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Chapter 1

Partial Single- and Multi-Shape
Dense Correspondence Using
Functional Maps

1.1 Introduction

Finding correspondence between deformable shapes is one of the cornerstone problems
in computer vision and graphics. The ability to establish correspondence between 3D
geometric data is a crucial ingredient in a broad spectrum of applications ranging from
animation, texture mapping, and robotic vision, to medical imaging and archaeology [56].
The deformable shape correspondence problem comes in a variety of flavors and settings.
It is common to distinguish between rigid and non-rigid correspondence depending on
whether the shapes are allowed to undergo deformations (in this case, one can further
distinguish between isometric or inelastic deformations, or more general non-isometric
deformations than can also change the shape topology). Second, one distinguishes between
full and partial correspondence (in the latter case, one allows for some parts of the shapes
to be missing; this setting arises in numerous applications that involve real data acquisition
by 3D sensors, inevitably leading to missing parts due to occlusions or partial view).
Finally, there is also the difference between pairwise and multiple correspondence (in the
latter case, one tries to establish correspondence between a collection of shapes). In
this chapter we will deal with describe recent methods that handle all these challenging
settings.

1.1.1 Related work

Albeit one of the most broadly studied problems in the domain of geometry processing,
correspondence is far from being solved, especially in some challenging settings. We refer
the reader to recent survey papers [4, 56] for an up-to-date review of existing methods.

Rigid partial correspondence problems arising e.g. in the fusion or completion of
multiple 3D scans have been tackled by ICP-like approaches [1, 2]. Bronstein et al. [10]
used a regularized ICP approach where the matching parts are explicitly modeled, and
proposed a functional similar to the Mumford-Shah [38, 57] imposing part regularity.
Litany et al. [32] extended this approach to multiple rigid shape matching.
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Non-rigid partial correspondence. Several approaches for intrinsic partial match-
ing revolve around the notion of minimum distortion correspondence [11]. Bronstein et
al. [7,9] combined metric distortion minimization with optimization over regular matching
parts. Rodolà et al. [44, 49] relaxed the regularity requirement by allowing sparse corre-
spondences. Windheuser et al. [59] proposed an integer linear programming solution for
dense elastic matching. Sahillioğlu and Yemez [50] proposed a voting-based formulation
to match shape extremities, which are assumed to be preserved by the partiality transfor-
mation. The aforementioned methods are based on intrinsic metric preservation and on
the definition of spectral features, hence their accuracy suffers at high levels of partiality
– where the computation of these quantities becomes unreliable due to boundary effects
and meshing artifacts.

More recent approaches include the alignment of tangent spaces [12] and the de-
sign of robust descriptors for partial matching [55]; in the context of shape collections,
partial correspondence has been considered in [15, 22]. Several works tried to employ
machine learning methods to deal with partial matches. Masci et al. [35] introduced
Geodesic CNN, a deep learning framework for computing dense correspondences between
deformable shapes, providing a generalization of the convolutional networks (CNN) to
non-Euclidean manifolds. Wei et al. [58] focused on matching human shapes undergoing
changes in pose by means of classical CNNs, also tackling partiality transformations.

Dynamic fusion is a particular setting of the problem, referring to non-rigid tracking
of depth images produced by 3D sensors. Attempts to extend ICP-based methods to such
a setting [31] had limited success due to sensitivity to initialization and to the underlying
assumption of small deformations. Recent works of [19,39] generalizing the Kinect fusion
approach [40], were based on volumetric representation of 3D data.

Most of the aforementioned correspondence methods are point-wise, i.e., one seeks a
mapping between vertices of the underlying shapes. Ovsjanikov et al. [41] introduced
functional maps, representing correspondences between functional spaces on the respec-
tive shapes. While not intended for partial correspondence, followup works [28] showed
that functional maps and similar constructions can handle certain settings with missing
parts. Rodolà et al. [46] introduced partial functional correspondence, an extension of [41]
where matched parts are explicitly modeled and regularized in a manner similar to [7,9].
This method has achieved state-of-the-art performance on the recent SHREC’16 Partial
Correspondence benchmark [16].

Multiple shape correspondence in the rigid settings has been addressed in numer-
ous works, including [21, 32]. In the non-rigid setting, functional maps for large shape
collections have been explored in [22].

The rest of the chapter is organized as follows. Section 1.2 formulates the problem of
dense correspondence between two full shapes, and describes the basic functional maps
framework to solve it. The Joint diagonalization method is further presented, which allows
handling a deviation from the isomtry assumption, and sets the ground for upcoming
sections. Section 1.3 extends the matching problem to a partial setting, namely, when
one shape mathces only a subset of the other. An extension to multiple parts and possible
addition of clutter is described in Section 1.4. The partial matching algorithm used in
Sections 1.3, 1.4 suffers from poor scalability to large number of points due to its spatial
component. In Section 1.5 a fully-spectral approach is described, that achieves similar
results at a much lower computational complexity.
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1.2 Full non-rigid shape correspondence

We model shapes as 2-manifoldsM (possibly with boundary ∂M) equipped with the area
element dµ induced by the standard metric. The intrinsic gradient ∇M and the positive
semi-definite Laplace-Beltrami operator ∆M generalize the corresponding notions from
flat spaces to manifolds. The Laplacian admits an eigen-decomposition

∆Mφi(x) = λiφi(x) x ∈ int(M) (1.1)

〈∇Mφi(x), n̂(x)〉 = 0 x ∈ ∂M, (1.2)

with Neumann boundary conditions (1.2), where n̂ is the normal vector to the boundary.
Here, 0 = λ1 ≤ λ2 ≤ . . . are eigenvalues and φ1, φ2, . . . are the corresponding eigenfunc-
tions. Due to the isometry invariance of the Laplacian, nearly-isometric shapes will have
approximately the same eigenvalues and eigenspaces (up to orthogonal transformation).

By analogy to the Euclidean case, the Laplace operator ∆M allows us to extend Fourier
analysis to manifolds. Since the eigenfunctions of the Laplacian form an orthonormal basis
of L2(M) = {f : M→ R |

∫
M f 2dµ < ∞}, the space of square-integrable functions on

M, any function f ∈ L2(M) can be represented via the Fourier series expansion

f(x) =
∑
i≥1

〈f, φi〉Mφi(x) , (1.3)

where we use the standard L2(M) inner product defined as 〈f, g〉M =
∫
M fg dµ.

1.2.1 Functional representation

The functional maps framework was proposed by Ovsjanikov et al. [41] in 2012. The main
idea is to identify correspondences between shapes by a linear operator T : L2(M)→ L2(N ),
mapping functions on M to functions on N . One can easily see that classical point-to-
point correspondences constitute a special case where delta functions are mapped to delta
functions.

