sure. There is also a need for a greater variety of datasets
for testing retrieval methods, so that the research community
don’t tune their methods for one particular set of data. We
recently addressed this by producing a challenging dataset
for testing non-rigid 3D shape retrieval algorithms (Pickup
et al. 2014). This dataset only contained human models, in a
variety of body shapes and poses. 3D models of humans are
commonly used within computer graphics and vision, and so
the ability to distinguish between human subjects is an impor-
tant shape retrieval problem. The shape differences between
humans are much more subtle than the differences between
the shape classes used in earlier benchmarks (e.g. various
different animals), yet humans are able to visually recognise
specific individuals. Successfully performing shape retrieval
on a dataset of human models is therefore an extremely chal-

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s11263-016-0903-8&domain=pdf

Int J Comput Vis

lenging, yet relevant task. Datasets of 3D humans have also
been used in other tasks such as pose estimation (Ionescu
et al. 2014), finding correspondences (Bogo et al. 2014), and
statistical modelling (Hasler et al. 2009). For our work, the
participants submitted retrieval results for a variety of meth-
ods for our human dataset, and we compared with the results
in (Pickup et al. 2014). A weakness of that work is that a
training set was not provided, and therefore some participants
performed supervised training or parameter optimisation on
the test data itself. It is therefore difficult to fairly compare
the different retrieval results.

We thus provide an extension to our workshop paper
(Pickup et al. 2014).! Firstly, participants were given 145
new human models for use as a training set. All participants
who performed supervised training or parameter optimisa-
tion on the original test set retrained their method on the
new training data, producing a new set of results, allow-
ing their fairer comparison. Secondly, we have included
experiments on the FAUST dataset (Bogo et al. 2014).
Thirdly, additional participants took part in the latest tests
reported here, and existing participants submitted updated
or additional results. We compare a total of 25 different
retrieval methods, whereas we previously compared 21.
Finally, we provide a more detailed analysis of the retrieval
results.

Our paper is structured as follows. Section 2 describes the
datasets used, Sect. 3 describes the retrieval task, Sect. 4 out-
lines all methods tested, organised by submitting participant,
Sect. 5 provides a detailed analysis of the retrieval results,
and finally we conclude in Sect. 6.

2 Datasets

The human models we use are split into three datasets. The
first two datasets, which we created ourselves, consist of a
Real dataset, obtained by scanning real human participants
and generating synthetic poses, and a Synthetic dataset, cre-
ated using 3D modelling software (DAZ 2013). The latter
may be useful for testing algorithms intended to retrieve syn-
thetic data, with well sculpted local details, while the former
may be more useful to test algorithms that are designed to
work even in the presence of noisy, coarsely captured data
lacking local detail. The third dataset we use is the FAUST
dataset created by Bogo et al. (2014), which uses scans of
different people, each in a set of different poses, and contains
both topological noise and missing parts.

Our Real and Synthetic datasets are available to down-
load from our benchmark website (Footnote 1), or from the

! Benchmark Website: http://www.cs.cf.ac.uk/shaperetrieval/shrec14/.
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doi:10.17035/d.2015.100097. The FAUST dataset is avail-
able from its project website.”

Throughout the paper we use the following terms when
referring to our data:

Model —A single 3D object.
Mesh —The underlying triangle mesh representation of a
model.
Subject —A single person. The datasets’ models are divided
into classes, one class for each subject.
Pose —The articulation or conformation of a model (e.g.
standing upright with arms by the sides).
Shape —The pose-invariant form of a model (i.e. aspects
of the model shape invariant to pose).

2.1 Real Dataset

The Real dataset was built from point-clouds contained
within the Civilian American and European Surface Anthro-
pometry Resource (CAESAR) (CAESAR 2013). The orig-
inal Test set contained 400 models, representing 40 human
subjects (20 male, 20 female), each in ten different poses.
The poses we used are a random subset of the poses used for
the SCAPE (Anguelov et al. 2005) dataset. The same poses
were used for each subject. Our new Training set contains 100
models, representing 10 human subjects (5 male, 5 female),
again in 10 different poses. None of the training subjects or
poses are present in the test set (Fig. 1).

The point-clouds were manually selected from CAESAR
to have significant visual differences. We employed SCAPE
(shape completion and animation of people) (Anguelov et al.
2005) to build articulated 3D meshes, by fitting a template
mesh to each subject (Fig. 2). Realistic deformed poses of
each subject were built using a data-driven deformation tech-
nique (Chen et al. 2013). We remeshed the models using
freely available software (Valette and Chassery 2004; Valette
et al. 2008) so different meshes do not have identical trian-
gulations. As the same remeshing algorithm was applied to
all meshes, the triangulations may share similar properties,
but exact correspondences cannot be derived directly from
the vertex indices of the meshes. The resulting meshes each
have approximately 15,000 vertices, varying slightly from
mesh to mesh.

While we used a data-driven technique to generate the
poses, generating them synthetically means they do not
exhibit as realistic surface deformations between poses as
different scans would have done. The data also does not suf-
fer from missing parts or topological noise sometimes found
in scanned data. A selection of models from this dataset is
shown in Fig. la.

2 FAUST Website:http:/faust.is.tue.mpg.de/.
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Fig. 1 A selection of models included in the datasets. a Real dataset.
b Synthetic dataset. ¢ FAUST dataset

(a) (b) (c)

Fig. 2 A template mesh is fitted to each point cloud scan using the
SCAPE method (Anguelov et al. 2005). a Template mesh. b Point cloud.
¢ Template fitted to point cloud

2.2 Synthetic Dataset

We used the DAZ Studio (DAZ 2013) 3D modelling and ani-
mation software to create a dataset of synthetic human mod-
els. The software includes a parameterized human model,
where parameters control body shape. We used this to pro-
duce a Test dataset consisting of 15 different human subjects
(5 male, 5 female, 5 child), each with its own unique body
shape. We generated 20 different poses for each model,
resulting in a dataset of 300 models. The poses were cho-
sen by hand from a palette of poses provided by DAZ
Studio. The poses available in this palette contain some
which are simple variations of each other, so we therefore
hand picked poses representing a wide range of articula-
tions. The same poses were used for each subject. Our new
Training set contains 45 models, representing 9 human sub-
jects (3 male, 3 female, 3 child) in 5 different poses. None
of the training subjects or poses is present in the test set.
All models were remeshed, as for the Real dataset. The
resulting meshes have approximately 60,000 vertices, again
varying slightly. A selection of these models is shown in
Fig. 1b.

2.3 FAUST Dataset

The FAUST dataset was created by scanning human sub-
jects with a sophisticated 3D stereo capture system. The Test
dataset consists of 10 different human subjects, with each
subject being captured in the same 20 poses, resulting in a
dataset of 200 models. The Training set contains 100 mod-
els, made up of 10 subjects in 10 poses. The average number
of vertices is 172,000, making it the highest resolution of
the three datasets. A selection of models from this dataset is
shown in Fig. 1c.

