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ABSTRACT

Traditionally, NMF algorithms consist of two separate stages:
a training stage, in which a generative model is learned; and a
testing stage in which the pre-learned model is used in a high
level task such as enhancement, separation, or classification.
As an alternative, we propose a task-supervised NMF method
for the adaptation of the basis spectra learned in the first stage
to enhance the performance on the specific task used in the
second stage. We cast this problem as a bilevel optimization
program that can be efficiently solved via stochastic gradient
descent. The proposed approach is general enough to han-
dle sparsity priors of the activations, and allow non-Euclidean
data terms such as β-divergences. The framework is evaluated
on single-channel speech enhancement tasks.

Index Terms— Supervised learning, tast-specific learn-
ing, bilevel, NMF, speech enhancement.

1. INTRODUCTION

The problem of isolating or enhancing a speech signal
recorded in a noisy environment has been widely studied
in the audio processing community [1, 2]. It becomes par-
ticularly challenging in the presences of non-stationary back-
ground noise, which is a very common situation in many
applications encountered, e.g., in telephony. We approach
this problem as a monaural source separation method by
modeling the speech as one source, and the noise as the
other. This is a natural approach when the characteristics of
both the signal of interest and the noise vary throughout time
[3, 4, 5, 6].

The decomposition of time-frequency representations,
such as the power or magnitude spectrogram in terms of el-
ementary atoms of a dictionary, has become a popular tool
in audio processing. In particular, non-negative matrix fac-
torization (NMF) [7], and its probabilistic counterpart, the
probabilistic latent component analysis (PLCA) [8], were
shown effective for various speech processing tasks such as
speech separation [9, 10], denoising [4, 6, 11], and robust
automatic speech recognition [12, 13], among many others.

NMF and PLCA produce high quality separation results
when the dictionaries for different sources are sufficiently dis-
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tinct. There is naturally a compromise between the approxi-
mation of the training data and tightness of the model: the
more general is the dictionary the higher is the chance it will
include elements that match spectral patterns in the competing
sources. In order to mitigate this problem, recent approaches
have proposed alternative models constraining the solution in
meaningful ways, as for example, by imposing sparsity of the
activations [10, 14].

Particularly good performance of NMF-based speech en-
hancement is achieved in supervised regimes, that include an
offline training stage with access to examples of the clean
speech signal and, sometimes, of the noise. Separate dictio-
naries for the speech and the noise are constructed during
the training stage. However, the mismatch between the op-
timization objective used to train the dictionaries and that
used to perform the actual estimation at testing time results
in suboptimal performance, especially when the speech and
the noise signals are of similar nature. In this paper, we pro-
pose a supervised dictionary learning scheme that is tailored
for the specific task of signal denoising or separation. Fol-
lowing recent ideas proposed in the sparse coding [15], our
training scheme is formulated as a bilevel optimization prob-
lem, which can be efficiently solved using standard stochastic
optimization techniques. These ideas were recently used
for enhancing the performance of NMF based music tran-
scription systems [16]. In this work, we adapt them to the
speech enhancement context and extend to more general
β−divergences as the fitting cost.

It is worth mentioning that there is much additional struc-
ture in speech (as well as in the noise) which is not sufficiently
(or at all) exploited in the method discussed in this work. At
testing, the proposed method, like standard NMF approaches,
treats different time-frames independently, ignoring the tem-
poral dynamics of speech signals. Recent studies have pro-
posed regularized variants of NMF or PLCA trying to over-
come this limitation, including co-occurrence statistics of the
basis functions [3], smoothness of the activation coefficients
[17], and learned temporal dynamics [5, 18, 19]. In all these
methods the model is expressed as the minimization of a cost
with a data fitting term and some structure-promoting penal-
ties. We argue that many of these models could also bene-
fit from the approach discussed in this paper, since they also
share the mismatch between the optimization objective used
to train the models and that used at estimation.



