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Abstract

Due to recent advances in 3D acquisition and modeling, increasingly large amounts of 3D shape data become

available in many application domains. This rises not only the need for effective methods for 3D shape retrieval,

but also efficient retrieval and robust implementations. Previous 3D retrieval challenges have mainly considered

data sets in the range of a few thousands of queries. In the 2015 SHREC track on Scalability of 3D Shape Retrieval

we provide a benchmark with more than 96 thousand shapes. The data set is based on a non-rigid retrieval

benchmark enhanced by other existing shape benchmarks. From the baseline models, a large set of partial objects

were automatically created by simulating a range-image acquisition process. Four teams have participated in

the track, with most methods providing very good to near-perfect retrieval results, and one less complex baseline

method providing fair performance. Timing results indicate that three of the methods including the latter baseline

one provide near- interactive time query execution. Generally, the cost of data pre-processing varies depending

on the method.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Line and curve generation

1. Introduction

The experimental comparison of shape retrieval methods is
important for the improvement of existing and the design of
novel methods in this area. Regularly, experimental compar-
isons are carried out as part of the evaluation in technical
publications, as well as the SHREC shape retrieval evalua-
tion efforts. So far, shape retrieval evaluation has typically
considered data sets of moderate size up to thousands of ob-
jects. For example, the dataset proposed in [LLL∗14a] con-
sisted of thousands of query and target objects, including
3D models and user queries. There, a large number of user
query sketches was obtained previously by a crowd-sourced
approach.

Considering scalable 3D retrieval is a relevant endeavor,

† Track organizers.

as some 3D repositories like Sketchup 3D Warehouse [Ske]
or TurboSquid [Tur] today comprise tens of thousands of
shapes. Also, it can be expected that with increased availabil-
ity of 3D acquisition facilities including crowd-based pho-
togrammetric methods [GAF∗10], or consumer-type sen-
sors like Microsoft Kinect, large-scale shape retrieval will
become important. Scalable approaches should provide ef-

ficient similarity computation and ranking, to answer user
queries interactively. Also, and as a pragmatic aspect, scal-
able methods should work also robustly in a fault-tolerant
way regarding outlying and degenerate models, as may be
encountered when studying large-scale 3D repositories. The
provision of large-scale retrieval benchmarks has recently
been limited by availability of real data, which often is ex-
pensive to obtain.

In this track, we increase the number of query objects by
an order of magnitude. Our benchmark is based on a set of
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Dataset Size Year

National Taiwan University [CTSO03] 10,911 2003
Princeton Shape Benchmark [SMKF04] 1,814 2004
SHREC’09 Generic Retrieval [GDA∗09] 600 2009
Toyohashi [TKA12] 10,000 2012
SHREC’13 Range Images [SMB∗14] 7,200 queries, 600 targets 2013
SHREC’14 Large-scale [LLL∗14b] 8,987 2014

Table 1: Shape retrieval benchmarks and their sizes. Note that, in general, the size of shape retrieval datasets has not been

increased in ten years.

229 non-rigid objects [SP04] which have been extended by
several other existing 3D retrieval benchmarks. For each ob-
ject, several partial objects were generated. The total bench-
mark amounts to over 96 thousand objects. The goal was
to test the scalability of current retrieval methods for cop-
ing with a large number of partial queries, and evaluating
the performance in terms of retrieval effectiveness and effi-
ciency.

Four teams have participated in the track with meth-
ods based on heat kernel descriptors in sparse coding, fea-
tures combination with learned feature weighs, diffusion de-
scriptors with quadratic form distance, and histograms of
geodesic distances. Three more complex methods provide
very good and up to near-perfect retrieval precision; one less
complex method provides fair retrieval precision. Timing re-
sults taken on current hardware configurations indicate that
the latter method provides for fast object pre-processing and
query execution. Generally, three of the methods provide
near-interactive time query execution with less than 2 sec-
onds per query. The time cost of data pre-processing varies
depending on the method.