As a linear operator, T admits a matrix representation C = (cij) with coefficients
computed as follows. Let {φi}i≥1 and {ψj}j≥1 be orthonormal bases on L2(M) and
L2(N ), respectively, and let f ∈ L2(M). Then, the action of T on f can be written as

Tf = T
∑
i≥1

〈f, φi〉Mφi =
∑
i≥1

〈f, φi〉MTφi

=
∑
ij≥1

〈f, φi〉M 〈Tφi, ψj〉N︸ ︷︷ ︸
cji

ψj . (1.4)

By choosing as functional bases {φi}i≥1, {ψj}j≥1 the Laplacian eigenfunctions on the
respective manifolds, one obtains a particularly compact representation for the functional
map: this choice allows to truncate the series (1.4) after the first k terms as a band-limited
approximation of the original map, by analogy with Fourier analysis. This results in a
k × k matrix C encoding the functional correspondence, where k is typically chosen to be
a small number (20 to 100 in practice). If, in addition, the functional map T is built on
top of a near-isometry, one obtains cji = 〈Tφi, ψj〉N ≈ ±δji since near-isometric shapes
have corresponding eigenfunctions (up to sign in case of simple spectra). The resulting
matrix C thus manifests a diagonally dominant structure.
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Now assume to be given q corresponding functions gi ≈ Tfi, i = 1, . . . , q and let
A = (〈φi, fj〉M) and B = (〈ψi, gj〉N ) be the k × q matrices of Fourier coefficients of the
given corresponding functions. The functional correspondence problem considered in [41]
has the general form of

min
C
‖CA−B‖2

F , (1.5)

with the additional orthogonality constraint C>C = I if the underlying map is known to
be area-preserving [41].

A recent paradigm shift in the shape matching problem was introduced by Ovs-
janikov et al. [41]. The authors proposed to model correspondences among two shapes by
means of a linear operator T : L2(M) → L2(N ), mapping functions on M to functions
on N . Classical point-to-point matching can then be seen as a special case where one
maps delta functions to delta functions.

Because T is a linear operator, it can be equivalently represented by a matrix of
coefficients C = (cij) arising from the following short computation: Let us be given
orthonormal bases {φi}i≥1 and {ψi}i≥1 on L2(M) and L2(N ), respectively, and let us fix
some function f ∈ L2(M). Then

Tf = T
∑
i≥1

〈f, φi〉Mφi =
∑
i≥1

〈f, φi〉MTφi

=
∑
ij≥1

〈f, φi〉M 〈Tφi, ψj〉N︸ ︷︷ ︸
cij

ψj . (1.6)

The application of T is expressed by linearly transforming the expansion coefficients of f
from basis {φi}i≥1 onto basis {ψi}i≥1.

Choosing as the bases the eigenfunctions {φi}i≥1, {ψi}i≥1 of the respective Laplacians
on the two shapes yields a particularly convenient representation for the functional map
[41]. By analogy with Fourier analysis, this choice allows to truncate the series (1.6) after
the first k coefficients, which is equivalent to taking the upper left k × k submatrix of
C as an approximation of the full map. Further, one obtains cij = 〈Tφi, ψj〉N ≈ ±δij
whenever the two shapes are nearly isometric. This results in matrix C being diagonally
dominant, since cij ≈ 0 if i 6= j . This particular structure was exploited in [26, 43] as a
prior for shape matching problems.

1.2.2 Joint diagonalization

When dealing with non-isometric shapes, the diagonally dominant structure of C is broken
since the approximate equality cji = 〈Tφi, ψj〉N ≈ ±δji ceases to hold. In [29] it was

proposed to find a pair of new bases {φ̂i, ψ̂i}ki=1 in which C still has a near-diagonal
structure. The new bases are constructed as linear combinations of k standard Laplacian
eigenfunctions,

φ̂i =
k∑
j=1

pjiφj , ψ̂i =
k∑
j=1

qjiψj (1.7)

where P,Q are the k × k matrices with the combination coefficients. It is easy to check
that the requirement for orthogonality of the new bases 〈φ̂i, φ̂j〉M = δij and 〈ψ̂i, ψ̂j〉N = δij
implies the orthogonality of the matrices P>P = I and Q>Q = I. Further, the coefficients
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of {fi, gi} in the new bases can be expressed as Â = P>A and B̂ = Q>B. The goal
is to find matrices P,Q resulting in “quasi-harmonic” bases {φ̂i, ψ̂i}, i.e., that behave
approximately as eigenfunctions of the Laplacian, while being coupled in the sense Â ≈ B̂.
Due to the coupling, the new basis functions behave consistently resulting in almost
perfectly diagonal C even in the absence of a perfect isometry.

The orthogonal basis {φ̂i} behaves as the eigenbasis of ∆M if it minimizes the Dirichlet
energy

∑k
i=1〈φ̂i,∆Mφ̂i〉M = tr(P>ΛMP), where ΛMis a diagonal matrix of the first k

eigenvalues of ∆M, and where we used the fact that 〈φi,∆Mφj〉M = λjδij. Alternatively,
the trace term can be replaced by an off-diagonal penalty [13], arriving at the optimization
problem

min
P,Q

off(P>ΛMP) + off(Q>ΛNQ) + µ‖P>A−Q>B‖2
F (1.8)

s.t. P>P = I , Q>Q = I ,

where off(A) =
∑

i 6=j a
2
ij. Problem (1.8) can be interpreted as a joint approximate diago-

nalization of the Laplacians ∆M and ∆N [29]. Note that if µ = 0 (i.e., no coupling) the
global solution to (1.8) is P = Q = I, resulting in the standard eigenfunctions of ∆M and
∆N when plugged into (1.7).

The orthogonal matrices P and Q act as rotations and reflections of the original
eigenbases, trying to align them in the k-dimensional eigenspace. Because of this inter-
pretation, it is possible to simplify problem (1.8) by optimizing for a new basis on one
shape only and keeping the other fixed to the standard Laplacian eigenfunctions,

min
Q∈S(k,k)

off(Q>ΛNQ) + µ‖A−Q>B‖2
F, (1.9)

where S(n, k) = {X ∈ Rn×k : X>X = Ik} denotes the Stiefel manifold of n×k orthogonal
matrices (when k < n, such matrices are also called ortho-projections). Problems (1.8–
1.9) are instances of manifold optimization and can be solved using efficient numerical
techniques performing optimization on the matrix manifold [6].
Robust formulation. In practical settings, the corresponding functions fi, gi might be
noisy, such that Tfi 6= gi for some i’s. As a result, some of the columns in the data term
A−Q>B might have large norm. A standard way to cope with such outliers is to replace
the `2 (Frobenius) norm in (1.9) with a robust matrix norm ‖X‖2,1 =

∑
i ‖xi‖2 promoting

column-wise sparsity (here xi is the ith column of X). When the input functions are
different dimensions of a high-dimensional descriptor field, this has the effect of discarding
entire feature channels from the data. Note that robustness to point (as opposed to
channel) mismatches may be achieved by row-wise sparsity in the spatial domain, however
doing so would sacrifice the benefits of shifting to a spectral representation. Finally, the
presence of the `2,1 norm makes the objective function non-smooth. In such a setting,
non-smooth manifold optimization techniques such as MADMM [27] can be employed to
reach a good local optimum.