2. NMF SPEECH ENHANCEMENT

NMF-based denoising techniques typically operate on the
(non-negative) magnitude or the power spectrum. Given the
noisy signal V ∈ Rm×n comprising m frequency bins and
n temporal frames, NMF attempts to find the non-negative
activations Hs ∈ Rq×n and Hn ∈ Rr×n best representing
the speech and the noise components, respectively, in two
fixed dictionaries Ws ∈ Rn×q and Wn ∈ Rn×r. This task is
achieved through the solution of the minimization problem

min
Hs,Hn≥0

D(V|WsHs + WnHn) + λψ(Hs,Hn). (1)

The first term in the optimization objective is a divergence
measuring the dissimilarity between the input data and the es-
timated channels. Typically, this data fitting term is assumed
to be separable,

D(A|B) =
∑
i,j

D(aij |bij).

Significant attention has been devoted in the literature to the
case in which the scalar divergence D belongs to the family
of the so-called β-divergences [20],

Dβ(a|b) =


a
b − log a

b − 1 : β = 0,
a log a/b+ (a− b) : β = 1,

1
β(β−1) (aβ + (β − 1)bβ − βabβ−1) : otherwise.

This family includes the three most widely used cost func-
tions in NMF: the squared Euclidean distance (β = 2), the
Kullback-Leibler divergence (β = 1), and the Itakura-Saito
divergence (β = 0). For β ≥ 1, the divergence is convex. The
case of β = 0 is attractive despite the lack of convexity, due
to the scale-invariance of the Itakura-Saito divergence, which
makes the NMF procedure insensitive to volume changes

The second (optional) term in the minimization objective
is included to promote some desired structure of the activa-
tions. This is done using a designed regularization function ψ
and its relative importance is controlled by the parameters λ.

Once the optimal activations are solved for, the spectral
envelopes of the speech and the noise are estimated as WsHs

and WnHn, respectively. Since these estimated speech spec-
trum envelope contains no phase information, speech signal
is estimated from the mixture by Wiener filtering.

In supervised NMF, the speech and noise dictionar-
ies are trained independently from available training data.
The underlying assumption of this approach is that the
speech and the noise signals forming the mixture are suf-
ficiently distinct to be unambiguously decomposed into
V ≈ WsHs + WnWn. However, this assumption is of-
ten violated, e.g., in the presence of multitalker babble noise,
when the learned speech and noise dictionaries might be
very similar (or coherent). In other words, the independently
trained dictionaries do not ensure that the solutions WsHs

and WnHn obtained from (2) will resemble the original
components of the mixture.

2.1. Case study

The method proposed in this paper, described in Section 3,
can be applied to a large family of approaches following the
supervised NMF paradigm. In this paper, we opted to use a
sparsity-regularized version of NMF as a case study. In this
case, the regularizer is given by the `1 norm,

min
Hs,Hn≥0

D(V|WsHs + WnHn) + λs‖Hs‖1

+λn‖Hn‖1 + µ
2 (‖Hs‖22 + ‖Hn‖22). (2)

For technical reasons, that will be clear in Section 4, we also
include an `2 regularizer on the activations. The speech dic-
tionary is trained in the supervised regime by solving

min
Hs,Ws≥0

D(Vs|WsHs) + λs‖Hs‖1 + µ‖Hs‖22 (3)

on a training set Vs of clean speech signals. A similar proce-
dure is performed independently for the noise dictionary.

3. TASK-SPECIFIC SUPERVISED NMF

The main motivation of our paper is the realization that the
optimization problem (2) is merely a proxy to the estimation
of the speech signal, and that the standard dictionary learn-
ing does not guarantee that its solutions will produce the best
speech estimate even on mixtures created from the training
data. Ideally, we would like to train the dictionaries that ex-
plicitly maximize the performance of the specific task at hand,
namely, the separation of speech from the background noise.