2. Related Work

As we are living the Big Data Era, big efforts are focused
on making computational systems scalable. In the context
of multimedia information, the topic of image retrieval has
recently been addressed from the perspective of scalability.
Examples of scalable image retrieval systems have been pro-
posed by Wang et al. [WKC10] and Wu et al. [WKSS11].
Similarly in video retrieval, a good exemplary system is
Video Google [SZ03], a successful method to retrieve ob-
jects by similarity in large amounts of videos. Nevertheless,
in 3D object retrieval the scalability has not been thoroughly
studied yet, mainly due to the lack of large scale bench-
marks.

A brief review of some datasets and their sizes can give us
a better idea of the evolution of 3D retrieval datasets. Table 1
shows common datasets in the 3D retrieval community. An
interesting fact is that in ten years, the size of the datasets
for evaluation has not increased. In our opinion, this is a
clear evidence that scalability has not been a high-priority
evaluation criterion.

A few methods with scalability as central concept have
been proposed so far. Bronstein et al. [BBGO11] proposed
the Shape Google approach. The method applies the well-
known Bag-of-features approach using diffusion descriptors.
More interestingly, the adoption of a spatially sensitive Bag
of Features and the learning of binary descriptors (invari-
ant to transformations) allow to enhance the performance
of shape retrieval. It is worth noting that Shape Google was
evaluated with a dataset of 1,184 shapes. In the same direc-
tion, Litman et al [LBBC14] recently proposed a supervised
method to learn the dictionary of Bag of Features through
a sparse coding approach. The dataset used in experimenta-
tion was also the Shape Google dataset. Finally, Dadi and
Daoudi [DD13] proposed a method based on multi-core ar-
chitectures to deal with large datasets. However, in the eval-
uation the method was tested using the Princeton Shape
Benchmark (1,814 shapes).

As can be seen, although many methods could perfectly
work with real-world large-scale datasets, until now it was
not possible to test them in a large-scale scenario. Our main
motivation to create a large scale dataset is to fill the gap in
the evaluation of current approaches and their capabilities.

3. The Benchmark

This task is built upon a non-rigid shape retrieval task which
has been shown to be successful in recent years in previous
SHREC editions [LGB∗, LGB∗13]. Indeed, our decision of
building a large-scale dataset upon a non-rigid retrieval task
relies on the observation that there is a good number of meth-
ods and the achieved effectiveness is high.

Our base dataset is the publicly available collection from
Sumner [SP04]. It contains 229 non-rigid shapes catego-
rized in 9 classes. Subsequently, we populate our dataset
including unclassified objects from several publicly avail-
able shape collections such as Princeton Shape Bench-
mark [SMKF04], Konstanz database [Vra04], SHREC’ 09
Generic dataset [GDA∗09], and SHREC’ 14 Large Scale
Comprehensive Retrieval [LLL∗14b]. After including mod-
els from the previous datasets, we generate a large set of
shapes using the method proposed in [SMB∗14] to generate
simulated range images using the SHREC’ 14 Large Scale
dataset as target models. After obtaining a first large-scale

c© The Eurographics Association 2015.



I. Sipiran et al. / SHREC 2015

set of shapes, we applied a careful post-processing step in
order to repair non-manifold objects and merge objects with
more than 1 connected component.

Additionally, as many state-of-the-art approaches use
geodesic distances and heat diffusion descriptors, we did a
final check in the large dataset. We only kept the models in
which it was possible to compute the eigendecomposition of
their Laplace-Beltrami operator and their pair-wise geodesic
distances. Our final dataset only contains manifold objects
with one connected component. This pre-processing step
will guarantee that most of the current approaches work with
our dataset. In total, our collection contains 96,487 models.
The dataset, ground-truth and evaluation code can be down-
loaded in [Dat].

4. Methods

In the competition, we received six runs from four different
groups. We present the list of contributors, the name of the
technique and the abbreviation used during the evaluation:

• Roee Litman and Alex Bronstein: Supervised learning

of bag-of-features shape descriptors using sparse coding

(Sparse-BoF). The team provided only one run.
• Sungbin Choi: Geodesic distance distribution (GDD).