1.3 Partial functional correspondence

Assume now to be given a full shape N and a partial shapeM that is approximately iso-
metric to some (unknown) sub-region N ′ ⊆ N . We are interested in determining a partial
functional map T : L2(M)→ L2(N ) mapping functions onM to functions supported on
the region N ′.
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φ1 φ2 φ3 φ4 φ5 φ6 φ7 φ8 φ9 φ10

ψ1 ψ2 ψ3 ψ4 ψ5 ψ6 ψ7 ψ8 ψ9 ψ10

ψ̂1 ψ̂2 ψ̂3 ψ̂4 ψ̂5 ψ̂6 ψ̂7 ψ̂8 ψ̂9 ψ̂10

Figure 1.1: The standard Laplacian eigenfunctions (two first rows) are strongly affected
by the lack of perfect isometry and in the presence of missing parts. In the top and
middle rows we show the first ten eigenfunctions {φi}10

i=1 and {ψj}10
j=1 on a partial and full

shape respectively; note the inconsistent behavior at corresponding indices. In the bottom
row we show the optimal basis functions {ψ̂j}10

j=1 obtained with the method presented in
Section 1.5: the new basis manifests the same behavior as in the first row, and is at the
same time localized on the latent corresponding part.

Recently, Rodolà et al. [46] showed that for each “partial” eigenfunction φj (i.e., each
eigenfunction of the part M) there exists a corresponding “full” eigenfunction ψi of N
for some i ≥ j (see for example φ3 and ψ5 in Figure 1.1). Differently from the full-to-full
setting, where the correspondence is observed for i = j, here the inequality i ≥ j induces a
slanted-diagonal structure on matrix C. In particular, under the correct isometry encoded
in T (i.e., the image Tφj is localized to N ′ ⊆ N ), the inner product cji = 〈Tφj, ψi〉N
will have a large (absolute) value whenever Tφj and ψi correlate, and a small value (in
general 6= 0) otherwise. The authors showed that an estimate for this diagonal slope can

be simply computed as the ratio of areas, θ ≈ |M|
|N | .

The key idea behind their analysis is to model partiality as a perturbation of the
Laplacian matrices LM, LN of the two shapes. Specifically, consider the dog shape N
shown in the inset, and assume a vertex ordering where the points contained in the red
region M appear before those of the blue region M̄. Then, the full Laplacian LN will
assume the structure

LN =

(
LM 0
0 LM̄

)
+

(
PM E
E> PM̄

)
, (1.10)

where the second matrix encodes the perturbation due to the boundary interaction
between the two regions. Such a matrix is typically very sparse and low-rank, since it
contains non-zero elements at the interface between the boundaries ∂M to ∂M̄.

If the perturbation matrix is identically zero, then (1.10) is exactly block-diagonal;
this describes the case in which M and M̄ are disjoint parts, and the eigenpairs of LN
are an interleaved sequence of those of the two blocks. The key result shown in [46] is
that this interleaving property still holds even when considering the full matrix LN as
given in (1.10): Its eigenpairs consist of those of the blocks LM, LM̄, up to some bounded
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Figure 1.2: Example of the non-rigid puzzle problem considered in Section 1.4: given a
model human shape (leftmost, first column) and three query shapes (two deformed parts of
the human and one unrelated ‘extra’ shape of a cat head), the goal is to find a segmentation
of the model shape (second column, shown in yellow and green; white encodes parts
without correspondence) into parts corresponding to (subsets of) the query shapes. Third
column shows the computed correspondence between the parts (corresponding points are
encoded in similar color).

perturbation that depends on the length and position of the boundary ∂M. This provides
a motivation as to why one observes large correlation 〈Tφj, ψi〉N with i ≥ j in the partial
case.

M

M̄

N

The problem considered in [46] has the form

min
C,v
‖CA−B(v)‖+ ρcorr(C) + ρpart(v) , (1.11)

where v : N → [0, 1] is a (soft) indicator function for the un-
known sub-region N ′ ⊆ N , and B(v) = (〈ψi, v · gj〉N ) =
(〈ψi, gj〉N ′) is the matrix of coefficients for the functions {gi}
restricted to the area indicated by v.

The penalties ρcorr(C) and ρpart(v) act as regularizers on
correspondence and part respectively. The former includes,
among several others, a regularization term promoting a
slanted diagonal structure on C with diagonal slope θ, pre-
computed as the area ratio as discussed above. This way,
problem (1.11) incorporates the prior knowledge on the partic-
ular structure observed on C in partial correspondence prob-
lems. The ρpart(v) term favors fewer large contiguous regions over several small fragmented
segments, thus imposing a prior on the type of partiality (we refer to [46] for the technical
details). Note that function v is defined over the vertices of N , hence scaling linearly
with shape size. Problem (1.11) is optimized alternatingly over the Fourier and spatial
domains in order to solve for correspondence and part respectively.

1.4 Multi-part partial functional maps

Having set the ground for partial shape matching between a single pair of shapes, in this
Section we will describe its extension to multiple parts. Specifically, we are interested
in intrinsic, non-rigid, partial, multiple shape correspondence. We shall refer to this
setting as non-rigid puzzles (see Figure 1.2). We assume to be given a model shape and
multiple query shapes, assumed to be parts of (not necessarily isometrically) deformed
versions of the model shape, possibly with additional clutter. The query shapes may
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contain overlapping parts, and the model shape might have ‘missing’ regions that do not
correspond to any query shape; conversely, there might be ‘extra’ query shapes that have
no correspondence to the model shape.

Recently, Litany et al. [34] presented a framework for solving 3D non-rigid puzzle
problems. They formulate such problems as partial functional correspondences between
the query and model shapes, and alternate between optimization on the part-to-whole
correspondence and the segmentation of the model. Their method can be considered an
extension of [46] for the multiple part setting on one hand, and a non-rigid generalization
of the rigid puzzles problem treated in [32] on the other.

In what follows, we will formulate the non-rigid puzzle problem and describe the pro-
posed approach. We will then provide implementation details, followed by experimental
results exemplifying how the method copes with some challenging examples.

1.4.1 Non-rigid puzzles

Let us be given a model shapeM and a collection {Ni}pi=1 of p query shapes constituting
possibly incomplete, cluttered, and non-rigidly deformed unknown parts of M. Our goal
is to segmentM into p disjoint parts {Mi}, locate the corresponding parts {Ni ⊂ Ni} on
the input shapes, and calculate the correspondences τi : Mi → Ni. By clutter we refer to
the regions N c

i = Ni \ Ni which are redundant for achieving a full reconstruction. This
may include overlaps between the Ni’s, scanning artifacts, and even entire extra parts
coming, e.g., from a different shape as we demonstrate in Figure 1.9. By incompleteness
we mean that the Mi’s do not cover M, i.e., there is a missing part

M0 =M\

(
p⋃
i=1

Mi

)
.

M0 can be seen as clutter from the parts perspective. Figure 1.3 depicts our notation.