As the poses for this dataset were generated from scans,
they contain realistic deformations that are normally missing
from synthetic models. The models also have missing parts
caused by occlusion, and topological noise where touch-
ing body parts are fused together. The dataset also contains
some non-manifold vertices and edges, which some retrieval
methods cannot handle. We therefore produced a version of
the data from which these non-manifold components were
removed and holes filled, creating a watertight manifold
for each model. This mesh processing was performed using
Meshlab (MeshLab 2014), and the same automatic process
was applied to all meshes. There was no hand-correction
of any of the results of this procedure. Apart from these
small local changes, the data was otherwise unmodified.
Some examples of the watertight meshes are shown in Fig. 3.
Our watertight models were distributed to participants upon
request. For the full details of the FAUST dataset we refer
readers to Bogo et al. (2014).

@ Springer
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(b)

Fig. 3 Examples of the watertight FAUST meshes. a Original meshes
with missing data. b Watertight manifold versions produced by Meshlab

3 Retrieval Task and Evaluation

All participants in our study submitted results for the follow-
ing retrieval task:

Given a query model, return a list of all models, ordered
by decreasing shape similarity to the query.

Every model in the database was used in turn as a separate
query model.

The evaluation procedure used to assess the results (see
Sect. 5)is similar to that used by previous comparative studies
(Lianetal. 2011, 2015). We evaluate the results using various
statistical measures: nearest neighbour (NN), first tier (1-T),
second tier (2-T), e-measure (E-M), discounted cumulative
gain (DCG), and precision and recall curves. Definitions of
these measures are given in Shilane et al. (2004).

4 Methods

We now briefly describe each of the methods compared in our
study; as can be seen, some participants submitted multiple

@ Springer

Table 1 Summary of methods, including details of any mesh simplifi-
cation and use of watertight meshes for the FAUST dataset

Author Method Simplification =~ Watertight (FAUST)
Giachetti  APT No Used
APT-trained No Used
Lai HKS 10,000 faces Used
WKS 10,000 faces Used
SA 10,000 faces Used
Multi-feature 10,000 faces Used
B.Li Curvature No Used
Geodesic 1000 vertices Used
Hybrid 1000 vertices ~ Used
MDS-R 1000 vertices ~ Used
MDS-ZFDR 1000 vertices ~ Used
C.Li Spectral Geom.  No Used
Litman supDL 4500 vertices ~ Used
UnSup32 4500 vertices  Used
softvVQ48 4500 vertices ~ Used
Pickup Surface area No Used
Compactness No Used
Canonical No Used
Bu 3DDL No Used
Tatsuma  BoF-APFH No Not used
MR-BoF-APFH No Not used
Ye R-BiHDM No Used
R-BiHDM-s No Used
Tam MRG No Used
TPR No Used

methods. Table 1 summarised which methods simplified the
meshes to a lower resolution, and which used the watertight
version of the FAUST dataset. Approximate timings of each
method are given in Table 2. Full details of these methods
may be found in the papers cited.

4.1 Simple Shape Measures, and Skeleton Driven
Canonical Forms

This section presents two techniques, simple shape measures
based on simple invariant intrinsic geometric properties, and
skeleton driven canonical forms.

4.1.1 Simple Shape Measures

We may observe that to a good approximation, neither the
surface area nor the volume of the model should change under
deformation. The first measure is thus the total surface area
A of the mesh. This measure is not scale independent, and
all human models were assumed to be properly scaled. In
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Fig. 4 Overview of the hybrid

. Curvature-based
shape descriptor approach

local feature vector: —
Ve

Geodesic distance-
based global feature —
vector: Vg

MDS-based ZFDR
global feature |
vector: Vz

order to account for a possibly unknown scale, the second
measure, compactness C uses the volume V to provide a
dimensionless quantity: C = V?2/A3. Both measures are
trivial to implement, and are very efficient to compute.

The surface area A is the sum of the triangle areas:

1 N
A= Ai=52 I —c) x (@i = bl ()

i=1 i=1

where the i th triangle has vertices (a;, b;, ¢;) in anticlockwise
order, x denotes vector cross-product, and N is the number
of triangles. The volume V of the mesh is calculated as:

1 N
V= EZai (b % ¢;). )

i=1

We do not take into account any self-intersections occur-
ring in the meshes, and therefore the volume calculation may
not be accurate for certain certain poses; this is a weakness
of this simple method.

4.1.2 Skeleton Driven Canonical Forms

This method uses a variant of the canonical forms presented
by Elad and Kimmel (2003) to normalise the pose of all mod-
els in the dataset, and then uses the rigid view-based method
in Lian et al. (2013a) for retrieval. This method works as fol-
lows (Pickup et al. 2016). A canonical form is produced by
extracting a curve skeleton from a mesh, using the method
in Au et al. (2008). The SMACOF multidimensional scaling
method used in Elad and Kimmel (2003) is then applied to the
skeleton, to put the skeleton into a canonical pose. The skele-
ton driven shape deformation method in Yan et al. (2008) is
then used to deform the mesh to the new pose defined by the
canonical skeleton. This produces a similar canonical form
to the one in Elad and Kimmel (2003), but with local features
better preserved, similarly to Lian et al. (2013b).

The retrieval method by Lian et al. (2013a) performs
retrieval using the canonical forms by rendering a set of 66
depth views of each object, and describing each view using
bag-of-features, with SIFT features. Each pair of models is
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compared using the bag-of-features descriptors of their asso-
ciated views.

In Pickup et al. (2014) the Synthetic models had to
be simplified, but we have now made some minor coding
improvements which allows the method to run on the full
resolution meshes for all three datasets.

4.2 Hybrid Shape Descriptor and Meta Similarity
Generation for Non-rigid 3D Model Retrieval

The hybrid shape descriptor in (Li et al. 2014) integrates
both geodesic distance-based global features and curvature-
based local features. An adaptive algorithm based on particle
swarm optimization (PSO) is developed to adaptively fuse
different features to generate a meta similarity between
any two models. The approach can be generalized to sim-
ilar approaches which integrate more or different features.
Figure 4 shows the framework of the hybrid approach. It
first extracts three component features of the hybrid shape
descriptor: curvature-based local features, geodesic distance-
based global features, and multidimensional scaling (MDS)
based ZFDR global features (Li and Johan 2013). Based on
these features, corresponding distance matrices are computed
and fused into a meta-distance matrix based on PSO. Finally,
the distances are sorted to generate the retrieval lists.

4.2.1 Curvature-based local feature vector: V¢

First, a curvature index feature is computed to characterise
local geometry for each vertex p:

= 2 el (K21 kD2
CI = — log( (K7 +K3)/2),

where K| and K; are two principal curvatures at p. Then,
a curvature index deviation feature is computed for vertices
adjacent to p:

5CI= | (CL—CD¥/n,
i=1
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where C 11, .. .,C I, are the curvature index values of adjacent
vertices and C1 is the mean curvature index for all adjacent
vertices. Next, the shape index feature for describing local
topology at p is computed as

2
SI = —arctan((K1 4+ K»)/ | K1 — K2|).
b

A combined local shape descriptor is then formed by con-
catenating these local features: F' = (C1,8C1, S1). Finally,
based on the bag-of-words framework, the local feature vec-
tor V¢ = (hy,...,hy.) is formed, where the number of
cluster centres N¢ is set to 50.