The team provided two runs.
• Long Lai, Li Sun, and Haisheng Li :Combined features

with a genetic algorithm (GA). The team provided only
one run.

• Ivan Sipiran and Benjamin Bustos: Signature quadratic

form distance on diffusion descriptors (SQFD). The team
provided two runs.

Next, we present the methods submitted and the configu-
rations used in the experiments.

4.1. Supervised learning of bag-of-features shape

descriptors using sparse coding

The settings described here closely follow the ones presented
in [LBBC14, P∗14]. All shapes were down-sampled to have
4,500 triangles, and scaled to have a similar area. For each
shape S in the data-set, a 16-dimensional SI-HKS [BK10]
descriptor xi was calculated for every vertex i ∈ S. The bag-

of-features representation of each xi in a dictionary D is ob-
tained by means of solving the pursuit problem

min
zi

1
2
‖xi −Dzi‖

2
2 +λ‖zi‖1. (1)

The resulting sparse codes zi were subsequently pooled into
a single histogram using mean pooling h = ∑i ziwi, with wi

being area element of point i. The resulting global shape de-
scriptor h was use for retrieval using ℓ1 distance.

The learning process of the dictionary D was done over

a disjoint set of shapes taken from the ones used in Shape-
Google [BBGO11]. An initial D was obtained by unsuper-
vised dictionary learning over randomly selected descriptors
from the training set, using the SPAMS toolbox [MBPS09].
Lastly, D has undergone supervised training using stochas-
tic gradient descent of the loss-function defined in [WS09].
The derivation of (1) was partially inspired by [MBP12].
The size of D was 64 atoms, and additionally the values of
λ and µ were set to 0.5 and 0.3, respectively. Please refer
to [LBBC14] for further details.

4.2. Geodesic Distance Distribution

We utilized geodesic distance distributions of mesh model.
Per each mesh model in the data set, 500 points are down-
sampled. Then, geodesic distances between sampled points
and all other vertices in mesh models are calculated, which
becomes 500 x N size geodesic distance matrix (GDM).
GDM is converted to a histogram having 200 bins. We
calculated dissimilarity between different mesh models by
applying similarity measure function (GDD-Lp: Euclidean
distance; GDD-Corr: Correlation measure) [SFH∗09]. This
method is rather simple compared to other more advanced
techniques, but it was efficient to compute.

4.3. Combined feature with Genetic Algorithm

Our main idea is to carefully select different kind of ap-
proaches and integrate them optimally to develop more dis-
criminative and efficient 3D shape retrieval systems. So we
extracted three feature descriptors, Heat Kernel Signature
(HKS) [SOG09], Wave Kernel Signature (WKS) [ASC11]
and Surface Area (SA) [P∗14] of the models in the dataset.
For each feature, we find a polynomial that better fits all the
descriptors in a shape. The evaluation of this polynomial in
equi-spaced values gives a descriptor for the shape. Then a
genetic algorithm was used to calculate the weight of each
feature in the computation of the final distance. Finally, ac-
cording to the weights, we formed a combination of the three
single feature descriptor by linear combination.

For the training step, we used the real dataset provided
by Pickup et al. [P∗14]. We computed three dissimilarity
matrices using the features HKS, WKS and SA. Let SHKS,
SWKS and SSA be the dissimilarity matrices for each type of
descriptors. We generated a set of chromosomes randomly,
and each chromosome contained three real numbers, which
represents the weights. We initially chose a random set of
weights [xHKS,xWKS,xSA] with xHKS + xWKS + xSA = 1 and
computed the combined dissimilarity matrix as

Snew = xHKS ×SHKS + xWKS ×SWKS + xSA ×SSA (2)

The fitness of Snew used in the genetic algorithm is defined
as f (Snew) = −∑(NN + FT + ST + E_Measure + DCG).
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For the fitness computation, the effectiveness measures were
computed using Snew as input dissimilarity matrix. We found
the best chromosome by adjusting the probability of inher-
itance, selection, crossover, and mutation operator applied
over the set of weights. Finally, we kept the best set of
weights, which were used to compute the dissimilarity ma-
trix for the current track. It is worth noting that we sub-
mit only one run where the corresponding weights were
xHKS = 0.1013, xWKS = 0.0745,xSA = 0.8242.