We encode the correspondences τi in the functional representation by the matrices Ci

with respect to the Laplacian eigenbasis ΦΦΦ of M (restricted to Mi) and the Laplacian
eigenbasis ΨΨΨi of Ni (restricted to Ni). We further assume to be given as the input sets
of corresponding functions on each Mi and Ni that are stacked as column vectors of
(possibly differently-sized) matrices Fi and Gi, respectively. Since the availability of
known corresponding functions is rather a restrictive assumption, in practice it is avoided
by by replacing the Fi’s with a dense descriptor field F calculated on M (the number of
columns in F corresponds to the number of dimensions of the descriptor). As the Gi’s,
descriptors computed on the corresponding Ni’s are used. A robust data fitting term
accounts for descriptor mismatches.

With these premises, we formulate the simultaneous segmentation and correspondence
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M1

M2

τ1

τ2

N2

N1

M

M0

N2

N1

Figure 1.3: The notation we follow in the non-rigid puzzles setting.

as the following optimization problem:

min
Ci,Mi⊆M,Ni⊆Ni

p∑
i=1

‖CiΨΨΨi(Ni)
TGi −ΦΦΦ(Mi)

TFi‖2,1

+ λM

p∑
i=0

Rpart(Mi) + λN

p∑
i=1

Rpart(Ni)

+ λcorr

p∑
i=1

Rcorr(Ci)

s.t. Mi ∩Mj = ∅ ∀i 6= j

M0 ∪M1 ∪ · · · =M
|Mi| = |Ni| ≥ α|Ni|,

(1.12)

where ΦΦΦ(Mi) denotes the Laplacian eigenbasis on M restricted to the part Mi, and,
similarly, ΨΨΨi(Ni) denotes the basis on Ni restricted to the part Ni.

The first term in (1.12) is a data fitting term measuring how well the known corre-
sponding functions are mapped between the parts and the model. The `2,1 norm was
chosen here to increase robustness against outliers in the input. This is especially impor-
tant when one uses descriptors which are not perfectly resilient to non-rigid deformations.
The second and third terms aggregating Rpart are part regularization terms of the form
Rpart(M) = |∂M | promoting parts with short boundaries and preventing too fragmented
segmentation. Note that while the regularization term applies to the missing part M0,
the data fitting term does not. The last term aggregating Rcorr is a regularization term
imposing a prior on the correspondences themselves. Here, the prior comes in the form of
a penalty promoting the slanted diagonal structure of each Ci with the slant proportional
to the ratio |Ni|/|M| as detailed in the sequel.
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Finally, the set of constraints renders the problem a proper segmentation task, enforc-
ing a complete covering and exclusivity of the segments Mi. The area constraint enforces
the non-cluttered matching areas Ni to be equal. For cases where there exist both clutter
in the parts and missing elements, we introduce the inequality term putting a lower bound
on the part areas to avoid the trivial solution. In such cases, one has to impose a prior
on the resulting non-cluttered area being greater than some percentage α of the entire
cluttered part.

Since problem (1.12) is intractable in its combinatorial formulation, the authors pro-
posed a relaxation of the parts to continuous membership functions ui : M → [0, 1] to
encode the Mi’s, and vi : Ni → [0, 1] to encode the Ni’s. Assuming thatM is discretized
with m vertices, and each Ni is discretized with ni vertices, the relaxed and discretized
optimization problem can be summarized as

min
Ci,ui,vi

p∑
i=1

‖CiAi(η(ui))−B(η(vi))‖2,1 + λM

p∑
i=0

Rpart(η(ui))

+ λN

p∑
i=1

Rpart(η(vi)) + λcorr

p∑
i=1

Rcorr(Ci)

s.t.

p∑
i=0

η(ui) = 1

aT
Mui = aT

Ni
vi ≥ αaT

Ni
1

(1.13)

Here, a denote the vectors of discrete area elements on the corresponding shapes, and
η(t) = 1

2
tanh

(
6(t− 1

2
)
)

+ 1
2

is an element-wise non-linear transformation used to restrict
the indicators at each vertex to the range [0, 1]. The matrices Ai(η(ui)) = ΦΦΦTdiag(ui)Fi

and Bi(η(vi)) = ΨΨΨT
i diag(vi)Gi denote the representation coefficients of the input corre-

sponding functions restricted to their respective parts.
As the regularization term of the segments the authors make use of a discretized

version of the intrinsic Mumford-Shah functional introduced in [9]

Rpart(u) =

∫
M
ξ(u)‖∇Mui‖da ≈ aT

Mgi (1.14)

where ξ(t) ≈ δ
(
η(t)− 1

2

)
, and the vector g contains as its elements the values of the

discretized intrinsic gradient norm of ui computed on the tangent bundle of M.
Following [46] for the regularization of the functional maps Ci,

Rcorr(C) = ‖C�W‖2
F + λ1

∑
i 6=j

(C>C)2
ij

+ λ2

∑
i

((C>C)ii − di)2. (1.15)

Here, the first term containing an element-wise product of C with the funnel-shaped
weight matrix W promotes the slanted-diagonal structure of C. The elements of the
weight matrix are given by

wij = e−σ
√
i2+j2‖ n

‖n‖
× ((i, j)> − p)‖.

The slanted diagonal of W is a line segment δ(t) = p+ t n
‖n‖ with t ∈ R, where p = (1, 1)>

is the matrix origin, and n = (1, |Ni|/|M|)> is the line direction with slope |Ni|/|M|.
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Figure 1.4: An example showing the decrease in cost during the alternating minimization
of the different sets of variables, Ci (red), ui (green) and vi (blue).

The second factor in wij is the distance from the slanted diagonal δ, and σ > 0 regulates
the spread around δ. In all experiments shown, σ was set to a fixed value of 0.03. The
second term in Rcorr(C) promotes orthogonality of C, while the third term, setting the
first few di to 1 and the rest to 0, regularizes its rank.

1.4.2 Implementation

The resulting optimization problem is solved by means of a threefold alternating mini-
mization. To this end, the masks Wi are used to initialize the matrices Ci by applying

the transformation Cim,n = 1− Wim,n

max(Wi)
. Then a minimization over the partial functional

maps Ci, the model indicator functions ui and the parts indicator functions vi is per-
formed in a cyclic manner, keeping the other parameters fixed. Although this algorithm
is not guaranteed to converge, in practice the authors reported strictly decreasing cost
value as the one shown in Figure 1.4. For the different minimization steps a conjugate-
gradient solver was used, as supplied by the Manopt toolbox [6]. Since this solver does
not support constraints inherently, they were replaced by large quadratic penalties. In
order to further refine the solution for the functional mapping Ci, a k-dimensional ICP
was added [46]. As noted by the authors, this step helps especially when the descriptors
are performing poorly. The parameters were changed according to required setting of the
experiment. For instance, in the non-isometric experiment λ2 was set to 0 to allow change
of areas.