4.2.2 Geodesic Distance-Based Global Feature Vector: Vg

To avoid the high computational cost of computing geodesic
distances between all vertices, each mesh is first simplified to
1000 vertices. The geodesic distance between each pair of its
vertices is then computed to form a geodesic distance matrix,
which is then decomposed using singular value decompo-
sition. The ordered largest k singular values form a global
feature vector. Here, k = 50.

4.2.3 MDS-Based ZFDR Global Feature Vector: Vz

To create a pose invariant representation of non-rigid mod-
els, MDS is used to map the non-rigid models into a 3D
canonical form. The geodesic distances between the vertices
of each simplified 3D model are used as the input to MDS
for feature space transformation. Finally, the hybrid global
shape descriptor ZFDR (Li and Johan 2013) is used to char-
acterize the features of the transformed 3D model in the new
feature space. There are four feature components in ZFDR:
Zernike moments, Fourier descriptors, Depth information
and Ray-based features. This approach is called MDS-ZFDR,
stressing that MDS is adopted in the experiments. For 3D
human retrieval, using the R feature only (that is MDS-R)
always achieves better results than other combinations such
as ZF, DR or ZFDR. This is because salient feature variations
in the human models, e.g. fat versus slim, are better charac-
terised by the R feature than other visual-related features like
Z, F and D.

4.2.4 Retrieval Algorithm
The complete retrieval process is as follows:

1. Compute curvature-based local feature vector V¢ based
on the original models and generate local feature distance
matrix Mc.

2. Compute geodesic distance-based global feature vector
Vi and global feature distance matrix Mg.

3. Compute MDS-based ZFDR global feature vector Vz
and MDS-ZFDR global feature distance matrix M.

4. Perform PSO-based meta-distance matrix generation as
follows:

The meta-distance matrix M = wecM¢c + wgM¢g + wzMz

depends on weights we, wg and wyz in [0,1]. The weights

used in this paper were obtained by training the above

retrieval algorithm using the PSO algorithm on the training

dataset: for the Real dataset, wc = 0.7827, wg = 0.2091

and wz = 0.0082; for the Synthetic dataset, wc = 0.4416,

wg = 0.5173 and wz = 0.0410.

As a swarm intelligence optimization technique, the PSO-
based approach can robustly and quickly solve nonlinear,
non-differentiable problems. It includes four steps: initializa-
tion, particle velocity and position updates, search evaluation
and result verification. The number of particles used is
Np = 10, and the maximum number of search iterations
is N; = 10. The first tier is selected as the fitness value for
search evaluation. Note that the PSO-based weight assign-
ment preprocessing step is only performed once on each
training dataset.

4.3 Histograms of Area Projection Transform

This approach uses histograms of area projection trans-
forms (HAPT), general purpose shape descriptors proposed
in Giachetti and Lovato (2012), for shape retrieval. The
method is based on a spatial map (the multiscale area projec-
tion transform) that encodes the likelihoods that 3D points
inside the mesh are centres of spherical symmetry. This map
is obtained by computing for each radius of interest the
value:

APT(x, S, R, 0) = Area(Ty (ko (X) C Tr(S,m))),  (3)

where § is the surface of interest, Tr(S, n) is the paral-
lel surface to S shifted (inwards only) along the normal
vector n by a distance R, T Uis the part of the origi-
nal surface used to generate the parallel surface Tg, and
ks (x) is a sphere of radius o centred on the generic
3D point x where the map is computed (Fig. 5). Val-
ues at different radii are normalized to provide scale-
invariant behaviour, creating the multiscale APT (MAPT):

MAPT(x, R, S) = «(R) APT(x, S, R, o (R)), 4)
where a(R) = 1/47 R? and 6 (R) = cR,
O<c<).

The discretized MAPT is easily computed, for selected
values of R, on a voxelized grid containing the surface mesh
by the procedure in Giachetti and Lovato (2012). The map
is computed on a grid of voxels of size s on a set of cor-
responding sampled radius values R, ..., R,. Histograms

@ Springer
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k(x,0)

T (k(x,0)<T (5))

Fig. 5 Basic idea of the area projection transform: we compute the
parallel surface at distance R and we compute the transform at a point
x as the area of the original surface generating the part of the parallel
surface falling inside a sphere of radius o centred at x

of MAPT computed inside objects are good global shape
descriptors, as shown by their very good performance on
the SHREC’ 11 non-rigid watertight contest data (Lian et al.
2011). For that recognition task, discrete MAPT maps were
quantized in 12 bins and histograms computed at the selected
radii were concatenated to create a descriptor. Voxel side
and sampled radii were chosen, proportional to the cube
root of the object volume for each model, to normalize the
descriptor independently of scale. The parameter ¢ was set
to 0.5.

To recognise human subjects, however, scale invariance is
not desired. For this reason a fixed voxel size and a fixed set
of radii is used. The values for these parameters were chosen
differently for each dataset, by applying simple heuristics
to the training data. For all datasets, the MAPT maps were
quantized into 6 bins. The voxel size was taken to be similar
to the size of the smaller well defined details in the meshes.
For the Synthetic dataset, where fingers are clearly visible
and models are smaller, s = 4 mm is used; the MAPT his-
tograms are computed for 11 increasing radii starting from
R1 = 8 mm, in increments of 4 mm for the remaining values.
In the Real dataset, models are bigger and details are more
smoothed, so we set s = 12 mm and use 15 different radii
starting from R; = 24 mm radius in increments of 12 mm.
For the FAUST dataset we use the same parameters as for the
Real dataset.

Measuring distances between models simply involves
concatenating the MAPT histograms computed at different
scales and evaluating the Jeffrey divergence of the corre-
sponding concatenated vectors.

@ Springer

4.3.1 Trained Approach

The available training dataset was exploited to project the
original feature space into a subspace that is maximally dis-
criminative for different instances of the specific class of
objects; distances are computed on the mapped descriptors.
The mapping uses a combination of principal component
analysis (PCA) and linear discriminant analysis (LDA)
(Duda et al. 2012).

PCA transforms the data set into a different coordinate sys-
tem in which the first coordinate in the transformed domain,
called the principal component, has maximum variance and
other coordinates have successively smaller variances. LDA
puts a labelled dataset into a subspace which maximizes
between-class scatter. The combination of these two map-
pings first decorrelates the data and then maximizes the
variances between classes. The combined mapping is defined
as: Dyqp = LDA(PCA(D)). Several tests indicated 10
dimensions should be used for the PCA. The dimensional-
ity of the original descriptors is 180. Regularized LDA can
be used to bypass the initial PCA computation, but we find
that using PCA followed by standard LDA performs better
in practice. For the mappings, the Matlab implementation in
the PRTools 5 package (Van Der Heijden et al. 2005) was
used. The PCA and LDA procedures are very efficient, only
accounting for 10 s of the full training time given in Table 2.
The rest of the time is spent computing the descriptors from
the training data to be input into the PCA and LDA algo-
rithms.

The improvements that can be obtained with this approach
clearly depend on the number of examples available in the
training set and how well these examples represent the differ-
ences found in the test set. The improvements are less evident
for the Synthetic dataset, where the number of training exam-
ples is lower and we find that they do not fully characterise
range of body shapes present in the test set.