4.4. Signature quadratic form distance on diffusion

descriptors

The Signature Quadratic Form Distance [BUS10] provides
a flexible way to compare sets of local features between two
multimedia objects. The first step is to generate a signature
for each object in the dataset. As the track proposes a non-
rigid shape retrieval task, we chose the diffusion descriptors
as local descriptors, which have proven to be informative and
representative in the non-rigid domain. Given a shape O, we
compute a set of descriptors FO, one per each vertex in O.
Subsequently, we group the feature set FO using an adaptive
clustering algorithm. The signature of O is the set of tuples

SO = {(ci,wi), i = 1, . . . ,m} (3)

where m is the number of clusters, ci is the average descrip-
tor in the i−th cluster and wi is a weight proportional to the
number of element in the i−th cluster with respect to the
total number of descriptors in O.

The SQFD computes the distance between two signatures
using a similarity function applied to the centroid’s clusters.
A common choice is the exponential function of a scaled
version of the Lp distance. The scale factor α and the ground
distance used need to be experimentally tuned for a particu-
lar dataset. For more details, we refer to [BUS10].

For this track, we provide two configurations summarized
next:

• SQFD-HKS: 100-dimensional HKS [SOG09], ground
distance L1, α = 0.01.

• SQFD-SIHKS: 6-dimensional SI-HKS [BK10], ground
distance L1, α = 0.01.

For the computation of the diffusion descriptors, we first
normalized the area of the objects to one. We computed the
Laplace-Beltrami operator using the discretization proposed
by Sun [BSW08].

5. Experiments

This section is dedicated to present the experiments and re-
sults of our track. First we describe the setup of the compe-
tition. Next, we present the effectiveness measures used in
our evaluation. Finally we show the results and discussion.

5.1. Setup

Our dataset contains 96,487 objects. The idea is to evaluate
the capability of algorithms to retrieve non-rigid objects us-
ing this large-scale dataset. Hence, from the total number of
objects, only those from the Sumner dataset are considered
as queries. The remaining objects are considered as unclas-
sified and are not used as queries. We asked participants to
provide a distance matrix of dimension 229×98,487 for the
effectiveness evaluation. We also asked participant to pro-
vide detailed information about hardware setup and process-
ing times.

5.2. Evaluation methodology

To measure the effectiveness of submitted methods, we use
common information retrieval measures such as

• Nearest Neighbor (NN): Given a query, it is the precision
at the first object of the retrieved list.

• First Tier (FT): Given a query, it is the precision when
C objects have been retrieved, where C is the number of
relevant objects to the query.

• Second Tier (ST): Given a query, it is the precision when
2*C objects have been retrieved, where C is the number
of relevant objects to the query.

• Mean Average Precision (MAP): Given a query, its av-
erage precision is the average of all precision values com-
puted in each relevant object in the retrieved list. Given
several queries, the mean average precision is the mean of
average precision of each query.

5.3. Results

Effectiveness

Table 2 shows the results obtained for each submitted
method. A visual comparison of the same measures is pre-
sented in Fig. 1. It is clear that Sparse-BoF consistently per-
forms better in all evaluation measures. Also, the NN mea-
sure is perfect, and therefore the method always retrieve a
relevant object in the first position of the rank. The sec-
ond and third best method is SQFD-SIHKS and GA, respec-
tively. This behavior can also be appreciated in the Precision-
Recall plot in Fig. 2.

Interestingly, methods that use diffusion descriptors ob-
tain high performance. This seems to indicate the represen-
tative power of these kind of descriptors in non-rigid shape
retrieval compared to the use of geodesic distances. Clearly,
the diffusion-based features are more distinctive, and there-
fore they provide good scalability in terms of retrieval ef-
fectiveness. In contrast, the histogram of geodesic distances
obtained a comparatively low performance, which can be at-
tributed to the lower distinctiveness of such representation.