In what follows, we denote the solutions of (2) by
H∗

s (V,W) and H∗
n(V,W), where V ≈ Vs + Vn (the sum

is approximate due to the non-linear effects of the phase),
W = [Ws,Wn] is a matrix concatenating both speech and
noise dictionaries, and H∗ is the vertical concatenation of
the optimal activations such that the product WH∗ is well
defined. We cast the task-specific NMF problem as the mini-
mization of

min
Ws,Wn≥0

`(Vs,Vn,Ws,Wn,H
∗(V,W)), (4)

where ` is a cost function measuring how well the speech and
the noise signals are separated. In this work we use a cost of
the form

D(Vs|WsH
∗
s (V,W)) + αD(Vn|WnH∗

n(V,W)), (5)

where α is a parameter controlling the relative importance of
background recovery; typically, one would set α = 0 in a
denoising application, and α = 1 in a source separation ap-
plication. Naturally, this is just an example, one could con-
sider other types of cost functions for evaluating the quality
of the separation (e.g., perceptually motivated measures). We
also imposed the norm of the columns of Ws and Wn to



be smaller or equal than one as standard in sparse dictionary
learning [21].

Note that the objective of (4) depends on the minimizers
H∗

s and H∗
n of the estimation problem (2). Such optimiza-

tion problems are referred to as bilevel. In what follows, we
leverage the recent development in bilevel optimization tech-
niques for supervised dictionary learning [15] to formulate a
practical numerical scheme for the solution of (4).

4. OPTIMIZATION

As NMF, the bilevel optimization problem (4) is non-convex.
Hence, we aim at finding a good local minimizer. Bellow
we describe the general optimization algorithm used for this
purpose.

4.1. Stochastic gradient descent

Problem (2) has a unique solution when β ≥ 1 and µ > 0,
due to the strict convexity of the objective. In this situation,
a local minimizer of (4) can be found via (projected) stochas-
tic gradient descent (SGD) [22]. SGD is a gradient descent
optimization algorithm for minimizing an objective function
expressed as a sum or average of some training data of an
almost-everywhere differentiable function. At each iteration,
the gradient of the objective function is approximated using a
randomly picked sub-sample.

For solving (2) the process goes as follows: we first
randomly draw a speech sample and a noise sample from
the training data and sum them together to obtain a mixture
sample. We denote by vi, vin and vis the spectral sam-
ples of the mixture, noise, and speech at iteration i respec-
tively. Then the combined dictionary at iteration i + 1,
Wi+1 = [Wi+1

s ,Wi+1
n ], is obtained by

Wi+1 ← P(Wi − ηi∇W`(vis,v
i
n,W

i
s,W

i
n,h

∗(vi,Wi))),

where 0 ≤ ηi ≤ η is a decreasing sequence of step-sizes, and
P is an operator that projects a matrix to be non-negativete
and have columns with norm smaller or equal than one. Note
that the learning requires the gradient∇W`, which in turn re-
lies (via the chain rule) on the gradient of∇Wh∗(v,W) with
respect to W. Even though h∗(v,W) is obtained by solving
a non-smooth optimization problem, it is almost everywhere
differentiable, and one can compute its gradient with respect
to W in a closed form. In the next section, we briefly sum-
marize the derivation of the gradients∇W`.

Following [15], we use a step size of the form ηi =
ηmin(1, i0/i) in all our experiments, which means that a
fixed step size is used during the first i0 iterations, after
which it decays according to the 1/i annealing strategy. We
set in all our experiments i0 to be half of the total number
of iterations. A common heuristic used in practice for ac-
celerating the convergence speed of SGD algorithms consists

randomly drawing several samples (a minibatch) at each it-
eration instead of a single one. A natural initialization of the
speech and noise dictionaries is the individual training via the
solution of (3), as in standard supervised NMF denoising.