4.4 R-BiHDM

The R-BiHDM (Ye et al. 2013; Ye and Yu 2015) method is a
spectral method for general non-rigid shape retrieval. Using
modal analysis, the method projects the biharmonic distance
map (Lipman et al. 2010) into a low-frequency representation
which operates on the modal space spanned by the lowest
eigenfunctions of the shape Laplacian (Reuter et al. 2006;
Ovsjanikov et al. 2012), and then computes its spectrum as
an isometric shape descriptor.

Let ¥, . .., ¥, be the eigenfunctions of the Laplacian A,
corresponding to its smallest eigenvalues 0 = 1y < ... <
Am. Let d(x, y) be the biharmonic distance between two
points on a mesh, defined as
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i=1 i

The squared biharmonic distance map D? is a functional map
defined by

ﬁmm=/

xes

d*(x, y) £ (y)dy, (©6)

where S is a smooth manifold. The reduced matrix ver-
sion of D? is denoted by A = {a; j}, where a;; =
fs /A (x)Dz[wj](x)dx for 0 < i, j < m. Note that tr(A) =
0 and all eigenvalues of A, denoted by wo, ..., i, are
in descending order of magnitude, where g > 0 and
ui < 0 for i > 0. The shape descriptor is defined by
the vector [uq, ..., um]T (for a scale dependent version)
or [i1/ 1o, ---, ,uL/,uo]T (scale independent). In this test,
L = 30 and m = 60 for the scale independent version, and
L = m = 100 for the scale dependent version. Finally, a
normalized Euclidean distance is used for nearest neighbour
queries. The descriptor is insensitive to a number of pertur-
bations, such as isometry, noise, and remeshing. It has good
discrimination capability with respect to global changes of
shape and is very efficient to compute. We have found that
the scale independent descriptor (R-BiHDM) is more reliable
for generic nonrigid shape tasks, while the scale dependent
descriptor (R-BiHDM-s) is more suitable for this human
shape task (see Sect. 5).

4.5 Multi-feature Descriptor

Single feature descriptors cannot capture all aspects of a
shape, so this approach fuses several features into a multi-
feature descriptor to improve retrieval accuracy. Three state-
of-the-art features are used: heat kernel signatures (HKS)
(Sun et al. 2009), wave kernel signatures (WKS) (Aubry
et al. 2011) and mesh surface area (SA).

Firstly, the similarity of all the models in the training set
is calculated for each of the three chosen features. Secondly,
some models are selected at random to produce a subset of
the training data, with the rest left for validation. For each
feature f;, its entropy is calculated as

N
E(fi)=— Y pllog, p}, )

j=1

where N is the number of shape classes and p; is the proba-
bility distribution of shape class j for feature i. A weighting
for each feature is then calculated as

1 —E(f)

= 8
3-2E() ®

Wi

Having determined the weights, the combined similarity
matrix S is calculated as

3
S= ZwiSi. (9)
i=1

S; represents the normalized similarity matrix calculated
using method i. The performance of the weightings is evalu-
ated on the training data set aside for validation. The subset
of the training data used to compute Eq. 7 is optimised to
produce the best retrieval results. Computing these feature
weightings only accounts for ~7 s of the preprocessing time
given in Table 2, with the rest of the time spent computing
the individual features from the training data to be input into
the weight optimization procedure.

Once the best weightings for the training set are obtained,
these weightings are then used to combine the similarity
matrices computed for the test set, also using Eq. 9.

Results of using HKS, WKS and SA features alone are also
given, to show the improvement obtained by this weighted
combination.

4.6 High-Level Feature Learning for 3D Shapes

The high-level feature learning method for 3D shapes in (Bu
et al. 2014a,b) uses three stages (see Fig. 6):

1. Low-level feature extraction: three representative intrin-
sic features, the scale-invariant heat kernel signature
(SI-HKS) (Bronstein and Kokkinos 2010), the shape
diameter function (SDF) (Gal et al. 2007), and the aver-
aged geodesic distance (AGD) (Hilaga et al. 2001), are
used as low-level descriptors.

2. Mid-level feature extraction: to add the spatial distri-
bution information missing from low-level features, a
mid-level position-independent bag-of-features (BoF) is
first extracted from the low-level descriptors. To com-
pensate for the lack of structural relationships, the BoF is
extended to a geodesic-aware bag-of-features (GA-BoF),
which considers geodesic distances between each pair of
features on the 3D surface. The GA-BoF describes the
frequency of two geometric words appearing within a
specified geodesic distance.

3. High-level feature learning: finally, a deep learning
approach is used to learn high-level features from the GA-
BoF, which can discover intrinsic relationships using the
GA-BoF which provide highly discriminative features
for 3D shape retrieval. A stack of restricted Boltzmann
machines (RBMs) are used, and learning is performed
layer by layer from bottom to top, giving a deep belief
network (DBN) (Hinton et al. 2006). The bottom layer
RBM is trained with the unlabelled GA-BoFs, and the

@ Springer
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Fig. 6 Overview of the high-level feature learning method

activation probabilities of hidden units are treated as the
input data for training the next layer, and so on. After
obtaining the optimal parameters, the input GA-BoFs are
processed layer-by-layer, and the final layer provides the
high-level shape features.

4.7 Bag-of-Features approach with Augmented Point
Feature Histograms

Point feature histograms (PFH) provide a well-known local
feature vector for 3D point clouds, based on a histogram
of geometric features extracted from neighbouring oriented
points (Rusu et al. 2008). Augmented point feature his-
tograms (APFH) improve their discriminative power by
adding the mean and covariance of the geometric features.

Il\ ’ £
Ntag h
fC

4. Compose APFH

3. Calculate statistics of features

Fig. 7 Overview of augmented point feature histograms
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Because APFH, like PFH, are based on local features, they
are invariant to global deformation and articulation of a 3D
model.

The APFH approach is illustrated in Fig. 7. The first step
is to randomly generate oriented points on the mesh, using
Osada’s method (Osada et al. 2002). The orientation of each
point p is the normal vector of the surface at that point.

Next a PFH is constructed for each oriented point. The
4D geometric feature f = [ f1, f2, f3, f4]T proposed in Wahl
et al. (2003) is computed for every pair of points p, and pp
in the point’s k-neighbourhood:

fi = arctan(w - np, u - ), (10)
H=v-m, (1D
fs=u- % 12)
fa=d, (13)

where the normal vectors of p, and p; are n, and np,u = n,,
V.= (pr — Pa) X 0/[|(Pp — Pa) X u||, W = u x v, and
d = ||p» — Pall- These four-dimensional geometric features
are collected in a 16-bin histogram f},. The index of histogram
bin % is defined by the following formula:

4
h = Zz"*‘s(t, £, (14)

i=1

where s(z, f) is a threshold function defined as 0 if f < ¢
and 1 otherwise. The threshold value used for f1, f>, and f3
is 0, while the threshold for fj is the average value of f4 in
the k-neighbourhood.
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Fig. 8 Isocontours of the second eigenfunction

The mean f,, and covariance f. of the 4D geometric
features is also calculated. The augmented point feature his-
togram f4 prpy comprises fy, f,,, and f.. Finally, f4pry is
normalized by power and L2 normalization (Perronnin et al.
2010).

