
Duke University, Department of Electrical and Computer Engineering
Optimization for Scientists and Engineers c©Alex Bronstein, 2014

Unconstrained Minimization

In this lecture, we will develop a generic framework for solving n-dimensional uncon-
strained minimization problems of the form

min
x∈Rn

f(x).

By “solving”, we imply “finding a local minimizer”, remembering that for convex functions
it will coincide with a global minimizer.

1 General framework

A very broad family of the so-called line search-based iterative optimization methods works
as follows: Starting with some initial point, we finding a direction a step in which decreases
the value of the objective (descent direction), select a step size in that direction, update the
point, and iterate the process until convergence. This general framework can be summarized
as the following iterative procedure:

input : function f ; initial point x0

output: (approximate) local minimizer x∗ of f
Start with an initial guess x0

for k = 1, 2, . . . , until convergence do
Find descent direction dk
Find step size αk
Update xk ← xk−1 + αkdk

end

Return x∗ = xk

Algorithm 1: Generic unconstrained minimization algorithm

Initialization. Selecting the initial point x0 is a very important ingredient in the solution
of optimization problems, which is often overlooked. For non-convex problems, selecting a
good initial guess that is sufficiently close to a good (hopefully, global) minimum (we often
say that the initial point is in the basin of attraction of a global minimum) is crucial to
obtain a useful result. For convex problems, while most algorithms will eventually converge
to a global minimum, a good initialization has crucial impact on the convergence speed.
Unfortunately, very little general facts can be said about initialization. It is very problem-
specific, and is more art than science. In some problems, however, such as those using multi-
resolution schemes a good initialization of a fine-resolution problem can naturally come from
the solution of a coarser-level problem.

1

Stopping criteria. Different criteria or their combination can be checked in order to
determine if convergence has occurred. For example:

1. First-order optimality condition: since the solution has to satisfy ∇f(x∗) = 0 one
can stop the algorithm when the gradient norm becomes sufficiently small, e.g., either
‖∇f(xk)‖2 ≤ ε or ‖∇f(xk)‖∞ ≤ ε (typically, ε ∼ 10−6 ÷ 10−8).

2. Step size stops the algorithm when the step size becomes sufficiently small, ‖xk −
xk−1‖ ≤ δ

3. Function value change stops the algorithm when the absolute or the relative change of

the function value becomes insignificant, f(xk−1)− f(xk) ≤ δ or
f(xk−1)− f(xk)

|f(xk)|
≤ δ.

Step size. The step size αk at each iteration can be selected using one of these methods:

1. Exact line search solving

αk = arg min
α
f(xk−1 + αdk).

2. Inexact line search like the Armijo rule that finds αk such that the decrease f(xk−1)−
f(xk−1 + αkdk) is sufficient

3. Constant step size: under certain conditions (for example, if the gradient is Lipschitz
continuous with the constant 1/α and the step size is smaller than α), constant step size
yields a converging algorithm. However, this method is generally not recommended.
If the step size is too small, the convergence will typically be very slow; if it is too big,
the algorithm might end up oscillating around the minimum or, even worse, diverge.
Furthermore, constant step size does not take into account the fact that the objective
might have different curvature at different points, which requires local adaptation of
the step size.

4. Decaying step size: under the technical condition that αk ↓ 0 and
∞∑
k=1

αk = ∞ (e.g.,

αk = 1/k or αk = 1/
√
k), a pre-defined sequence of decaying steps produces a con-

vergent algorithm. Decaying step size is often the choice in stochastic optimization
algorithms.

In what follows, we discuss in depth the most important ingredient distinguishing between
different algorithms: the selection of the descent direction.

2

2 Steepest descent

As the name suggests, a descent direction has to be such a direction that a sufficiently small
step in it decreases the value of the function. Formally, a descent direction d at points x has
to satisfy

0 > f ′d(x) = dT∇f(x).

Geometrically, a descent direction forms an obtuse angle with the direction of the gradient
or an acute angle with −∇f(x).

A natural question to ask is what is best descent direction at a given point x. Since a
function can be locally approximated by a linear function, f(x + d) ≈ f(x) + dT∇f(x), we
can say that the best descent direction is the one that produces the biggest decrease in the
value of the function,

d = arg min
d
f(x + d)− f(x) ≈ arg min

d
dT∇f(x).

Such a direction is usually referred to as steepest descent direction.
However, note that the above minimization problem is unbounded; in fact, we can select

any vector d forming an acute angle with −∇f(x), and make it arbitrarily large. In order
to avoid this, we restrict d to be of unit length. This give rise to a plethora of possibilities,
since every norm will yield a different result! The following choices are typical:

1. Gradient descent (often referred to as simply steepest descent) corresponding to the `2
norm:

d = arg min
‖d‖2=1

dT∇f(x) = −∇f(x).