4.2. Gradient computation

We consider (2) in vectorial form, i.e., matrices with a single
column. Let us denote by Λ the active set of the solution of
(2), this is, the indexes of the non-zero coefficients of h∗. We
will use the sub-index Λ to indicate the sub-vector restricted
to the active set, e.g., h∗

Λ. The first-order optimality condi-
tions of (2) require the derivatives with respect to hΛ to be
zero,

WT
Λφ + pΛ + µh∗

Λ = 0, (6)

where WΛ is the matrix retaining only the columns of the
dictionary associated with the active set, p is a vector which
takes the value λs and λn in the coefficients of Λ belong-
ing to h∗

s and h∗
n, respectively, and zero otherwise, and φ =

(WΛh∗
Λ)β−2 � (WΛh∗

Λ − v), where the product � and the
exponential are element-wise operations.

A key observation is that, almost surely, the set of active
constraints in the solution of (2) remains constant on a local
neighborhood of v and W [23]. That is, for small changes
in the dictionary, the active set Λ remains constant. Based on
this property, we know that only the gradient∇WΛ

h∗ will be
non-zero. Changes in the columns of W that do not affect the
coefficients in Λ do not change the cost function.

Taking the derivative in (6) with respect to WΛ we obtain,

dWT
Λφ + WT

ΛΦ(dWΛh∗
Λ + WΛdh

∗
Λ) + µdh∗

Λ = 0, (7)

where we used d to denote the differentials, and

Φ= diag
(
(WΛh∗

Λ)β−2+(β−2)(WΛh∗
Λ)β−3�(WΛh∗

Λ−v)
)
.

Invoking the chain rule, we have

∇W` = trace(∇h∗`Tdh∗) +∇W
ˆ̀, (8)

where ∇W
ˆ̀ represents the gradient of ` with respect to W

assuming h∗ fixed. Combining (7) and (8) follows that

∇W` = φξT + ΦWΛξh∗
Λ

T
, (9)

where ξ = Q∇h∗`, and Q = (WT
ΛΦWΛ +µI)−1. Note that

the size of the matrix being inverted is given by the sparsity
level of the representation.

5. EXPERIMENTAL RESULTS

Data sets. We evaluated the separation performance of the
proposed methods on a subset of the GRID dataset [24].
Three randomly chosen sets of distinct clips each were used



Fig. 1: Evolution of the average high level cost function (left) and the average SDR (in dB) on the validation set with the SGD iterations.

for training (500 clips), validation (10 clips), and testing (50
clips). The clips were resampled to 8 KHz. For the noise sig-
nals we used the AURORA corpus [25], which contains six
categories of noise recorded from different real environments
(street, restaurant, car, exhibition, train, and airport). As be-
fore, three sets of distinct clips each were used for training
(15 clips), validation (3 clips), and testing (15 clips).

Evaluation measures. As the evaluation criteria, we used
the source-to-distortion ratio (SDR), source-to-interference
ratio (SIR), and source-to-artifact ratio (SAR) from the BSS-
EVAL metrics [26]. We also computed the standard signal-
to-noise ratio (SNR). When dealing with several frames, we
computed a global score (GSDR, GSIR, GSAR and GSNR)
by averaging the metrics over all test clips from the same
speaker and noise weighted by the clip duration.

Training setting. The same training settings were used in all
experiments. We used dictionaries of size 60 and 10 atoms for
representing the speech and noise, respectively. These values
were obtained using cross-validation. We used λs = 0.1 and
λn = 0 (which means that no sparsity was promoted in the
representation of the noise) and µ = 0.001. As the example,
we chose β = 1, which corresponds to the Kullback-Leibler
divergence, and α = 0 in the high level cost (4). For the
SGD algorithm we used η = 0.1 and minibatch of size 50.
These were obtained by trying several values of during a small
number of iterations, keeping those producing the lowest error
on a small validation set. All training signals where mixed at
5 dB.

Results. Figure 1 shows the evolution of the high level cost
(4) and the SDR on the validation set with the SGD iterations.
The algorithm converges to a dictionary that achieves about 2
dB better SDR on the validation set. Tables 1 and 2 show
some initial results for the proposed approach. We compare
the performance of standard supervised sparse-NMF (referred
simply as NMF) against the performance of the same sparse-
NMF model trained on a task-specific manner (referred as TS-
NMF). Observe that the task-specific supervision leads to im-

Table 1: Average performance (in dB) for NMF and proposed su-
pervised NMF methods measured in terms of SDR, SIR, SAR and
SNR. Speech and noise were mixed at 5dB of SNR. The standard
deviation of each result is shown between brackets.