To compare 3D models, the set of APFH features of a
3D model is integrated into a feature vector using the bag-

Table 3 Retrieval results for the Real dataset

Author Method NN 1-T 2-T E-M DCG
Giachetti APT 0.830 0.572 0.761 0.396 0.826
APT-trained 0.910 0.673 0.848 0.414 0.874
Lai HKS 0.245 0.259 0.461 0.314 0.548
WKS 0.326 0.322 0.559 0.347 0.605
SA 0.288 0.298 0.491 0.300 0.563
Multi-feature 0.510 0.470 0.691 0.382 0.708
B. Li Curvature 0.083 0.076 0.138 0.099 0.347
Geodesic 0.070 0.078 0.158 0.113 0.355
Hybrid 0.063 0.091 0.171 0.120 0.363
MDS-R 0.035 0.066 0.129 0.090 0.330
MDS-ZFDR 0.030 0.040 0.091 0.075 0.310
C.Li Spectral Geom.  0.313  0.206 0.323 0.192 0.488
Litman supDL 0.775 0.663 0.859 0.421 0.857
UnSup32 0.583 0.451 0.659 0.354 0.712
softvVQ48 0.598 0.472 0.657 0.356 0.717
Pickup Surface area 0.263 0.289 0.509 0.326 0.571
Compactness 0.275 0.221 0.384 0.255 0.519
Canonical 0.010 0.012 0.040 0.043 0.279
Bu 3DDL 0.225 0.193 0374 0.262 0.504
Tatsuma  BoF-APFH 0.040 0.111 0236 0.163 0.388
MR-BoF-APFH 0.063 0.072 0.138 0.084 0.330
Ye R-BiHDM 0.275 0.201 0334 0.217 0.492
R-BiHDM-s 0.720 0.616 0.793 0.399 0.819
Tam MRG 0.018 0.023 0.051 0.037 0.280
TPR 0.015 0.024 0.057 0.050 0.288

The Ist, 2nd and 3rd highest scores of each column are highlighted

Table 4 Retrieval results for the Synthetic dataset

Author Method NN 1-T 2-T E-M DCG
Giachetti APT 0970 0.710 0.951 0.655 0.935
APT-trained 0.967 0.805 0.982 0.692 0958
Lai HKS 0467 0.476 0.743 0.504 0.729
WKS 0.810 0.726 0.939 0.667 0.886
SA 0.720 0.682 0.973 0.670 0.862
Multi-feature 0.867 0.714 0.981 0.682 0.906
B. Li Curvature 0.620 0.485 0.710 0488 0.774
Geodesic 0.540 0.362 0.529 0.363 0.674
Hybrid 0.430 0.509 0.751 0.520 0.768
MDS-R 0.267 0.284 0470 0.314 0.59%
MDS-ZFDR 0.207 0.228 0.407 0.265 0.559
C.Li Spectral Geom.  0.993 0.832 0.971 0.706 0.971
Litman supDL 0963 0.871 0974 0.704 0.974
UnSup32 0.893 0.754 0918 0.657 0.938
softvVQ48 0910 0.729 0.949 0.659 0.927
Pickup Surface area 0.807 0.764 0.987 0.691 0.901
Compactness 0.603 0.544 0.769 0.527 0.773
Canonical 0.113 0.182 0.333 0.217 0.507
Bu 3DDL 0.923 0.760 0911 0.641 0.921
Tatsuma  BoF-APFH 0.550 0.550 0.722 0.513 0.796
MR-BoF-APFH 0.790 0.576 0.821 0.563 0.836
Ye R-BiHDM 0.737 0496 0.673 0467 0.778
R-BiHDM-s 0.787 0.571 0.811 0.551 0.833
Tam MRG 0.070 0.165 0.283 0.187 0.478
TPR 0.107 0.188 0.333 0.216 0.506

The Ist, 2nd and 3rd highest scores of each column are highlighted

of-features (BoF) approach (Bronstein et al. 2011; Sivic
and Zisserman 2003). The BoF is projected onto Jensen-
Shannon kernel space using the homogeneous kernel map
method (Vedaldi and Zisserman 2012). This approach is
called BoF-APFH. Similarity between features is calculated
using the manifold ranking method with the unnormalized
graph Laplacian (Zhou et al. 2011). This approach is called
MR-BoF-APFH.

The parameters of the overall algorithm are fixed empiri-
cally. For APFH, the number of points is set to 20,000, and
the size of the neighbourhood to 55. For the BoF-APFH
approach, a codebook of 1200 centroids is generated using
k-means clustering, and the training dataset is used to train
the codebook.

4.8 BoF and SI-HKS
This method was presented in Litman et al. (2014). All
meshes are down-sampled to 4500 triangles. For each model

S in the data-set, a scale-invariant heat kernel signature
SI-HKS (Bronstein and Kokkinos 2010) descriptor x; is

@ Springer
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Table 5 Retrieval results for the FAUST dataset

Author Method NN 1-T 2-T E-M DCG
Giachetti APT 0.960 0.865 0.962 0.700 0.966
APT-trained 0.990 0.891 0.984 0.711 0.979
Lai HKS 0.170 0.205 0.382 0.244 0.546
WKS 0.195 0.181 0354 0.222 0.525
SA 0.230 0.223 0.406 0.262 0.560
Multi-feature 0.350 0.226 0.379 0.246 0.573
B.Li Curvature 0.805 0.644 0.777 0.558 0.853
Geodesic - - - - -
Hybrid - - - - -
MDS-R - - - - -
MDS-ZFDR - - - - -
C.Li Spectral Geom.  0.555 0.255 0.369 0.252 0.611
Litman supDL 0.835 0.635 0.783 0.558 0.872
UnSup32 0.770 0.523 0.670 0477 0.812
softvVQ48 0.730 0426 0.551 0387 0.748
Pickup Surface area 0.545 0.509 0.818 0.544 0.763
Compactness 0.405 0.377 0.653 0.429 0.679
Canonical 0.245 0.159 0286 0.186 0.507
Bu 3DDL 0415 0.281 0492 0.321 0.619
Tatsuma  BoF-APFH 0.890 0.652 0.785 0.559 0.886
MR-BoF-APFH 0.900 0.815 0901 0.645 0.938
Ye R-BiHDM 0.645 0368 0533 0370 0.698
R-BiHDM-s 0.870 0.555 0.720 0.501 0.846
Tam MRG - - - - -
TPR 0.285 0.169 0.279 0.184 0.521

The Ist, 2nd and 3rd highest scores of each column are highlighted

calculated at every point i € S. Unsupervised dictionary
learning is performed over randomly selected descriptors
sampled from all meshes using the SPAMS toolbox (Mairal
et al. 2009), using a dictionary size of 32. The resulting
32 atom dictionary D is, in essence, the bag-of-features
of this method. Next, at every point, the descriptor x; is
replaced by a sparse code z; by solving the pursuit prob-
lem:

1
min = [1x; — Dz 3 + Az 1. (15)

The resulting codes z; are then pooled into a single histogram
using mean poolingh = >, z;w;, with w; being the area ele-
ment for point i.

