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ABSTRACT

A method for removing impulse noise from audio signals by
fusing multiple copies of the same recording is introduced in
this paper. The proposed algorithm exploits the fact that while
in general multiple copies of a given recording are available,
all sharing the same master, most degradations in audio sig-
nals are record-dependent. Our method first seeks for the
optimal non-rigid alignment of the signals that is robust to
the presence of sparse outliers with arbitrary magnitude. Un-
like previous approaches, we simultaneously find the opti-
mal alignment of the signals and impulsive degradation. This
is obtained via continuous dynamic time warping computed
solving an Eikonal equation. We propose to use our approach
in the derivative domain, reconstructing the signal by solving
an inverse problem that resembles the Poisson image editing
technique. The proposed framework is here illustrated and
tested in the restoration of old gramophone recordings show-
ing promising results; however, it can be used in other ap-
plications where different copies of the signal of interest are
available and the degradations are copy-dependent.

Index Terms— Audio restoration, impulse noise re-
moval, samples fusion, multi-signal alignment, dynamic time
warping, Eikonal equation.

1. INTRODUCTION

Digital audio restoration has been widely studied in the liter-
ature for several decades, see [1, 2] for reviews. One of the
most common types of degradation is impulse noise, that is,
a localized distortion affecting the signal. Restoring this wide
class of degradations arises naturally in many modern digital
signal processing applications. In this work we will use the
restoration of gramophone recordings as the illustrative exam-
ple. In this particular case, the problem receives the name of
de-clicking and de-scratching, and has been extensively stud-
ied in the literature.

Most of the work in audio restoration has been performed
considering that only one copy of the signal is available [1,
2, 3], while this is not the case in many practical scenarios.
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The single-copy processing is motivated by several reasons.
First, it is common practice in audio transfer and digitaliza-
tion to select the best available record, and perform on it all
the acquisition and signal restoration procedures [4]. Second,
the quality of old recordings generally differs significantly,
and many of the available copies are of considerably poorer
quality than the best one. Finally, most available restoration
systems can be operated in manual mode, allowing the user to
search for the (time segment-dependent) parameters that pro-
duce the best results, and even modify any artifact introduced
in the processing. Our goal is to obtain such high quality re-
sults by an automatic model free procedure, exploiting all the
available recordings.

De-clicking methods normally start with click detection,
where the objective is to find the distorted audio fragments.
Classical approaches are based on outliers detectors, assum-
ing a variety of models for the audio signal. Techniques based
on autoregressive (AR) models have been demonstrated to be
particularly successful [1]. In general, the results are mod-
erately dependent on the selected parameters, which in turn
depend on the often unknown level of degradation and the
characteristics of the musical content.

Once the location of the distorted fragments has been de-
termined, the remaining task consists of restoring the affected
samples. Standard click removal algorithms use interpola-
tion schemes which set the missing samples to some esti-
mates of their true value based on the uncorrupted surround-
ing samples. Classical approaches typically use AR model-
ing or Bayesian estimation to recover the distorted samples
[1, 5], while more recent methods employ sparse representa-
tions to model time-domain audio frames [6]. In [7], an ele-
gant framework that fills in the missing samples by copying
the statistical properties of the signal in the surrounding of the
gap is presented. Note that model-based methods will always
suffer from model and data inconsistency as well as parameter
sensitivity, both for the detection and restoration steps.

In addition to computational burdens and model depen-
dency, single signal methods present another important draw-
back: they are fundamentally restricted to working only with
degradations well-localized in time. Due to the non-stationary
nature of audio signals, meaningful model-based data recon-
struction can only be achieved for relatively short-duration
portions of audio signals. In [7] the authors explain that “For
certain long lasting disturbances, e.g., those caused by really



large scratches, human intervention is necessary as it would
be very dangerous to allow the system for detection and re-
placement of more than 100 “bad” samples in a row in an
unsupervised, i.e., automatic, mode. Otherwise, it could po-
tentially behave in an unpredictable manner.”

