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Conjugate Gradients

The Newton method we have encountered so far heavily relied on the need to solve a
(full-rank) linear system. As we have seen, the direct solution of very large systems becomes
impractical due to the rapidly increasing complexity of matrix inversion (or Cholesky factor-
ization). However, numerical optimization algorithms can come to our aid, as the solution
of a general (over-) complete m× n system, m ≥ n

Ax = y

can be cast as the minimization of

‖Ax− y‖22 = xTATAx− 2yTAx + yTy.

We leave as an exercise to show that if A is full rank, then ATA is positive definite.

Exercise 1. Let A be an m × n matrix with m ≥ n and rank(A) = n. Show that ATA is
an n× n symmetric positive-definite matrix.

We will therefore dedicate our attention to minimizing a strictly convex quadratic function
of the form

min
x

1

2
xTQx + bTx,

with and n × n Q � 0. In terms of the previous problem, Q = ATA and b = −2ATy. In
what follows, we will develop a power technique called conjugate gradients with complexity
comparable to that of gradient descent (and, hence, scalable to large n’s), but much faster
convergence ratio.

1 Inner products

Before we start, we will need some preliminary notions in linear algebra. Recall that until now
we have defined the inner (or “scalar”) product in Rn as 〈x,y〉 = xTy. This is the standard
definition of inner product that induces the standard Euclidean (`2) norm. However, the
notion of an inner product is more general.

Definition. A function 〈·, ·〉 : Rn × Rn 7→ R is called an inner product on Rn if for every
x,y, z ∈ Rn and every scalars α, β ∈ R it satisfies

1. Commutativity: 〈x,y〉 = 〈y,x〉 (a more general definition involving complex numbers
requires a complex conjugate on the right-hand side);
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2. Distributivity over vector addition (or additivity): 〈x,y + z〉 = 〈x,y〉+ 〈x, z〉;

3. Homogeneity: 〈αx,y〉 = α〈x,y〉;

4. 〈x,x〉 ≥ 0 with 〈x,x〉 = 0 iff x = 0.

Sometimes, the additivity and the homogeneity axioms are combined into a single bilin-
earity property 〈x, αy + z〉 = α〈x,y〉+ 〈x, z〉 (again, with the complex conjugate of α in the
complex case).

This axiomatic definition encompasses the standard Euclidean case; as before, a (general)

inner product induces a (general) norm ‖x‖ =
√
〈x,x〉.

Exercise 2. Prove that ‖x‖ =
√
〈x,x〉 is a norm (recall the definition of a general norm).

The inner product and the norm it induces obey the Cauchy-Schwarz inequality, |〈x,x〉| ≤
‖x‖ ‖y‖. Moreover, we can still think of the inner product as a measure of (the cosine of)
the angle between two unit vectors, and say that x and y are orthogonal (in the sense of
a certain inner product) iff 〈x,y〉 = 0 (x and y might not be orthogonal in the Euclidean
sense in case of a general inner product).

Several commonly used inner products are listed below:

1. Standard Euclidean inner product on Rn: 〈x,y〉 = xTy inducing the `2 norm ‖x‖22 =
xTx.

2. Standard inner product on the space of functions on an interval T :

〈f, g〉 =

∫
T

f(t)g∗(t)dt

(note the conjugate) inducing the so-called L2 norm

‖f‖2 =

∫
T

|f |2(t)dt.

This can be thought of as a continuous version of the Euclidean inner product, and is
ubiquitous in harmonic analysis.

3. The Q-inner product 〈x,y〉Q = xTQy for Q � 0. This inner product induces the
Q-norm ‖x‖2Q = xTQx. In statistics, when Q is interpreted as the inverse covari-
ance matrix, the metric induced by the Q-norm is called the Mahalanobis distance,
and can be thought of a normalized Euclidean distance taking the variances (and the
covariances) of the vector elements into account.

Exercise 3. Prove these are indeed inner products.