The initial D is determined by supervised training using
the training set, using stochastic gradient descent of the loss-
function defined in Weinberger and Saul (2009).

The results of three approaches are presented in Sect. 5: the
above approach based on supervised training (supDLtrain),
and for reference, a method using the initial unsupervised
D (UnSup32). Additionally, the results of a similar unsuper-
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Fig. 9 Precision and recall curves for the best performing method of
each group on the Real dataset
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Fig. 10 Precision and recall curves for the best performing method of
each group on the Synthetic dataset

vised method (softVQ48) used in Bronstein et al. (2011) are
also included; it uses k-means clustering, with k = 48, and
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soft vector-quantization, instead of dictionary learning and
pursuit, respectively.

4.9 Spectral Geometry

The spectral geometry based framework is described in
Li (2013). It is based on the eigendecomposition of the
Laplace-Beltrami operator (LBO), which provides a rich set
of eigenbases that are invariant to isometric transformations.
Two main stages are involved: (1) spectral graph wavelet sig-
natures (Li and Hamza 2013b) are used to extract descriptors,
and (2) intrinsic spatial pyramid matching (Li and Hamza
2013a) is used for shape comparison.

4.9.1 Spectral Graph Wavelet Signature

The first stage computes a dense spectral descriptor /(x)
at each vertex of the mesh X. Any of the spectral descrip-
tors with the eigenfunction-squared form reviewed in Li
and Hamza (2013c) can be used for isometric invariant
representation. Here, the spectral graph wavelet signa-
ture (SGWS) is used, as it provides a general and flex-
ible interpretation for the analysis and design of spec-
tral descriptors Sy (t,x) = > ", g(t, Ai)gol?(x), where A;
and ¢; are the eigenvalues and associated eigenfunctions
of the LBO. In the experiments m = 200. To capture
the global and local geometry, a multi-resolution shape
descriptor is obtained by setting g(¢, A;) as a cubic spline
wavelet generating kernel. The resolution level is set to
2.

4.9.2 Intrinsic Spatial Pyramid Matching

Given a vocabulary of representative local descriptors P =
{px, k =1, ..., K}learned by k-means, the dense descriptor
S ={s;, t =1,..., T}ateach point of the mesh is replaced
by the Gaussian kernel based soft assignment Q = {qx, k =
I,...,K}.

Any function f on X can be written as a linear com-
bination of the eigenfunctions. Using variational character-
izations of the eigenvalues in terms of the Rayleigh—Ritz
quotient, the second eigenvalue is given by

’
Ar = inf fo
flon f7Af

(16)

The isocontours of the second eigenfunction (Fig. 8) are
used to cut the mesh into R patches, giving a shape descrip-
tion which is the concatenation of R sub-histograms of Q
with respect to eigenfunction value. To consider the two-
sign possibilities in the concatenation, the histogram order
is inverted, and the scheme with the minimum cost is con-
sidered to be the better match. The second eigenfunction is

Precision

Recall
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Litman (supDL) —@—

Bu (3DDL) —A—

Tatsuma (MR-BoF-APFH) —&—
Tam (TPR) —7—

Fig. 11 Precision and recall curves for the best performing method of
each group on the FAUST dataset

the smoothest mapping from the manifold to the real line, so
this intrinsic partition is stable. Kac (1966) showed that the
second eigenfunction corresponds to the sound frequencies
we hear the best. Further justification for using the second
eigenfunction is given in Li (2013). This approach provably
extends the ability of the popular spatial pyramid matching
scheme in the image domain to capture spatial information
for meshed surfaces, so it is referred to as intrinsic spatial
pyramid matching (ISPM) Li and Hamza (2013a). The num-
ber of partitions is set to 2 here. The dissimilarity between
two models is computed as the L; distance between their
ISPM histograms.

4.10 Topological Matching

This section presents two techniques, topological matching
with multi-resolution Reeb graphs, and topological and geo-
metric signatures with topological point rings.

4.10.1 Topological Matching with Multi-resolution Reeb
Graphs

The topological matching method was proposed by Hilaga
et al. (2001) and is one of the earliest techniques for the
retrieval of 3D non-rigid shapes. It begins with the construc-
tion of a multi resolution Reeb graph (MRG) for each model
using integral geodesic distances. Two attributes (local area

@ Springer
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Fig. 13 Confusion matrix of each method on the Real dataset

and length) are calculated for each node of the MRG. The
similarity between two MRGs is the sum of the similarity
scores between all topologically consistent node pairs. To
find these node pairs, the algorithm applies a heuristic graph-
matching algorithm in a coarse to fine manner. It first finds the
pair of nodes with the highest similarity at the coarsest level,
and then finds the pair of child nodes with the highest similar-
ity at the next level. This procedure recurs down both MRGs,
and repeats until all possible node pairs are exhausted. It then
backtracks to an unmatched highest level node and applies
the same procedure again.

This method fails on the FAUST dataset, as it cannot han-
dle the topological noise present in this data.
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4.10.2 Topological Point Rings and Geometric Signatures

Topological and geometric signatures were proposed in Tam
and Lau (2007). The idea is to define a mesh signature which
consists of a set of topologically important points and rings,
and their associated geometric features. The earth mover dis-
tance (Rubner et al. 2000) is used to define a metric similarity
measure between the two signatures of the meshes. This
technique is based on skeletal shape invariance, but avoids
the high complexity of skeleton-based matching (requiring
subgraph-isomorphism). It uses critical points (local maxima
and minima of geodesic distance) obtained from a level-set
technique to define topological points. With these points, a
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Fig. 14 Confusion matrix of each method on the Synthetic dataset
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Fig. 15 Confusion matrix of each method on the Synthetic dataset

multi-source Dijkstra algorithm is used to detect geodesic
wavefront collisions; the colliding wavefronts give topolog-
ical rings. For each point or ring, integral geodesic distance
and three geometric surface vectors (effective area, thick-
ness, and curvature) are further used to define the final mesh
signatures.

5 Results

We now present and evaluate the retrieval results for the meth-
ods described in Sect. 4, applied to the datasets described in
Sect. 2. Retrieval scores are given in Sect. 5.1, then we dis-
cuss the results in Sect. 5.2.

female_bodybuilder

male_bodybuilder

child_bodybuilder |-

female_bodybuilder

male_bodybuilder

child_average
child_thin
child_fat
child_bodybuilder
child_neutral
female_average
female_thin

female_fat

female_neutral
male_average
male_thin

male_fat

male_neutral

%

ybuilder |-

ybuilder |-
male_fat
ger

ge b
child_neutral-
ybuilder |
child_fat |-
child_thint
gef

male_thin
female_fat |

male_neutral
male_avera
female_thin
child_averax

female_neutral

male_bod

female_bod
female_avera

child_bod

Tatsuma MR-BoF-APFH

child_average -
child_thint-
child_fat

child_neutral
femalejverage}»
female_thin|

female_fat |-

female_neutral |-

male_average
male_thin

male_fat

'-..I

male_neutral 4

gef
child_neutral |
ger

child_bod

ybuilder

male_fat

male_thin
¢ gef
female_neutral |-
ybuilder -
ybuilder -
child_fat -
child_thin}-

male_neutral

male_avera
female_fat -
female_thin|

child_avera

male_bod
female_bod
female_averat

Tam TPR

5.1 Experimental Results

The retrieval task, defined in Sect. 3, was to return a list of
all models ordered by decreasing shape similarity to a given
query model. Tables 3, 4, and 5 evaluate the retrieval results
using the NN, 1-T, 2-T, E-M and DCG measures discussed in
Sect. 3. All measures lie in the interval [0, 1], where a higher
score indicates better performance.