In the case of gramophone recordings, the most disturb-
ing degradations are record-dependent. Clicks and scratches
appear due to surface imperfections in the record itself [4].
The largest portion of them are the consequence of aging of
the record medium: wear, groove damage, and mishandling.
Since these degradations occur at random locations for each
record, a reasonable assumption is that different records are
affected in different positions. The main contribution of this
paper is to develop an efficient and simple de-clicking algo-
rithm exploiting this observation as described in the sequel.1

2. MULTI-SIGNAL RESTORATION

The detection of the clicks and recovery of the missing or cor-
rupted samples is performed fusing several copies of the same
master recording. With this procedure we can accurately de-
tect and restore the affected audio fragments while avoiding
the difficult (and ambitious) problem of explicitly modeling
the audio signals. Our main point is that, even if some of the
available signals are of poorer quality than the best available
one, they can still provide crucial information for detecting
and restoring the distortions.

We begin by presenting in this section a general varia-
tional framework for robust multi-signal alignment. In this
setting, the optimal alignment of all the signals and the im-
pulse noise are obtained simultaneously. We model the mis-
alignment via a continuous version of dynamic time warping
that can be obtained by solving the Eikonal equation [8]. The
use of the time warping allows us to depart from the widely
used unrealistic assumption that the impulse noise does not
distort the timing of the recording. The click artifacts are
modeled as sparse outliers, following the spirit of the recent
works in robust principal component analysis [9, 10] and ro-
bust image alignment [11].

It is common practice to high-pass filter the input sig-
nal, as a pre-emphasis filter, in order to enhance the pres-
ence of the impulses and obtain a more robust detection of
the location of the distorted samples. In Section 3, we pro-
pose to perform the restoration in the derivative domain as a
pre-emphasis. The restored signals are then reconstructed by
solving an inverse problem that resembles the Poisson image
editing technique proposed in [12]. To conclude, in Section 4
we evaluate the proposed approach with several experiments
using real recordings.

1Randomness in the position of the degradation is not limited to this sce-
nario, and can appear for example as a result of data loss in wireless trans-
mission to multiple receivers, or distinct compression artifacts in multiple
copies. The underlying ideas here introduced are applicable to these scenar-
ios as well.

To the best of our knowledge, [13] is the only work that
considers the use of multiple records of the same signal for
audio de-noising. In this patent, the author proposes a method
for noise reduction in old recordings by averaging several dif-
ferent copies. The method is based on a heuristic sample-
by-sample alignment, and does not consider the presence of
outliers. All signals are independently aligned to a manually
selected master copy in contrast to the collaborative approach
proposed in this work. In addition, the inclusion of continu-
ous DTW via Eikonal equations is novel for this application
as well. Finally, our overall approach is to use the best part of
each signal, as in manual systems, and not an average.

Despite being very different, the proposed method goes in
the same direction as the approach recently used in [14, 15]
for extracting the music and sound effects track of a movie
from several a set of soundtracks of a movie in different lan-
guages.

2.1. Problem statement

Let us be given p signals xi(t), i = 1, . . . , p; t ∈ T . The
signals are misaligned and corrupted by click artifacts. We
seek for the time warps γi : T → T and a common master
signal m(t) such that each xi(γi(t)) ≈ m(t) + oi(t). The
outlier signals oi(t) represent the artifacts in each xi(t). This
multi-signal restoration problem can be stated in a variational
setting as the minimization of the functional

F(m, o1, . . . , op, γ1, . . . , γp) =

=
1

2

p∑
i=1

∫
T

(xi(γi(t))− oi(t)−m(t))2dt

+λ

p∑
i=1

∫
T

|oi(t)|dt, (1)

The regularization term with the `1 norm on oi(t) promotes
solutions with energy concentrated in small regions in time,
which is characteristic of impulsive noise.