1.4.3 Experimental results

The non-rigid puzzles method (NRP) was implemented in C++/Matlab, and executed
on an Intel i7-4710MQ 2.50GHz CPU with 8 logical cores. Typical running times for
matching 5 parts to a template of about 10K vertices were 20 minutes (end-to-end).
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NRP

PFM

NRP

PFM

Figure 1.5: Comparison between partial functional maps [46] and NRP in a perfect puzzle
setting. For each method we show the membership functions of each part with respect to
the model (first two rows), and the color-coded correspondence between parts and model
(last two rows). For PFM, the fact that each part is matched independently leads to
different parts covering overlapping areas on the model (see, e.g., the four legs). This
ambiguity is completely resolved by NRP as all parts are matched jointly to the template,
yielding a regularizing effect on the correspondence.

Data. Experiments include both synthetic and real data. The synthetic dataset is made
up of shapes from the TOSCA [8] and FAUST [5] benchmarks. In order to avoid compat-
ible meshings and make the dataset more realistic, each TOSCA model is independently
remeshed to ∼10K vertices by iterative pair contractions [20]. All FAUST templates are
kept at their original resolution (∼7K). The second dataset is composed of real scans ac-
quired with a calibrated Asus Xtion Pro Live RGB-D sensor and then fused into a dense
3D model (about 30K vertices) by DVO-SLAM [24].

The shapes from these datasets are decomposed into a controllable amount of parts
by Voronoi decomposition and consensus segmentation [45]; the former approach leads
to generic surface patches having similar area, while the latter tends to produce more
semantically meaningful parts (e.g., arms and feet).

Features. Unless differently stated, as dense descriptors for the data term in (1.12)
a 352-dimensional SHOT signatures [54] were used. These are rotation-invariant local
features with no isometry invariance, but whose locality properties result in a higher
resilience towards boundary effects than classical spectral features [3, 53]. Note that we
compute dense descriptors for all shape points, including those lying along the boundaries.

Perfect puzzle. Figure 1.5 depicts an example of a solution obtained with NRP in a
basic setting. The input data are five non-overlapping pieces taken from nearly isometric
deformations of the model, forming a covering set of the model. SHOT descriptors were
used in the data fitting term. No additional clutter is introduced. For this experiment,
we compare with the partial functional maps (PFM) method of Rodolà et al. [46] applied
to each part separately, resulting in five independent PFM matching problems (one per
part).

We performed a similar comparison with real data acquired by a 3D sensor. For this
experiment we use the upper part of a shape from FAUST as a template, and portions of
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a real scanning as the data. Differently from the previous experiment where dense SHOT
descriptors are used, here we employ Gaussians supported at ∼15 hand-picked matches
as data features. The results are reported in Figure 1.6.

Overlapping pieces. A more interesting setup is obtained when allowing the different
pieces to have non-zero overlap. In Figure 1.8 we show the results obtained in this
setting. To make the experiment even more challenging, we produce the input parts by
decomposing into five components two different non-isometric shapes from the FAUST
dataset. The decomposition is performed so as to allow large areas of overlap between
the pieces. We see that NRP copes well with both sources of nuisance even if these show
up simultaneously: overlapping areas are correctly segmented, while the lack of isometry
does not have a significant impact on the quality of the correspondence.

Incomplete and noisy data. In practical situations, it may happen that the parts
at our disposal do not provide a complete covering of the template model. As described
in Section 1.4.1, NRP naturally allows handling scenarios where some of the parts are
missing. This is simply done by introducing a lower bound on the part areas, reflecting
some prior knowledge on the amount of missing area; note that, in the absence of clutter,
this is directly given by the difference of template area and the sum of the parts. In
practice we implement this by defining a membership function to represent the missing
part, which is then treated the same way as the others (i.e., we demand regularity on the
missing area, yet provide no data term).

In Figure 1.2 we show an example of such a scenario, with additional ‘extra’ pieces
that do not belong to the model (the head of the cat). In this noisy setting, the outlier
shape is automatically excluded from the final solution due to a lack of mutual support
with the rest of the data. Another example of this challenging scenario is given in Figure
1.9.

1.4.4 Discussion and conclusions

In this section we described a method for solving 3D non-rigid puzzle problems. Th
problem was formulated as one of partial functional correspondence among an input set of
surface pieces and a full template model known in advance. The pieces are matched to the
template in a joint fashion, and an optimization process alternates between optimizing for
the dense part-to-whole correspondence and the segmentation of the model. We showed
how the set of constraints imposed on the plurality of the pieces has a regularizing effect
on the solution, leading to accurate part alignment even in challenging scenarios. This
framework is quite flexible, and can be easily adapted to deal with missing or overlapping
pieces, moderate amounts of clutter, and outliers.

Limitations. One of the main limitations which NRPinherits from the functional maps
framework [41], is the need for a reasonably good data term, implying that one has to
provide some corresponding functions between the model and the query shapes. In order
to allow a fully-automatic pipeline, dense descriptors are used as such corresponding
functions. Yet, in real-world settings when the data is contaminated by noise and scanning
artifacts, obtaining invariant descriptors is a major challenge. Equally important, and this
time inherited from the partial functional maps [46], is the use of an indicator function
per part, resulting in substantial computational complexity. A possible solution to this
limitation is described in the following Section.
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1.5 Fully-spectral partial functional maps

The main drawback of partial functional maps [46] and the follow-up works [17, 34] is
their explicit model of the part, requiring a somewhat cumbersome solver alternating
between optimization in the spatial domain (over the part indicator function) and in the
spectral domain (over the correspondence matrix). Furthermore, the complexity of the
spatial domain optimization depends on the number of mesh vertices and scales poorly
(see Section 1.5.2 for an evaluation). The method presented in this Section builds on a
simple observation allowing to formulate the partial functional maps problem entirely in
the spectral domain. It bears resemblance to joint approximate diagonalization but has a
fundamental difference that will be emphasized in the sequel.

Localization. A key feature of partial functional maps lies in their spatially localized
behavior: Any solution to (1.11) is a map T : L2(M) → L2(N ) that is supported on
some region N ′ ⊆ N of the full model, meaning that for all y ∈ N \N ′ the approximate
equality (Tf)(y) ≈ 0 holds for any f ∈ L2(M). This can be easily seen by noting that
the image of A under C must be localized to the region indicated by v in order for the
data term ‖CA−B(v)‖ to reach a minimum; in other words, the functional map C must
localize the correspondence.

This localization property comes at the price of modeling the regionN ′ ⊆ N explicitly.
In what follows we describe the method proposed by [33] to absorb the spatial mask into
a new basis {ψ̂j} for L2(N ); in doing so, one disposes of the explicit part v and obtains
a simpler optimization problem, as elucidated in the following.

Assume C, v are a solution to (1.11), such that CA = B(v) holds approximately, and
consider two functions f ∈ L2(M), g ∈ L2(N ) whose spectral representations are columns
of A and B respectively. In the spatial domain, the equality becomes

k∑
ij

〈f, φi〉Mcjiψj =
k∑
i=1

〈v · g, ψi〉Nψi ≈ v · g , (1.16)

where the approximation is due to truncation to the first k terms. By defining a new
basis ψ̂i =

∑k
j=1 cjiψj, we get to

k∑
ij

〈f, φi〉Mψ̂j ≈ v · g , (1.17)

in other words, the modified basis {ψ̂j} induces the sought localization. Importantly, in
order for (1.17) to hold for general f and g, the new basis functions themselves must be
localized, i.e., ψ̂i = v · ψ̂i for all i.