Another important corner for the analysis is the need
for a learning step in current approaches. Two approaches
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Figure 1: Effectiveness measures for the submitted methods.

Method Variant NN FT ST MAP

Sparse-BoF — 100% 96.84% 95.77% 97.70%

GDD
GDD-Lp 49.78% 42.72% 39.89% 44.99%
GDD-Corr 46.28% 39.79% 37.18% 41.89%

GA — 90.39% 75.52% 70.70% 79.28%

SQFD
SQFD-HKS 92.57% 72.27% 53.53% 77.17%
SQFD-SIHKS 93.01% 87.66% 74.66% 88.12%

Table 2: Effectiveness results of submitted methods. We show in bold the best performance for each evaluation measure.

 0

 20

 40

 60

 80

 100

 0  0.2  0.4  0.6  0.8  1

P
re

c
is

io
n

Recall

SQFD-HKS
SQFD-SIHKS

Sparse-BoF
GDD-Lp

GDD-Corr
GA

Figure 2: Precision-recall plot for all runs submitted for our

track.

(Sparse-BoF and GA) requires a learning stage where the al-
gorithm finds optimized parameters for further descriptions.
It is obvious that the learning step in Sparse-BoF is an es-
sential part of the scalability of the method in terms of re-
trieval capabilities. With respect to GA, the optimization of
the combination weights presumably ensures the exploita-
tion of several description in conjunction. On the other hand,
it is interesting to note that SQFD approaches (which do
not require learning) reached a good performance as well.

This fact is not new if we consider previous evidence of high
performances in the application of SQFD in the image do-
main [LGS13].

Efficiency

A central point in our evaluation is also the efficiency of
retrieval systems. To cope this goal, we asked participants
to report the time needed to process the large collection
and make the retrieval queries. Obviously, participants used
different hardware equipments for the competition, hence
the reported times are dependent on the platform. Although
these times are not directly comparable, we still believe that
this information is valuable to be presented and evaluated.
A more convenient way of evaluation is the theoretical com-
plexity of the evaluated algorithms, which is a future direc-
tion in this research to enhance the scalability evaluation.

A summary of the system configurations and times are
shown in Table 3. We divided the reported times in off-
line and on-line processing. Off-line processing contains the
time required by the methods to pre-process the entire col-
lection. These pre-processing steps are commonly dedicated
to transform the input shape collection into a intermediate
representation, which is finally used in the retrieval system.
Instead, on-line processing consist of all the required steps
to compute a similarity ranking given a query shape. Typi-
cally, on-line processing consist of the transformation of the
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Method Equipment Off-line Proc. Time On-line Proc. Time

Sparse-BoF Two 2GHz Xeon Proces-
sors - 64GB RAM

Pre-processing/shape: 10 sec.
Pre-processing includes: LBO
and its eigendecomposition,
descriptor computation and
sparse coding.
Dictionary learning: 10 min.
(unsupervised), 3h. (super-
vised).

Pre-processing query: 10 sec.
Query time: 0.5 sec.

GDD Intel Core i7-4770 @
3.40GHz - 16GB RAM

Pre-processing/shape: 1.55
sec.
Pre-processing includes:

Geodesic distances computa-
tion and the histogram.

Pre-processing query: 1.55
sec.
Query time: 0.62 sec. (GDD-
Lp), 0.96 sec. (GDD-Corr)

GA Two Intel Xeon CPU E5620
Processors - 12 GB RAM

Preprocessing/shape: 41 sec.
Pre-processing includes: com-
putation of HKS, WKS and SA.
Genetic algorithm: 290 sec.

Pre-processing query: 41 sec.
Query time: 1.27 sec.

SQFD Intel Core i7-4770
3.40GHz - 32GB RAM

Pre-processing/shape: 15 sec.
Pre-processing includes: LBO
and its decomposition, descrip-
tion and signatures computa-
tion.