2. Coordinate descent corresponding to the `1 norm:

d = arg min
‖d‖1=1

dT∇f(x) = −(∇f(x))i,

where i is the coordinate of the gradient vector having the largest absolute value,

i = arg max
i=1,...,n

|(∇f(x))i|.

Some problems might have an arithmetically complex objective and gradient; however,
once all but one variables are fixed, it might become significantly cheaper to compute.
In such cases, coordinate (or, more generally, block-coordinate) descent methods are a
popular choice.

Sometimes, the descent direction d is normalized; the resulting family of algorithms are
known as normalized steepest descent.

3

3 Convergence rate of gradient descent

Steepest descent algorithms with exact (and, under certain technical conditions, inexact)
line search are known to have linear asymptotic convergence rate. Reminder: this means
that for k →∞, there exists c > 0 such that

f(xk+1)− f(x∗)

f(xk)− f(x∗)
≤ c.

The constant c is called the convergence rate of the algorithm. It depends on the condition
number of the Hessian at the solution point, defined as

β =
λmax

λmin

,

where λmin and λmax are, respectively, the smallest and the largest eigenvalues of ∇2f(x∗).
To see this dependence, let us consider a simple particular example of a quadratic function

f(x) =
1

2
xTHx with a symmetric positive definite H. It is easy to see that x∗ = 0, and

f(x∗) = 0. For a current point x, the steepest descent direction (in the `2 sense) is given by
d = −∇f(x) = −Hx. Making an α step in this direction yields

ϕ(α) = f(x + αd) =
1

2
(x + αd)TH(x + αd)

=
1

2
xTHx + αdTHx +

α2

2
dTHd

= f(x) + αdTHx +
α2

2
dTHd

= f(x)− αdTd +
α2

2
dTHd.

The minimum of ϕ(α) is obtained by demanding

0 = ϕ′(α) = dTd + αdTHd,

from where

α =
dTd

dTHd
.

The next point is therefore given by x′ = x + αd, and the value of f at is by

f(x′) = f(x)− αdTd +
α2

2
dTHd

= f(x)− 1

2

(dTd)2

dTHd
.

4

Therefore,

f(x′)− f(x∗)

f(x)− f(x∗)
=

f(x)− 1
2
(dTd)2

dTHd

f(x)

= 1−
1
2
(dTd)2

dTHd
1
2
xTHx

= 1−
(dTd)2

dTHd

(Hx)TH−1Hx
= 1− dTd

dTHd

dTd

dTH−1d
.

Observing the latter ratios, we note that for every d,

dTHd

dTd
≤ λmax(H)

and
dTH−1d

dTd
≤ λmax(H

−1) =
1

λmin(H)
,

implying
dTd

dTHd

dTd

dTH−1d
≥ λmin(H)

λmax(H)
=

1

β
.

The result of this example can be generalized into

Property. Steepest descent algorithms have linear asymptotic convergence rate c = 1 − 1

β
,

where β is the condition number of the Hessian at the solution point.

Matrices with high condition number are called ill-conditioned. Steepest descent con-
verges very slowly for minimization problems with an ill-conditioned Hessian at the solution
point. For example, if β = 103, c = 0.999. This means that over 2000 iterations will be
required to decrease the optimality gap f(xk)−f(x∗) ten times! The algorithm will be zigza-
ging very slowly toward the minimum. On the other hand, if β = 1, the gradient always
points toward the minimum and the algorithm will converge in one iteration.

4 Preconditioning

The dependence of the convergence rate on the condition number of the Hessian brings the
question whether there is a way to modify the problem to improve its condition number. One
of such changes is the change of the coordinate system. Let use define a new optimization
variable x = Py, with P being a regular matrix. We define a new objective f(y) = f(Px).
Then, using the chain rule, we have

∇f(y) = PT∇f(Py) = PT∇f(x)

∇2f(y) = PT∇2f(Py)P = PT∇2f(x)P.

5

Note that the Hessian at the solution point x∗, H(x∗) = PTH(x∗)P depends on the choice of
the coordinate system! We can choose such a P that improves it condition number, ideally
making PTH(x∗)P = I. The selection of such a transformation is called preconditioning. In
some problems, a good preconditioning transformation can be inferred from the structure of
the problem.

A step of the gradient descent method in the new coordinate system will look like

yk = yk−1 − α∇f(yk−1),

which can be translated back to the original system as

xk = Pyk = xk−1 − αP∇f(yk−1) = xk−1 − αPPT∇f(xk−1).