For the rest of our discussion, the notion of the Q-inner product and the Q-norm it
induces will be important.
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2 Orthogonalization

Equipping the linear space with an inner product allows to define orthogonal bases. We will
say that a collection {xi ∈ Rn}mi=1 of linearly independent vectors is orthogonal if 〈xi,xj〉 6= 0
iff i 6= j. However, recall that orthogonality in the sense of one inner product does not
imply orthogonality in the sense of another. It is therefore important, given a collection of
vectors spanning a linear subspace of Rm, to construct a new collection of orthogonal vectors
spanning the same subspace. The latter collection is generally called an orthogonal basis
with respect to a certain inner product (the basis is said orthonormal if the vectors are unit
with respect to the norm induced by the chosen inner product).

A standard procedure for creating orthogonal bases is called the Gram-Schmidt orthogo-
nalization. As the input, we are given a collection x1, . . . ,xm linearly independent vectors; as
the output, we shall produce a new collection y1, . . . ,ym of orthogonal vectors (in the sense
of some inner product that is assumed to be given). The procedure gradually constructs the
vectors yk from the input vectors xk and the previously constructed yk’s. We start with
assigning y1 = x1. Since x2 will generally not be orthogonal to y1, we cannot simply assign
it to y2. Instead, we have to find a vector y2 in the linear space spanned by x1 and x2 such
that y2 is orthogonal to y1. This can be achieved by subtracting from x2 its projection onto
y1.

Formally, we define the projection operator

Puv =
〈u,v〉
〈u,u〉

u =
〈u,v〉
‖u‖2

u

projecting the vector v onto u. An important property of the projection is that

〈v − Puv,u〉 =

〈
v − 〈u,v〉

‖u‖2
u,u

〉
= 〈v,u〉 − 〈u,v〉

‖u‖2
〈u,u〉 = 0.

Due to this property,

y2 = x2 − Py1
x2 = x2 −

〈y1,x2〉
‖y1‖2

y1

is orthogonal to y1.
The same procedure is repeated for subsequent vectors. In order to obtain the k-th

output vector yk, we subtract from xk its projection onto the subspace spanned by the
previously constructed vectors y1, . . . ,yk−1. The projection onto a linear subspace spanned
by orthogonal vectors is simply given as the sum of the projections on each of the vectors
individually,

Pu1⊥···⊥uk
v =

k∑
i=1

Pui
v

(this is not true for non-orthogonal vi’s). Using this property, we can write

yk = xk − Py1,...,yk−1
xk = xk −

k−1∑
i=1

〈yi,xk〉
‖yi‖2

yi.
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input : set of linearly independent vectors {xi ∈ Rn}mi=1

output: orthogonal vectors {yi ∈ Rn}mi=1

Start with y1 = x1.
for k = 2, . . . ,m do

yk = xk −
k−1∑
i=1

〈yi,xk〉
‖yi‖2

yi.

end

Algorithm 1: Gram-Schmidt orthogonalization

3 Conjugate directions

Let x1, . . . ,xn be linearly independent vectors in Rn. Substituting the particular selection
of the Q-inner product and the induced Q-norm into the Gram-Schmidt procedure results
in

dk = xk −
k−1∑
i=1

dT
i Qxk

dT
i Qdi

di,

where instead of yi we used the notation di. By construction, the di’s are orthogonal. Such
a family of vectors is called Q-orthogonal or Q-conjugate directions.

How is this related to minimization of quadratic functions? Recall that we are interested
in minimizing

f(x) =
1

2
xTQx + bTx.

Since the conjugate directions di form a basis for Rn, we can reparametrize the problem in
terms of a new system of coordinates, x = Dξ = ξ1d1 + · · ·+ ξndn:

f̄(ξ) =
1

2
ξTDTQDξ + bTDξ

=
1

2

n∑
i,j=1

ξiξjd
T
i Qdj +

n∑
i=1

ξib
Tdi

=
1

2

n∑
i,j=1

ξiξj〈di,dj〉Q +
n∑
i=1

ξib
Tdi

=
n∑
i=1

ξ2i
2
‖di‖2Q + ξib

Tdi.

Observe that in the new system of coordinates, the function decomposes into the sum of n
quadratic functions of the form

ϕi(ξi) =
ξ2i
2
‖di‖2Q + ξib

Tdi.
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In other words, f̄(ξ) is coordinate-wise separable. Hence,

min
x∈Rn

f(x) = min
ξ∈Rn

f̄(ξ) = min
ξ∈Rn

n∑
i=1

ϕi(ξi) =
n∑
i=1

min
ξi∈R

ϕi(ξi).

