
Duke University, Department of Electrical and Computer Engineering
Optimization for Scientists and Engineers c©Alex Bronstein, 2014

Approximate Newton Methods

1 Model fitting and the Gauss-Newton algorithm

A frequently arising optimization problem is that of fitting a parametric model to empirical
data. To keep consistent notation, we denote the model parameters (optimization variables)
as x ∈ Rn, and assume that for every i-th datapoint we can measure some error ei(x) (the
function e : Rn → R incorporates the actual model being used). Accepting a quadratic error
criterion, we end up with the following nonlinear least squares problem

min
x

1

2

m∑
i=1

e2i (x)

where m is the number of measurements.
In order to use Newton’s method, we need the gradient and the Hessian of the objective,

which we will henceforth denote by f(x). Simple chain rule suggests

∇f(x) =
∑
i

ei(x)∇ei(x)

∇2f(x) =
∑
i

∇ei(x)∇Tei(x) + ei(x)∇2ei(x).

Denoting by e(x) = (e1(x), . . . , em(x)) the vector of errors, and by

G(x) = ∇e(x) = (∇e1(x), . . . ,∇em(x))

its Jacobian matrix, we can write the gradient in matrix form as

∇f(x) = G(x)e(x).

Similarly, we can express the Hessian as

∇2f(x) = G(x)GT(x) +
∑
i

ei(x)∇2ei(x).

Note that close to the solution, the error terms are (presumably) small, therefore, the
second term dominated by ei(x) is close to zero. This allows to approximate the Hessian as
the outer product of the gradients,

∇2f(x) ≈ H̃ = G(x)GT(x).

1



Newton’s method in which H̃ is used instead of the exact Hessian is know as the Gauss-
Newton algorithm. The approximation of the Hessian by outer products ensures its positive-
semidefiniteness. To guarantee H̃ � 0, the Hessian is modified by adding a diagonal matrix
Delta, which can be computed using modified Cholesky factorization.

The particular choice of ∆ = εI leads to the so-called Levenberg algorithm. Another
popular choice is ∆ = ε diag(H̃), which is called the Levenberg-Marquardt algorithm.

2 Quasi-Newton algorithms

The inversion of the Hessian requiring O(n3) operations becomes the computational bot-
tleneck of Newton methods (including the variants of Gauss-Newton algorithm) even for
moderately-sized problems. The family of quasi-Newton algorithms avoids this complexity
by gradually building an approximation not the Hessian itself, but to its inverse.

A general quasi-Newton algorithm starts with some initial guess of the inverse of the
Hessian B0 (if nothing is known about the Hessian, B0 = I is the standard choice), and
proceeds like the Newton method, replacing H−1 in the computation of the direction by the
current estimate Bk. Then, a step size is found using exact or inexact linesearch and the
current point is updated, exactly as in the Newton algorithm. Once a new point and a new
gradient are computed, the change in the point and the gradient are used to update the
approximation of the inverse of the Hessian using an update rule.

The following generic iterative procedure describes the family of quasi-Newton algo-
rithms; different instances differ in the specific update rule.

input : function f ; initial point x0

output: (approximate) local minimizer x∗ of f
Start with an initial guess of the inverse of the Hessian B0

for k = 1, 2, . . . , until convergence do
Compute descent direction dk = −Bk−1∇f(xk−1)
Find step size αk ensuring that f ′dk

(xk−1) < f ′dk
(xk−1 + αkdk).

Update current point xk ← xk−1 + αkdk

Update inverse Hessian approximation
Bk = Update(Bk−1,xk − xk−1,∇f(xk)−∇f(xk−1))

end

Return x∗ = xk

Algorithm 1: Generic quasi-Newton method
Let us now have a closer look at the construction of the inverse Hessian approximation.

To simplify notation, we denote gk = ∇f(xk) and Hk = ∇2f(xk).. Intuition suggests that
the way the gradient changes as the result of a change in x tells information about the
Hessian. This is captured by the definition of the differential of the gradient,

dg = Hdx.

In our case, we deal with finite differences, which we denote for simplicity as pk = xk−xk−1,
and qk = gk−gk−1. Requiring the latter equality to hold for p replacing dx and q replacing

2



dg, we have
qk = Hkpk,

which is usually called the secant equation (geometrically, a secant is a finite-difference
approximation to the gradient).