All methods performed better on the Synthetic dataset than
the Real dataset, with most methods working considerably
worse on the Real data. Most methods performed somewhere
in between these two on the FAUST dataset. Figures 9, 10, and
11 show the precision-recall curve for the best performing
methods submitted by each participant.
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Fig. 16 Confusion matrix of each method on the FAUST dataset
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Fig. 17 Confusion matrix of each method on the FAUST dataset

On the most challenging Real dataset, supDL by Litman
etal., and APT and APT-trained by Giachetti et al. performed
best, significantly outperforming other methods, while on the
FAUST dataset the same is true for the methods by Giachetti
et al. and MR-BoF-APFH by Tatsuma and Aono. The per-
formance of different methods is far closer on the Synthetic
dataset.

We use the precision-recall curves to define which meth-
ods perform ‘better’ than other methods. We say a method
performs better than another if its precision-recall curve
has higher precision than the other for all recall values. If
two curves overlap, we cannot say which method is bet-
ter.

Figures 12, 13, 14, 15, 16, and 17 show confusion matrices
for the best performing methods submitted by each partici-
pant for each of the individual classes, for all three datasets.

T — 10
0 1 2 3 4 5 6 7 8 9
Tatsuma MR-BoF-APFH

T T :: 101

10°

0 1 2 3 4 5 6 7 8 9
Tam TPR

The corresponding models are rendered in Figures 18, 19,
20, and 21.

5.2 Discussion

The results presented in Sect. 5.1 show that performance can
vary significantly between different datasets; we may con-
clude that testing algorithms on one dataset is not a reliable
way to predict performance on another dataset.

A possible reason why the different classes in the Synthetic
data may be more easily distinguished than those in the other
datasets is that they were manually designed to be different
for this competition, whereas the models in the Real and
FAUST datasets were generated from body scans of human
participants taken from an existing dataset, who may or may
not have had very different body shapes. There is in fact a
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Fig. 18 Male subjects present in the Real dataset

much higher similarity between the classes in the Real dataset
than the other two. This is partly due to the template mesh
fitting procedure used in the creation of the Real dataset, as
it smooths out some of the details present in the scanned
meshes. The topological noise present in the FAUST dataset
also produces an extra challenge.

The organisers (Pickup et al.) submitted two very simple
methods, surface area and compactness. It is interesting to
note that they perform better than many of the more sophis-
ticated methods submitted, including their own. Indeed,
surface area is one of the top performing methods on the Syn-
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Fig. 19 Female subjects present in the Real dataset

thetic dataset, with the highest second tier accuracy. These
measures are obviously not novel, but they highlight that
sophistication does not always lead to better performance,
and a simpler and computationally very efficient algorithm
may suffice. Algorithms should concentrate on what is truly
invariant for each class.

For the Synthetic dataset, some methods, including surface
area, performed especially well on the child models. This
seems to be the same for other methods which are affected
by scale. Clearly, methods which take scale into account do
not readily confuse children with adults having a similar body
shape. The supDL method also exhibits this trend, but claims
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Fig. 21 Subjects present in the FAUST dataset

s
9
to be scale invariant. Ye et al. submitted a scale invariant and a

scale dependent version of their algorithm; the corresponding
retrieval results demonstrate that a scale dependent method

Table 6 The proportion of incorrect nearest neighbour results which
are objects with the same pose as the query

Author Method Real Synthetic FAUST
Giachetti APT 0.676 0.000 0.000
APT-trained 0.611 0.300 0.000
Lai HKS 0.109 0.025 0.060
WKS 0.175 0.000 0.062
SA 0.105 0.036 0.104
Multi-feature 0.276 0.000 0.169
B.Li Curvature 0.681 0.702 0.333
Geodesic 0.909 0.768 -
Hybrid 0.924 0.944 -
MDS-R 0.969 0.927 -
MDS-ZFDR 0.905 0.861 -
C.Li Spectral Geom. 0.807 0.000 0.371
Litman supDL 0.778 1.000 0.848
UnSup32 0.886 0.969 0.826
softvVQ48 0.758 1.000 0.685
Pickup Surface area 0.112 0.017 0.154
Compactness 0.093 0.092 0.059
Canonical 0.995 0.987 0.338
Bu 3DDL 0.561 0.087 0.325
Tatsuma BoF-APFH 1.000 0.993 0.909
MR-BoF-APFH 0.965 0.587 0.750
Ye R-BiHDM 0.903 0.506 0.634
R-BiHDM-s 0.732 0.625 0.692
Tam MRG 0.947 0.953 -
TPR 0.967 0.892 0.594
Table 7 Correlatiqn coefficient Real Synthetic  FAUST
between nearest neighbour
retrieval performance, and the —025 —0.50 0.46

percentage of errors which have
the same pose as the query

provides significantly improved retrieval accuracy for this
dataset.

The APT-trained and supDL methods which performed
best on the Real dataset, and were amongst the highest per-
forming methods on the Synthetic and FAUST datasets, both
took advantage of the training data. Both participants submit-
ted untrained versions of these methods (APT and UnSup32),
which performed worse. This demonstrates the advantage of
training.

Table 6 shows the proportion of incorrect nearest neigh-
bour results that share the same pose as the query model. This
gives us an idea of how much pose may cause these retrieval
errors. In Table 7 we have also presented the correlation