Using the fact that orthogonal C implies orthogonal {ψ̂j}, Equation (1.17) can be
phrased in the spectral domain as:

A ≈ CTB(v) = CTB ; (1.18)

in the last equality, the indicator function v was absorbed into the new basis functions
{ψ̂j}.
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Problem. In light of our previous analysis, the following manifold optimization problem
is considered:

min
Q∈S(k,r)

off(Q>ΛNQ) + µ‖Ar −Q>B‖2,1 , (1.19)

where S(k, r) is the Stiefel manifold of orthogonal k× r matrices (ortho-projections), and
Ar = WrA with Wr = (Ir×r 0r×k−r) denotes the r× k matrix containing the first r rows
of A. The value of r is directly related to the rank of the partial functional map C in
(1.11) and can be estimated simply from the area ratio θ, or optimized for explicitly by
solving (1.19) for a range of r’s. The rank r and the orthogonality of Q act as partiality
priors, since they are related to the underlying map being area-preserving [41,46].

The optimization problem (1.19) models partial correspondence as the search for a
new basis that is localized to a latent part of the full shape. In this view, the ma-
trix Q is not regarded as a functional map between shapes, but rather as a matrix of
transformation coefficients for the basis (the off-diagonal regularity term ensures that the
transformation is smooth). This interpretation allow one to tackle part-to-part settings
(see Eq. (1.21)) as a simple modification to (1.19). The first r functions {ψ̂1, . . . , ψ̂r} of
the new orthogonal basis ψ̂i =

∑k
j=1 qjiψj obtained as the result of such a transformation

would be approximately orthogonal to {φ1, . . . , φr} under the functional correspondence
(see Figure 1.1),

〈Tφi, ψ̂j〉N ≈ δij; i, j = 1, . . . , r . (1.20)

It is important to remark that, while the correct partial correspondence is a solution
to our problem by Eq. (1.16–1.18), this is not necessarily unique as it directly depends
on the input data. Not all such optima are localized to the correct region, and some
might even have global support. The choice of the input corresponding functions {fi, gi}
ultimately determines the quality of the localization (see Figure 1.13). In practice, as
reported by the authors of [33] it is enough to employ dense descriptor fields that are
sufficiently similar on the corresponding regions in order to drive the optimization to the
correct solution.

Part-to-part. Let us now assume that only a part N ′ of the shape N matches the
corresponding part M′ ⊂ M (see Figure 1.13). As observed by Litany et al. [34], one

still obtains a slanted-diagonal structure of C with angle θ = |M|
|N | , that is, θ depends only

on the area ratio of the known full shapes and not that of the unknown parts, |M
′|

|N ′| . On

the other hand, if N ′ were given, only about |N
′|

|M|k out of k first eigenfunctions of ∆M
would correspond to the first k eigenfunctions of ∆N . This means that while the matrix
C in the partial functional correspondence problem (1.11) will have the same slanted
diagonal structure regardless of the size of the corresponding partsM′ and N ′, the actual

fraction of non-zero entries on the slanted diagonal will be about min
{
|N ′|
|M| ,

|M′|
|N |

}
or,

assuming approximately isometric parts, min
{
|M′|
|M| ,

|N ′|
|N |

}
. Moreover, the exact indices of

these corresponding functions cannot be predicted a priori.
Since the first r eigenfunctions of ∆M typically contain only a subset of all the cor-

responding eigenfunctions, in order to satisfy (1.19) we have to modify the coefficients A
as well. This leads to

min
(P,Q)∈S2(k,r)

off(P>ΛMP) + off(Q>ΛNQ) + µ‖P>A−Q>B‖2,1 , (1.21)
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where optimization is now performed on the product of Stiefel manifolds. Figure 1.13
illustrates the localization behavior of the new bases under different inputs A,B, and
as a function of r. As we will also show in the experimental section, it is sufficient
to use robust enough descriptor fields in order to get a good localization to the latent
corresponding region. Further note how the choice of r also affects map locality.

Comparison to joint diagonalization. Problems (1.19) and (1.21) can be viewed as
variants of joint approximate diagonalization problems (1.9) and (1.8), respectively with
the `2 data fitting term replaced by the more robust `2,1 counterpart as was previously
suggested in [43] and [27]. Despite this resemblance, the crucial difference lies in the fact
that in the former problems k × r ortho-projections are used in place of full-rank k × k
orthogonal matrices.

The data term of problem (1.21) can be rewritten using full-rank k × k orthogonal
matrices P,Q as ‖Wr(P

>A − Q>B)‖2,1 and can be interpreted as the fitting term of
(1.8) with a modified metric. The effect of using the mask Wr is visualized in Figure
1.15.

Theoretical and experimental justification provided in this paper suggests that, sur-
prisingly, such an apparently simple modification of the problem is sufficient to handle a
wide range of settings involving partiality, clutter, and topological noise, as well as lack
of isometry.

Geometric interpretation. The joint approximate diagonalization process (1.8) can
be interpreted as a rigid alignment of the k-dimensional spectral embeddings {φi}ki=1 and
{ψi}ki=1 of two shapes, where the orthogonal matrices P,Q rotate/reflect the eigenfunc-
tions such that the resulting bases (1.7) are aligned. Similarly, the approach presented
here (1.21) can be interpreted as a non-rigid alignment in the r-dimensional eigenspace.
The new bases {φ̂i}ri=1 and {ψ̂i}ri=1 are constructed as linear combinations of k eigen-
vectors; if k � r, one can produce almost arbitrary sets of r aligned orthogonal basis
functions. The off term in problem (1.21) acts as a regularization ensuring that the func-
tions are smooth. The combined effect of the data and regularization terms is that of
a non-rigid alignment (see Figures 1.11, 1.12 and 1.15). Note that while some spectral
approaches [23,36,47] seek for a correspondence by non-rigid ICP in the spectral domain,
none of these successfully tackle the case of missing geometry and topological noise.

Comparison to partial functional maps. As discussed earlier, any solution to the
functional correspondence problem (1.11) is also a solution to FSPM (1.19). A key differ-
ence lies in the direction of the map: If we regard matrix Q as the spectral representation
of a functional map, the data term of FSPM evaluates its pre-image in M (the partial
shape), while that of (1.11) looks at the image on the full shape N , thus requiring an
explicit modeling of the part.

Further, as described in [46], the regularizer ρcorr(C) in (1.11) includes a penalty term

promoting C>C ≈
(

Ir 0
0 0

)
. Here, this area-preservation requirement is instead phrased

as a hard constraint, where optimization is done over the Stiefel manifold S(k, r), such that
Q>Q = Ir. Overall, the optimization problem (1.19) is less engineered than (1.11), has
less parameters, and is simpler to optimize. See Figures 1.14-1.16 for further comparisons.