Since we are interested in the inverse of the Hessian, we can write

pk = Bkqk.

Our goal is to update the previous approximation of the inverse of the Hessian, Bk−1 in such
a way that the new approximation Bk satisfies the secant equation. One of the simplest
forms of update is a rank-1 update of the form

Bk = Bk−1 + uvT,

where u and v are some vectors. The outer product uvT is guaranteed to have rank 1 unless
one of the vectors is zero.

Substituting the latter update to the secant equation, we have

(Bk−1 + uvT)qk = pk,

from where

u =
pk −Bk−1qk

vTqk

.

The second vector v can be any vector non-orthogonal to qk. In order to preserve the
symmetry of the inverse Hessian approximation, we will further require v ∝ u. For example,
we can select v = pk −Bk−1qk, leading to the update scheme

Bk = Bk−1 +
(pk −Bk−1qk)(pk −Bk−1qk)T

(pk −Bk−1qk)Tqk

.

While this scheme is a valid quasi-Newton update, it is not ideal. One of the disadvantages
is that it does not guarantee positive definiteness of the inverse Hessian approximation. A
more elaborate family of schemes, known as the Broyden family uses a rank 2 update of the
form

Bk = Bk−1 +
pkp

T
k

µk

− sks
T
k

τk
+ ξkτkvkv

T
k ,

where sk = Bk−1qk, τk = sTk qk, µk = pT
k qk, and

vk =
pk

µk

− sk
τk
.

The choice of ξk = 1 leads to the very popular BFGS (Broyden-Fletcher-Goldfarb-Shanno)
quasi-Newton algorithm; the choice of ξk = 0 is called DFP (Davidon-Fletcher-Powell).
Both formulas lead to the smallest update (Bk closest to Bk−1) guaranteeing symmetric

3



positive-definite approximation of the inverse of the Hessian. The latter requires a small
technical condition: the step size αk has to be selected to increase the directional derivative,
f ′dk

(xk−1) < f ′dk
(xk−1 + αkdk).

BFGS is a natural choice for medium-scale problems, as it requires only O(n2) computa-
tions at each iteration as opposed to O(n3) required to solve the exact Newton system. For
convex quadratic functions, the algorithm converges to the minimizer in n iterations, and
Bn coincides with the inverse of the Hessian at the solution point. With the initialization
B0 = I, the trajectory xk produced by BFGS coincides exactly with the one produced by
another popular steepest descent algorithm called conjugate gradients (but, unlike the latter,
BFGS works well with inexact line search). However, for general problems, BFGS is known
to converge in fewer iterations. BFGS has super-linear asymptotic convergence rate.

While quasi-Newton schemes (and BFGS in particular) alleviate the requirement to solve
the Newton system, they still require to store the n× n inverse Hessian approximation and
multiply by it (O(n2) computation and storage complexity). However, note that when B
is rank 1, it can be stored in the form of uuT requiring only O(n) storage. Furthermore,
the multiplication of B by a vector g requires only 2n arithmetic operations. The same is
roughly true at the first L iterations, when BL can be written as

BL = I + u1u
T
1 + · · ·+ uLuT

L

assuming rank 1 updates (or a conceptually similar, yet more elaborate form for the rank 2
updates of BFGS). Keeping the last L updates in the form of the vectors uk without actually
constructing the matrix is the core idea of the family of limited-memory BFGS schemes that
requires only O(Ln) storage and computation complexity. Typically, the size of the history
kept by the algorithm is small (L ≈ 10), which allows it to scale linearly to hundreds of
thousands or millions of variables.

3 Truncated Newton

Another (though less common) way of obtaining a scalable approximate version of New-
ton’s method consists of solving the Newton system approximately. Remember that at each
Newton iteration, we have to solve

Hd = −g

(we drop the iteration indices for simplicity). The system can be written alternatively as the
minimization of the following quadratic convex function

min
d
‖Hd + g‖2

over all directions d. The optimization can be performed by any large-scale iterative al-
gorithm (typically, conjugate gradients). However, since the solution usually takes an un-
affordable amount of time, the iterative algorithm is stopped after a certain precision has
been reached. Such approximate Newton algorithms consisting of outer iterations resembling

4



the exact Newton’s method, with inner iterations used to approximately solve the Newton
system are typically called truncated Newton algorithms.

5