5 Newton’s method

Note that for every C2 function, a positive-definite Hessian H(x∗) can be written as H(x∗) =
RTR (the matrix R is usually called the symmetric square root of H). Substituting this
decomposition and demanding H = PTRTRP = I, we conclude that P = R−1 = H−1/2(x∗).
In other words, there exists an optimal coordinate system in which the gradient descent step

xk = xk−1 − αPPT∇f(xk−1) = xk−1 − αH−1(x∗)∇f(xk−1)

has the fastest asymptotic convergence.
Note, however, that this “ideal” preconditioning requires the knowledge of the Hessian

at the solution point, which is often impractical. Hence, the best we can do is to substitute
H−1(x∗) with H−1(xk−1); sufficiently close to the minimum, the two matrices will be very
similar, making the condition number of the problem close to 1. The resulting steepest
descent algorithm is called Newton’s method ; at every iteration, the descent direction is
selected according to

d = −H−1g,

where g and H are the gradient and the Hessian at the current point. In other words, the
descent direction is the solution of the linear system

Hd = −g,

often called the Newton system.
Another way to conceive Newton’s method is through quadratic interpolation of the

objective. From second-order Taylor expansion around the current point x,

f(x + d) ≈ q(d) = f(x) + gTd +
1

2
dTHd.

Note that the approximation q(d) is quadratic in d, and is convex iff H � 0. We can obtain
a closed-form expression for its minimizer by demanding

0 = ∇q(d) = g + Hd,

6

which yields precisely the Newton system.
Yet another way to conceive Newton’s method is by casting the minimization of f(x) as

finding the root of the vector-valued function∇f(x) or, in other words, solving the non-linear
system of equations

g(x) = 0.

An iterative algorithm for solving (a one dimensional version of) this system was originally
proposed by Isaac Newton himself (hence, the name). The system is linearized around a
current point x, and the linear system is solved instead. The solution of the linear system
servers as the new point, around which the nonlinear system is linearized again, and the
process is repeated until convergence. The linearization can be obtained from the first-order
Taylor expansion of g(x),

g(x + d) = g(x) + Hd;

its root is given again precisely by the solution of the Newton system.
Several important facts are important to mention in relation to Newton’s method. First,

for a quadratic objective, it converges in one iteration. Second, there is no way to better
precondition it – it is, unlike regular steepest descent, invariant to any affine transformation
of the coordinate system (prove it!).

Exercise 1. Derive the Newton update step under an affine transformation of the coordinate
system, and show that it is invariant to such transformations.

Also, special attention is required when the objective is non-convex. Note that in order
for the Newton direction to be a descent direction, we have to verify that d forms an acute
angle with −g,

0 > f ′d(x) = −gTd = gTHg.

A sufficient condition for this to hold for any g is H � 0, which is satisfied by a strictly
convex function.

In case the latter condition is violated, the common practice is to modify the Hessian by
shifting it spectrum by a positive diagonal matrix ∆, such that H+∆ � 0. The new matrix
is used in the modified Newton system (H + ∆)d = −g, the solution of which is guaranteed
to be a descent direction.

Exercise 2. Show that for ε > λmin(H), H + εI � 0.

6 Numerical considerations

The solution of the Newton system is usually the most computationally demanding part
of Newton’s method, and it quickly becomes infeasible to directly invert the Hessian for
problems bigger than n ∼ 103. One of the most efficient algebraic techniques used to solve
the Newton system (or, any system of equations with a positive-definite matrix) is based on
Cholesky factorization.

7

Cholesky factorization of a positive-define matrix H is the decomposition H = LLT,

where L is a lower-triangular matrix. The factorization of an n×n matrix takes
n3

6
arithmetic

operations. Once H has been decomposed into the product of lower triangular factors, the
Newton system can be written as

LLTd = −g.

Denoting y = LTd, we end up with the triangular system
l11
l21 l22
...

. . .

ln1 ln2 · · · lnn

 y1

...
yn

 =

 −g1...
−gn

 .

The solution of such a system is straighforward through the so-called forward substitution:

we first solve for y1 = − g1
l11

; then, substituting y1 into the second row, we solve for y2, and

so on. Once y has been found, we solve the system LTd = y by running the process in the
reverse order (backward substitution). Both procedures take O(n2) arithmetic operations.

In cases where H is not positive-definite, there exists a modified Cholesky factorization
procedure representing H as H = LLT−∆, where ∆ is the smallest positive diagonal matrix
guaranteeing that H + ∆ � 0.

8