The optimization can be performed by alternating the
minimization over m and the oi’s with fixed γi’s, and over
each γi while keeping the rest of the variables fixed. In what
follows, we describe in details both minimization steps.

2.2. Continuous time warping

Let us fix all the variables of F except for one single γi for
some index 1 ≤ i ≤ p. To simplify notation, we will denote
z(t) = oi(t) + m(t), x(t) = xi(t), and γ(t) = γi(t). Let us
further define the function

e(t, t′) =

∫
(x(τ − t)− z(τ − t′))2dτ (2)

describing the cost incurred by aligning a window of x cen-
tered at t to a window of z centered at t′. The minimization
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Fig. 1. Algorithm described on Section 2 applied to the original signals (left column); and to first-order derivatives (right
column). First row: three 45 ms fragments of unaligned audio signals (or derivatives) with clearly audible click artifacts.
Second row: the aligned signals and the reconstructed master signal m (bold black). Third row: the estimated outliers.

of F with respect to γi can now be stated as minimizing the
path integral

min
γ

∫
γ

e = min
γ

∫
T

e(γ(t), t)dt. (3)

Similar problems are encountered in optics, where the
minimum path γ represents the path of a light beam propa-
gating in an inhomogeneous medium with the refractive index
e. Using Maxwell equations, it has been shown that the light
propagation is governed by the non-linear first order partial
differential equation of the form ‖∇E‖2 = e. This equation
is usually known as the Eikonal equation and its solution E
as the eikonal [8]. The characteristics of the Eikonal equation
are the light propagation paths,

γ̇(t) =
∇E(γ(t), t)

e(γ(t), t)
. (4)

While the Eikonal equation does not have continuously differ-
entiable solutions in the classical sense, existence and unique-
ness of the so-called viscosity solutions has been established
[16]. Using this interpretation, finding the globally optimal
time warp γi of xi can be reduced to integrating the vis-
cosity solution of the Eikonal equation with the refractive
index described by the corresponding e. We discretize the
Eikonal equation on a Cartesian grid describing the narrow
band γ(t) ∈ [t − h, t + h]. The value of h can be obtained
by roughly aligning small frames of the signals xi. We use
the multi-stencil fast marching method [17] to solve the dis-
cretized Eikonal equation, and a Runge-Kutta method to inte-
grate the characteristic equation for the timewarp γi.

2.3. Robust estimation of the master signal

Let us now fix the oi’s and the time warp transformations γi,
denoting by yi(t) = xi(γi(t)). The minimization of F now

reduces to

min
m

p∑
i=1

∫
T

(yi(t)− oi(t)−m(t))2dt,

for which the Euler-Lagrange equation gives the minimizer as

m(t) =
1

p

p∑
i=1

(yi(t)− oi(t)). (5)

Fixingm, all the time warp transformations and all the outlier
terms except for one oi for some i, we obtain

min
oi

1

2

∫
T

(yi(t)− oi(t)−m(t))2dt+ λ

∫
T

|oi(t)|dt,

for which the minimizer is given by

oi(t) = σλ (yi(t)−m(t)) . (6)

Here σλ(x) = sign(x) max{|x| − λ, 0} denotes soft thresh-
olding (shrinkage). Alternating (5) and (6) with the initializa-
tion oi ≡ 0 yields the robust estimate of the master signal m
and the outliers oi.