SDR SIR SAR SNR
NMF 7.5 [1.5] 13.7 [0.9] 8.9 [1.7] 8.2 [1.3]
TS-NMF 9.3 [1.1] 13.3 [0.5] 11.8 [1.6] 9.7 [0.9]

Table 2: See description of Table 1. In this case, speech and noise
were mixed at 0dB of SNR.

SDR SIR SAR SNR
NMF 4.6 [1.1] 9.3 [0.9] 6.8 [1.2] 5.8 [0.8]
TS-NMF 5.5 [0.8] 9.1 [0.5] 8.6 [1.0] 6.2 [0.5]

provements in performance, maintaining (at 5dB SNR) the
improvements observed on the validation set. In future work
we plan to analyze what happens when a non-speaker spe-
cific dictionaries are trained. We expect to observe similar
improvements, if the training data is diverse enough.

6. CONCLUSION

In this work we presented an algorithm for the task-supervised
training of NMF models. Unlike standard supervised NMF,
the proposed approach matches the optimization objective
used at the train and testing stages. In this way, the dictio-
naries can be trained in a task-specific manner. We cast this
problem as bilevel optimization that can be efficiently solved
via stochastic gradient descent. The proposed approach al-
lows non-Euclidean data terms such as β-divergences. A
limited case study of sparse NMF with task specific super-
vision demonstrates promising results. Including temporal
dynamics into this model is the subject of ongoing research.
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[2] E. Hänsler and G. Schmidt, Speech and Audio Process-
ing in Adverse Environments, Springer, 2008.

[3] K. W. Wilson, B. Raj, P. Smaragdis, and A. Divakaran,
“Speech denoising using nonnegative matrix factoriza-
tion with priors,” in ICASSP, 2008, pp. 4029–4032.

[4] C. Joder, F. Weninger, F. Eyben, D. Virette, and
B. Schuller, “Real-time speech separation by semi-
supervised nonnegative matrix factorization,” in
LVA/ICA, 2012, pp. 322–329.

[5] G. J. Mysore and P. Smaragdis, “A non-negative ap-
proach to semi-supervised separation of speech from
noise with the use of temporal dynamics,” in ICASSP,
2011, pp. 17–20.

[6] Z. Duan, G. J. Mysore, and P. Smaragdis, “Online
plca for real-time semi-supervised source separation,” in
LVA/ICA, 2012, pp. 34–41.

[7] D.D. Lee and H.S. Seung, “Learning parts of objects by
non-negative matrix factorization,” Nature, vol. 401, no.
6755, pp. 788–791, 1999.

[8] P. Smaragdis, B. Raj, and M. Shashanka, “A probabilis-
tic latent variable model for acoustic modeling,” Ad-
vances in models for acoustic processing, NIPS, vol.
148, 2006.

[9] M. N. Schmidt and R. K. Olsson, “Single-channel
speech separation using sparse non-negative matrix fac-
torization,” in INTERSPEECH, Sep 2006.

[10] M. V. S. Shashanka, B. Raj, and P. Smaragdis,
“Sparse Overcomplete Decomposition for Single Chan-
nel Speaker Separation,” in ICASSP, 2007.

[11] M. N. Schmidt, J. Larsen, and F.-T. Hsiao, “Wind noise
reduction using non-negative sparse coding,” in MLSP,
Aug 2007, pp. 431–436.

[12] J. F. Gemmeke, T. Virtanen, and A. Hurmalainen,
“Exemplar-based sparse representations for noise robust
automatic speech recognition,” IEEE Trans. on Audio,
Speech, and Lang. Proc., vol. 19, no. 7, pp. 2067–2080,
2011.
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