Preprocessing query: 15 sec
Query time: 2 sec.

Table 3: Summary of processing times reported by track participants.

input query into the intermediate representation and the sub-
sequent similarity search.

Methods using diffusion descriptors (Sparse-BoF, GA,
and SQFD) spent much of the time in the computation of
the eigendecomposition of the Laplace-Beltrami operator,
which indeed dominates the time measurements in general.
In contrast, the histogram of geodesic distances (GDD) is al-
most one order of magnitude faster than the other methods.
This fact evidences a clear trade-off between effectiveness
and efficiency. The diffusion-based methods can obtain high
effectiveness measures at expenses of a high computation
time. It is important to remark that these methods require
at least ten seconds to process an input query and deliver a
retrieval result. Therefore, the adoption of these methods in
real-world application will largely depend on whether users
are interested in real-time responses or not.

Methods that use Euclidean distances (Sparse-BoF and
GDD-Lp) to perform the final similarity search are faster
than the quadratic form counterpart. The SQFD distance is
a quadratic form that requires the computation of pair-wise
distances between elements of the signature, and therefore it
is more time-consuming than performing Lp.

Discussion

If we focus our attention on the effectiveness, we can con-
clude that current approaches are scalable. At least it holds
for the case of non-rigid shape retrieval. From our experi-

ments, one of the most important learned lesson is that the
use of diffusion descriptors guarantees a superior perfor-
mance, even in large-scale datasets. The near-to-perfect per-
formance of Sparse-BoF is also a strong evidence of the ma-
turity of tools for the analysis of non-rigid shapes, which can
be exploited for the implementation of high-performance re-
trieval systems.

Nevertheless, the main concern is regarding scalability in
terms of efficiency. In this direction, we noted that if some
of the evaluated approaches would be implemented in a re-
trieval system, users would have to wait at least ten seconds
to obtain a result given a query. The computation of diffusion
descriptors depends on a time-consuming pre-processing
step (eigendecomposition of the Laplace-Beltrami opera-
tor) which slows down the retrieval system response. In this
sense, we could say that the current approaches are still far
from being scalable. On the other hand, the query response
time can be considered close to interactive for the studied
methods and on our 96.000 object benchmark. This situation
may however, change as even larger data sets may become
available in the future, e.g., by crowd-sourced and mobile
3D acquisition approaches. Leveraging indexing techniques
from the database research domain could further improve the
response times of 3D retrieval systems.
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6. Conclusions and Future Work

We presented a 3D retrieval benchmark one order of mag-
nitude larger than typical previous benchmarks, to test for
scalability of current non-rigid 3D shape retrieval method.
We evaluated the scalability in terms of effectiveness and ef-
ficiency. For the competition, four teams submitted results
which were evaluated using commonly used measures for
retrieval systems, as well as the time required to process the
dataset and provide a retrieval result. In general, for the case
of non-rigid shape retrieval, we can conclude that the use of
appropriate descriptors makes systems scalable in terms of
effectiveness. This can be appreciated in the near-to-perfect
effectiveness achieved by one of the submitted technique.
This result encourages us to think that the progress has been
fruitful in this area. Nevertheless, it would be important to
go one step further and start thinking of more challenging
datasets, not only for non-rigid shape retrieval tasks but also
for generic retrieval. On the other hand, it is clear that we
are far from providing real-time rates to answer a query,
mainly due to the time-consuming processing required to
pre-process the shapes. Although it may change in the fu-
ture when more powerful computers will be available, we
also should notice that we require to pay attention on more
efficient shape analysis tools.

In the future, we plan to enhance the current dataset, in-
cluding more classes and more non-rigid objects. The idea is
to use this benchmark as basis for even more larger datasets.
Additionally, we would like to extend the experimentation
by analyzing the dinamicity of the dataset. It means, we
would like to simulate the behavior of classical database sys-
tems which grow with respect to time. The idea is to evaluate
the effectiveness and efficiency of current methods and study
the performance degradation in this situation.
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