@ Springer



Int J Comput Vis

Table 8 Retrieval results for the Synthetic dataset without the child
models

Table 9 Retrieval results for the Real dataset when reduced to ten
classes

Author Method NN 1-T 2-T E-M DCG Author Method NN 1-T 2-T E-M DCG
Giachetti APT 0.955 0.672 0939 0.644 0.920 Giachetti APT 0.945 0813 0.951 0.437 0.943
APT-trained 0.955 0.783 0.988 0.688 0.950 APT-trained 0.968 0.870 0.974 0.438 0.961
Lai HKS 0.390 0.401 0.659 0.444 0.681 Lai HKS 0.625 0.628 0.878 0.433 0.804
WKS 0.730 0.626 0912 0.635 0.838 WKS 0.714 0.680 0.899 0.433 0.839
SA 0.610 0.591 0.961 0.644 0.816 SA 0.649 0.630 0.854 0426 0.809
Multi-feature 0.815 0.645 0973 0.661 0.873 Multi-feature 0.825 0.775 0.948 0.437 0.900
B.Li Curvature 0.520 0.451 0.733 0487 0.748 B.Li Curvature 0.281 0.232 0.391 0.253 0.528
Geodesic 0.440 0336 0.519 0.351 0.654 Geodesic 0.273 0.265 0.442 0.277 0.553
Hybrid 0.290 0.461 0.737 0.498 0.732 Hybrid 0.299 0.279 0.458 0.287 0.565
MDS-R 0.205 0.249 0422 0.281 0.567 MDS-R 0.207 0.215 0.353 0.236 0.510
MDS-ZFDR 0.185 0.204 0.367 0.235 0.541 MDS-ZFDR 0.147 0.184 0.338 0.226 0.476
C.Li Spectral Geom.  0.990 0.808 0.962 0.698 0.963 C.Li Spectral Geom.  0.594 0.413 0.592 0.324 0.688
Litman supDL 0.945 0.832 0961 0.686 0.963 Litman supDL 0931 0.878 0.980 0.439 0.958
UnSup32 0.845 0.709 0.892 0.631 0917 UnSup32 0.831 0.720 0.902 0.429 0.890
softvVQ48 0.870 0.657 0.926 0.630 0.900 softVQ48 0.847 0.728 0.909 0.432 0.897
Pickup Surface area 0.710 0.651 0.981 0.664 0.853 Pickup Surface area 0.650 0.658 0.892 0432 0.820
Compactness 0.750 0.637 0914 0.629 0.842 Compactness 0.563 0.525 0.760 0.395 0.744
Canonical 0.000 0.136 0302 0.190 0.452 Canonical 0.006 0.041 0.191 0.161 0.367
Bu 3DDL 0.905 0.682 0.888 0.607 0.897 Bu 3DDL 0.582 0.540 0.794 0.414 0.759
Tatsuma  BoF-APFH 0.405 0.517 0.726 0.510 0.768 Tatsuma  BoF-APFH 0.247 0358 0.575 0.326 0.608
MR-BoF-APFH 0.735 0.496 0.814 0.541 0.799 MR-BoF-APFH 0.182 0.205 0.335 0.224 0.500
Ye R-BiHDM 0.690 0.456 0.652 0.459 0.754 Ye R-BiHDM 0.614 0.458 0.682 0.377 0.730
R-BiHDM-s 0.730 0.508 0.791 0.537 0.800 R-BiHDM-s 0910 0.838 0.950 0.434 0.941
Tam MRG 0.060 0.151 0.270 0.176 0.474 Tam MRG 0.103 0.097 0.208 0.159 0.408
TPR 0.085 0.161 0.304 0.190 0.490 TPR 0.100 0.129 0.265 0.197 0.431

The Ist, 2nd and 3rd highest scores of each column are highlighted.
Most methods show a small drop in performance, compared with the
results of the full Synthetic dataset

coefficient between the nearest neighbour retrieval perfor-
mance and the percentage of errors having the same pose as
the query. We may expect the best performing methods to
be the most pose-invariant, and therefore produce a strong
negative correlation. We find a weak negative correlation
for the Real dataset, a slightly stronger negative correlation
for the Synthetic dataset, but a positive correlation for the
FAUST dataset. Overall this shows that the performance of
the method is not a reliable indicator of the pose-invariance
of a method. The poses for the Real and Synthetic datasets
are synthetically generated, and therefore are identical. The
poses for the FAUST dataset are produced from scans of each
real human subject imitating each of the poses, and therefore
will not be perfectly equal. This may contribute to the very
different correlation coefficient for the FAUST dataset, shown
in Table 7.

Many methods performed significantly better at retrieval
on the Synthetic dataset. The spectral geometry method of
Li et al., which performed poorly on the Real and FAUST
datasets, was one of the best performing methods on the
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The Ist, 2nd and 3rd highest scores of each column are highlighted

Synthetic dataset. Figures 9 and 10 show that this method
fell below the performance of four of the methods analysed
using precision and recall on the Real dataset and five on
the FAUST dataset, but was not outperformed by any method
on the Synthetic dataset. This suggests that there may be fea-
tures present in the synthetic models which this method relies
on to achieve its high performance, yet which are absent in
the models within the other datasets. None of the nearest
neighbour errors for this method on the Synthetic dataset
were caused by pose, and therefore this method may be
able to extract more pose-invariant features from the Syn-
thetic dataset than the other two, which may contribute to its
increased performance.

The R-BiHDM-s method submitted by Ye performed bet-
ter than most methods on the Real dataset, but exhibited the
smallest performance improvement on the Synthetic dataset,
and was therefore overtaken by many methods. This may
imply that this method performs well at distinguishing global
features, but does not take advantage of the extra local detail
that is present within the Synthetic dataset.
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The MR-BoF-APFH method by Tatsuma and Aono was
a low performer on the Real and Synthetic datasets, but
achieved the second best performance on the FAUST dataset.
The large increase in performance may be due to the large
increase in mesh resolution for this dataset. This was also the
only method which did not use the watertight version of the
FAUST dataset. As this method uses very local features, it
may be more robust to the topological noise present in the
FAUST dataset than other methods.

Figures 12, 13, 14, 15, 16, and 17 show the combined
confusion matrices for the three methods with the high-
est NN score for each dataset. These show that for the
Real dataset, the methods mostly confuse subjects with
other subjects of the same gender. This implies that the
difference in body shape due to gender is larger than the
difference within gender physiques. The largest confusion
on the FAUST dataset is also between subjects of the same
gender. For the Synthetic dataset, these methods exclusively
confuse adult subjects with other adults of the opposite
gender, but with the same physique (thin, fat, etc.). The
child subjects are sometimes confused with other child sub-
jects, but not with adults, presumably due to their smaller
size.

Some of the differences in the results between datasets
may be caused by the different number of models and classes
in each dataset. The Synthetic dataset is the only dataset
containing models of children. As we have already men-
tioned, Figures 14 and 15 show that there is less confusion
with identifying the child models than the adult models.
We therefore show the retrieval results on the Synthetic
dataset when the child models are ignored (Table 8). These
results show that most methods drop slightly in perfor-
mance, but the overall trends remain the same. The Real
dataset differs from the other two in that it has a much
larger number of classes (40, instead of 15 and 10 for
the Synthetic and FAUST datasets). We therefore gener-
ate 100 different subsets of the Real dataset, each subset
containing a random selection of 10 classes from the origi-
nal dataset. We perform retrieval on each of these subsets,
and average the results over the 100 experiments. The
retrieval results are shown in Table 9. The performance of
most methods does significantly increase when there are
fewer classes, and this demonstrates that the larger num-
ber of classes contributes to the increased difficulty of this
dataset.

6 Conclusions

This paper has compared non-rigid retrieval results obtained
by 25 different methods, submitted by ten research groups,
on benchmark datasets containing real and synthetic human
body models. These datasets are more challenging than previ-

ous non-rigid retrieval benchmarks (Lian et al. 2011, 2015),
as evidenced by the lower success rates. Using multiple
datasets also allows us to evaluate how each method per-
forms on different types of data. Both datasets obtained
by scanning real human participants proved more chal-
lenging than the synthetically generated data. There is a
lot of room for future research to improve discrimination
of ‘real’ mesh models of closely similar objects. We also
note that real datasets are needed for testing purposes, as
synthetic datasets do not adequately mimic the same chal-
lenge.

All methods submitted were designed for generic non-
rigid shape retrieval. Our new dataset has created the potential
for new research into methods which specialise in shape
retrieval of human body models.
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