3. DERIVATIVE DOMAIN RESTORATION

Sharp discontinuities of small magnitude in a signal trans-
late into low-energy distortions in terms of the `2 norm but
create severe audible artifacts. This type of click artifacts
are not well captured by the model presented in Section 2.1
since they can be absorbed by the data fitting term. In the
derivative domain, however, these type of distortions are am-
plified and can be much better captured by the outlier signal.
The derivative acts as a pre-emphasis filter, which is com-
mon practice in audio processing. We propose to apply the
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Fig. 2. e(γ(t), t) plotted as the function of τ = γ(t) − t
(vertical axis), and t (horizontal axis) in ms. The optimal time
warp is depicted in bold red. w was set to an 8 ms Hamming
window. Time axes are in 44.1 KHz samples.

framework described in Section 2 to the derivative of the sig-
nals. Specifically, we assume that the signals verify the model
x′i(γi(t)) ≈ m′(t) + o′i(t). The algorithm then finds the set
of m′, o′i’s and γi’s that minimizes F .

Note that when running the robust joint alignment in the
derivative domain a post-processing step needs to be applied
in order to obtain the restored signals. We propose to use
the support of the outlier signal for finding the location of
the impulse noise and then use the estimated master m′(t) to
guide the interpolation of the missing samples in the signal
domain. For simplicity, we consider the case in which we
have an isolated interval of missing components, say TG, for
a j-th signal in the set, xj . More complex patterns of missing
data can be handled in a similar way.

We propose to recover the signal xj using a guided inter-
polation technique that resembles the Poisson image editing
methodology [12], consisting of solving,

min
x

∫
TG

(x′ − x̂′j)2 s.t. x|Ω = xj (7)

where Ω represents the extreme points of the missing interval.
Problem (7) can be discretized as follows. Let x ∈ Rn

be the signal to be reconstructed, assuming that the interval
T contains n equally spaced samples. With a slight abuse of
notation, we also use TG = [i0, . . . , i0 + m] to denote the m
samples corresponding to the continuous interval TG. Then
we propose to solve,

min
x∈Rm

||Dx− x̂′j ||2F s.t.
{

x[1] = x[i0]
x[m] = x[i0 +m],

(8)

where ||.||F represents the Frobenius norm, and D ∈ Rm×(m−2)

is a linear operator computing the derivatives via finite differ-
ence in the interior points of TG. Problem (8) is a quadratic
program with simple linear equality constraints. The solution
of (8) needs to satisfy the following linear equations,

DTDx = DTx̂′j , x[1] = x[i0] x[m] = x[i0 +m],

0 10 20 30 40 50 60 70 80 90

0 100 200 300 400 500 600

Fig. 3. Examples of reconstruction (red) of affected intervals
using the derivative editing technique. The original signal is
shown in blue. Time axes are in 44.1 KHz samples.

which can be solved efficiently using iterative methods.

4. EXPERIMENTS

We tested our framework in a variety of real examples. The
records were played on a commercial turntable with a spin-
ning speed of 45 RPM. The acquisition was done with Audac-
ity2 software with 16 bits and a sampling rate of 44.1 KHz.
The gain was adjusted to prevent saturation at all times. Sig-
nals were stop-band filtered to eliminate the 50 Hz hum due to
the power transmission interference. Fixed filter differences
were compensated by equalizing the spectral components to
match the median across signals. This seems sufficient when
signals are acquired with the same device. In more general
settings equalization schemes as in [18] could be required.

Figure 1 shows the results obtained by running the al-
gorithm described in Section 2 on both the signal (left) and
derivative (right) domains. In this fragment all three signals
are affected by clearly audible and visible clicks. One can see
that outlier signals capture the click artifacts. One can see that
in the derivative domain, the artifacts are amplified enabling
the detection of clearly audible yet almost invisible artifacts.

The algorithm is capable of precisely aligning long seg-
ments of audio, since DTW can capture the complex patterns
of the misalignment between signals. Note that this would be
very difficult to model with a parametrized family of transfor-
mations. In Figure 2 we show an example of an optimal time
warp obtained aligning a signal to the estimated mean.

Finally, we show the reconstruction obtained using the
guided interpolation described in Section 3. Figure 3 show
the interpolation of an affected signal. Note that the interval
contains several hundred samples, which would be very chal-
lenging for a model based approach.

2http://audacity.sourceforge.net
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