16



1.5.1 Implementation

Problem (1.19) is a manifold-constrained and non-smooth (due to the `2,1 norm). It is
solved using the MADMM scheme of Kovnatsky et al. [27].

The authors have implemented the solver in Matlab using manopt [6], a framework
for optimization over manifolds. Laplacians were discretized using the classical cotan-
gent scheme [37, 42]. Code is publically availiable at https://github.com/orlitany/

FSPMnote that although this step and the subsequent eigen-decomposition clearly depend
on the number of vertices, they are carried out only once for each shape and thus count
as an off-line cost. Although the manifold constraints render the problem non-convex and
MADMM gives no global optimality guarantees, in practice the authors have observed a
stable behavior with a strictly decreasing cost value and fast convergence (an empirical
evaluation is provided in Section 1.5.2).

Initialization. The orthogonal matrices in problems (1.19) and (1.21) are initialized as
k×r random matrices with k = 50 and r estimated via the area ratio. Since the availability
of known corresponding functions for the data term is a restrictive assumption, in practice
{fi, gi}qi=1 is replaced with dense descriptor fields calculated onM and N , where q is the
number of dimensions of the descriptor. In all experiments the 352-dimensional SHOT [54]
were used with default parameters.

Point-wise map conversion and refinement. After convergence, the point-wise cor-
respondence are recovered by a nearest-neighbor search in the k-dimensional spectral
domain [41] (e.g., in the example of Figure 1.15, each blue point is matched to the closest
red point). The solution is further refined by selecting 10% of the matches using farthest
point sampling, and using them to construct new corresponding functions {fi, gi} as sparse
(yet well spread) localized smooth delta functions. The new data term replaces the initial
one, which was based solely on descriptors. The value of µ is adjusted accordingly to keep
a similar weight between the new data term and the regularizer. This process is repeated
5 times. For a fair comparison, the same refinement procedure was applied to partial
functional maps [46] and joint diagonalization [29]. Note that while more sophisticated
recovery methods exist [47], these work under the assumption of no partiality.

1.5.2 Experimental results

The proposed method, dubbed FSPM, was evaluated extensively in a variety of settings.
It was executed on an Intel i7-4710MQ 2.50GHz CPU with 8 logical cores.

Evaluation. Correspondence quality is quantitatively evaluated according to the Prince-
ton benchmark protocol [25]. Assume that a correspondence algorithm produces a match
(x, y) ∈M×N , whereas the ground-truth correspondence is (x, y∗). Then, the inaccuracy
of the correspondence is measured as

ε(x) =
dN (y, y∗)

|N |1/2
, (1.22)

where dN is the geodesic distance on N . Cumulative curves are plotted, showing the per-
cent of matches which have error smaller than a variable threshold. Symmetric solutions
are given no penalty.
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Topological changes A full quantitative evaluation was performed on the recent SHREC’16
Topology benchmark [30] (low resolution setting, ∼10K vertices per shape). The dataset
consists of 90 matching problems between human shapes undergoing topological changes
of various intensity (some examples are shown in Figure 1.23). The methods appearing
in the original benchmark are random forests (RF) [48], Green’s embedding (GE) [30],
and isometric embedding (EM) [52]. As reported in Figure 1.17, previous approaches
demonstrated poor performance due to the challenging setting. A comparison with par-
tial functional maps (PFM) [46] was additionally included, as well as with recent convex
optimization (CO) method of Chen and Koltun [14], which performs an explicit modeling
of topological artifacts but did not previously appear in the benchmark. For a fair com-
parison, the extrinsic regularization term of [14] was disabled since it relies on the shapes
being approximately aligned in R3.

Part-to-full. A quantitative evaluation of FSPM in the partial matching scenario was
done on the challenging SHREC’16 Partial Correspondence benchmark [18]. The dataset
is composed of 400 partial shapes (from a few hundred to ∼9K vertices each) belonging
to 8 different classes (humans and animals), undergoing nearly-isometric deformations in
addition to having missing parts of various forms and sizes. Each class comes with a
“null” shape in a standard pose which is used as the full template to which partial shapes
are to be matched. This results in 400 matching problems in total. The dataset is split
into two subsets, namely cuts (removal of a few large parts) and holes (removal of many
small parts).

The results are reported in Figures 1.18 and 1.19, and qualitatively in Figure 1.24.
As a comparison, the authors included results for partial functional maps (PFM) [46],
random forests (RF) [48], scale-invariant isometric matching (IM) [51], game-theoretic
matching (GT) [44], and elastic net matching (EN) [49], as these methods appeared in
the original benchmark. Additionally, joint diagonalization (JAD) [29] was included in
the comparison.

It can be seen from the plots that FSPM method has a ∼10% improvement on PFM,
the closest competitor, in both datasets. Given the purely spectral nature of FSPM and
its considerably simpler formulation, as opposed to the cumbersome optimization in the
spatial domain performed by PFM, we find these results quite remarkable (a runtime
comparison of the two methods will be presented in Section 1.5.2) The poor performance
of JAD puts in evidence the importance of correctly estimating the rank of the new basis.

Scanned data. Qualitative experiments were carried out on the FAUST dataset [5],
which contains real human shapes acquired with a 3D scanning device. By nature of the
acquisition process, these shapes are affected by topological artifacts as well as missing
parts due to self-occlusions, resulting in a challenging testbed for shape matching. The
results are shown in Figure 1.22.

Runtime. In Figure 1.21 runtime comparison with PFM are reported at increasing
number of vertices. Since FSPM technique operates exclusively in the spectral domain,
the computational cost of each iteration only depends on the prescribed basis dimension
k, hence it is constant w.r.t. shape size (see Equation (1.19)). In contrast, due to the
alternating optimization over the spectral and spatial domains, the runtime complexity
of PFM grows linearly with shape size (Equation (1.11)). The average runtime on the
SHREC’16 benchmarks was ∼220 sec. for FSPM method and ∼1240 sec. for PFM.
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1.5.3 Discussion and conclusions

In this section we have discussed FSPM, a recent method for partial dense intrinsic cor-
respondence between deformable shapes. Contrarily to previous approaches, FSPM is
generic in that it allows to tackle topological noise, strong partiality, and non-isometric
deformations within the same framework, making it amenable for application in practical
settings involving real data acquisition. A remarkable feature of FSPM lies in its purely
spectral nature, allowing to perform all calculations (except for the initial calculation of
the first k Laplacian eigenfunctions) with constant complexity independent of the shape
size. FSPM improves the state of the art for shape correspondence on three recent bench-
marks, where it is faster than the closest competitor by one order of magnitude, and
performs demonstrably well on real data.

Limitations. Examples of failure cases are shown in Figure 1.20. The main limita-
tion of FSPM lies in its reliance on good local features to drive the matching process.
Correspondence quality is directly affected by the robustness of the chosen descriptor
fields to the artifacts that one may encounter in practice, and designing a local descriptor
that is robust to deformations, topological noise and missing geometry is indeed an open
challenge tackled by few. Second, our approach shares with other intrinsic methods its
invariance to intrinsic symmetries, resulting in reflected solutions that may be undesir-
able in certain applications. Operating again at the feature level by incorporating some
notion of symmetry-awareness (hence an extrinsic quantity) in the local descriptor may
be a possible and promising direction to pursue.
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template

Figure 1.6: Comparison between NRP (top row) and PFM (bottom row) on real data.
The parts shown on the right were acquired with a 3D scanner.

Iteration 1 Iteration 2 Iteration 3

Figure 1.7: An example of NRP matching pipeline when dealing with overlapping parts.
The optimization process alternates between the membership functions on the model (top
row) and those on the parts (bottom row). At each alternating step, the membership
functions are optimized jointly on the respective parts. Note that in this particular
example there is more than one possible solution, e.g., the blue part could be completely
excluded from the solution.
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Figure 1.8: Non-rigid puzzle alignment between overlapping parts. Shown are the final
segmentation obtained by NRP (left), the dense matchings between the parts and the
model (middle), and the normalized geodesic error (shown as a heatmap) to the ground-
truth correspondence (right). With the exception of the final column, corresponding
points have the same color whereas white color denotes no match. Despite the lack of
isometry (two different individuals) and the large overlap, NRP correctly identifies non-
overlapping subregions on all the parts, providing a perfect covering of the template. Note
that this is not the only possible solution, as the optimization problem we solve may have
multiple optima.

Figure 1.9: In this example, an additional outlier piece (the human arm) is included in
the input set. NRP treats extra pieces as clutter; the arm is automatically selected by
the matching process, and completely excluded from the final solution. Note how the
presence of the extraneous part did not affect the quality of the correspondence.

Figure 1.10: Examples of dense correspondence computed with FSPM on real 3D scans
(left pair, the areas of contact are glued together), missing parts (middle) and strong
topological artifacts (right, touching parts are glued together). Corresponding points are
encoded with the same color.
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Init Iter 5 Iter 25 Iter 75 Iter 150 Iter 700 Iter 1400 Iter 4000

Figure 1.11: The optimization process admits an interpretation as a non-rigid alignment
of the spectral embeddings of the input shapes (in this example, the cat meshes of Fig-
ure 1.15). Top: The spectral embeddings (in 2D for simplicity) at different time steps.
The localization effect is manifested in the “extra” unmatchable part (pink point cloud)
shrinking towards zero in the spectral domain as the optimization converges to a correct
partial correspondence. In the last iterations, the two matching point clouds (blue and
red) are almost perfectly aligned. Bottom: Correspondence matrices in the new basis,
computed as the matrix C(t) minimizing C(t)A = Q(t)>B in the least squares sense.
Note that this correspondence matrix is never actually used in the matching pipeline,
and is being included here for illustration purposes. Middle: A segmentation function
indicating the region on the full shape that is put into correspondence with the partial
shape (cold and hot colors represent small and large values respectively). The function is
simply taken to be the image of the constant function via C(t).
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Figure 1.12: This plot shows the evolution of the spectral coefficients of points belonging
to the matchable (in red) and unmatchable (in pink) parts for the example shown in
Figure 1.11. Observe the formation of two distinct groups of values from the very first
iterations, with the values of the unmatched part tending towards zero.

22



(a) (b) (c)

r/k = 0.1 r/k = 0.5 r/k = 1.0 (full)

Figure 1.13: Effect of changing the data term in (1.21) by using (a) descriptor fields
localized to the correct region of the human shape (i.e., the region corresponding to the
human part of the centaur); (b) descriptor fields supported on the entire shape, but similar
only on the correct region; and (c) noisy descriptors with similar values outside the correct
region. The segmentation of the human shape is visualized after optimization of (1.21).
In the bottom row, a localization is shown as a function of the rank r.

FSPM

PFM

rank = 36 rank = 23 rank = 7

Figure 1.14: Correspondence matrices at increasing partiality. Shown are solutions ob-
tained by FSPM in the new basis (middle row) and by PFM in the standard Laplacian
eigenbasis (bottom row). Observe how FSPM representation remains crisp even at ex-
treme levels of partiality (rightmost column).
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Laplacian eigenbasis Joint eigenbasis FSPM

Figure 1.15: Top: Input shapes (dark red denotes the part corresponding to the partial
blue shape). Middle: Spectral embeddings (shown are the first two eigenfunctions) using
the standard Laplacian eigenbasis (left), in the basis obtained by joint approximate di-
agonalization (center), and in the basis obtained with FSPM (right); color coding is as
in the top row. Bottom: Correspondence matrices in the three bases. Note how FSPM
results in almost perfect alignment of basis functions.
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FSPM

PFM

Figure 1.16: The three partial shapes shown above have equal missing area, although
in different shapes and sizes. The resulting correspondence matrices in our new basis
have same rank and similar off-diagonal patterns. Note how, differently from PFM, the
diagonal in our representation remains sharp in all three cases.
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Figure 1.17: SHREC’16 Topology benchmark, includes shapes undergoing strong topo-
logical changes. While being fully spectral, FSPM improves upon PFM by over 10% at
a fraction of the computational cost. Sparse correspondence methods (producing 250-
1000 matches) and dense correspondence methods are denoted by dashed and solid lines,
respectively.
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Figure 1.18: SHREC’16 Partial Correspondence benchmark. FSPM compares favorably
with PFM, while being considerably more efficient (see also Figure 1.21). Sparse corre-
spondence methods (producing 50-100 matches) and dense correspondence methods are
denoted by dashed and solid lines, respectively.
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Figure 1.19: Performance of different methods on the SHREC’16 Partial Correspondence
benchmark at increasing levels of partiality (measured as percentage of missing area).
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Figure 1.20: Typical failure cases of FSPM. Middle: strong topological noise and partiality
may affect the local descriptors, making the data term unreliable. Right: FSPM solutions
are not guaranteed continuous, and may exhibit a mixture of inconsistently oriented
patches due to symmetry ambiguity. For example, the hands of the kid are swapped and
the belly is mapped to the back.

27



1 10 20 30 40
0

50

100

150

200

Number of vertices (×104)

M
ea

n
ti

m
e

p
er

it
er

at
io

n
(s

ec
)

FSPM

PFM

Figure 1.21: The runtime complexity of FSPM is constant w.r.t. shape size, while PFM
exhibits a linear growth due to its explicit optimization in the spatial domain.

Figure 1.22: Example of solutions of FSPM on four pairs of shapes from the FAUST
real world dataset [5]. The shapes contain several artifacts such as scanning noise, miss-
ing parts (on the feet) and topological merging due to self-contact (prominent in most
examples).

Figure 1.23: Examples of solutions obtained with FSPM in the presence of strong topo-
logical changes (SHREC’16 Topology benchmark [30]). Note how the quality of the cor-
respondence remains largely unaffected even around the areas of contact.
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Figure 1.24: Examples of dense partial shape correspondence obtained with FSPM on
the SHREC’16 Partial Correspondence dataset [18]. The partial shapes are matched to
the references shown on the left. Corresponding points have the same color; heat maps
encode distance from the ground-truth (white denotes zero error, hot colors denote large
error).
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