Exercise 4. Prove the above identity.

The conclusion is far-reaching: if we are given a collection of n Q-conjugate directions,
the minimization of f(x) splits into n one-dimensional minimizations of each of the ϕi’s
along the corresponding direction di. This can be carried out by invoking line search n
times. The resulting family of optimization algorithm are usually referred to as conjugate
direction methods.

Let us start with some x0 and allow to optimize over the first k directions, Dk =
(d1, . . . ,dk), i.e., let ξk = (ξ1, . . . , ξk)

T be the optimization variables. This is akin to mini-
mizing f(x) over the affine subspace

Gk = x0 + DkRk = {x0 + Dkξk : ξk ∈ Rk}.

Property (Expanding manifold). The sequence of the first k line searches produces

min
ξ1

ϕ1(ξ1) + · · ·+ min
ξk

ϕ1(ξk) = min
x∈Gk

f(x).

Exercise 5. Give a formal proof to the expanding manifold property.

Since Gn = Rn, conjugate direction methods converge in n iterations.

4 Conjugate gradients

The conjugate direction family of optimization algorithms depends on the particular choice
of the vectors xk from which the Q-conjugate directions dk are built via the Gram-Schmidt
procedure described above. A particular implementation of this idea, called conjugate gradi-
ents, uses the collection of gradients of the objective at the points visited on the optimization
trajectory. The procedure is sequential: a new direction is created at every iteration, based
on the previous directions and the current gradient.

For the quadratic objective we are considering, the gradient at point xk is given by

gk = Qxk + b.

Starting at x0, we set as in standard gradient descent

d0 = −g0 = −Qx0 − b.

The iterate at the k-th iteration is computed as

xk+1 = xk + αkdk,
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where αk is determined via line search. Note: conjugate directions methods (conjugate gradi-
ents in particular) require nearly exact minimization along each of the conjugate directions,
and inexact linesearch may lead to divergence of the method.

The k + 1-st direction is computed via Gram-Schmidt orthogonalization, using −gk as
the current vector:

dk+1 = −gk+1 +
k∑
i=0

dT
i Qgk+1

dT
i Qdi

di.

The latter expression can be greatly simplified. First, observe that from xi+1 = xi + αidi,
we have

di =
1

αi
(xi+1 − xi).

Hence,

Qdi =
1

αi
Q(xi+1 − xi) =

1

αi
(gi+1 − gi).

Second, due to the expanding manifold property, at iteration k, the function has been
minimized over Gk, which has been spanned by d0, . . . ,g0 or, equivalently, by g0, . . . ,gk.
Therefore, the projection of gk+1 on Gk is zero, or

gk+1 ⊥ gk, . . . ,g0,

with orthogonality interpreted in the standard Euclidean sense. Combining these two results,
we have

dT
i Qgk+1 =

1

αi
gT
k+1(gi+1 − gi),

vanishing for i < k. As the result, we can write

dk+1 = −gk+1 + βkdk,

with

βk =
gT
k+1(gk+1 − gk)

dT
k (gk+1 − gk)

.

The parameter βk can be simplified even further. Observe that since gk+1 ⊥ Gk, in
particular, gk+1 ⊥ dk that belongs to Gk. Hence, the denominator can be simplified to

−dT
k gk = −(−gk + βk−1dk−1)

Tgk.

However, by similar argument gk ⊥ dk−1, leading to the Polack-Ribiere method:

βk =
gT
k+1(gk+1 − gk)

‖gk‖2
.

Note that that the numerator can be further simplified by observing that gk+1 ⊥ gk, leading
to the Fletcher-Reevs variant:

βk =
‖gk+1‖2

‖gk‖2
.
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While for quadratic functions the two expressions are equivalent and the Fletcher-Reevs
variant is preferable due to less computations, the methods differ for general functions,
where the Polack-Ribiere formula is known to behave better.

input : function f ; initial point x0

output: (approximate) local minimizer x∗ of f
Start with an initial guess x0, g0 = ∇f(x0), and set d0 = −g0.
for k = 1, 2, . . . , until convergence do

Find descent direction dk
Find step size αk
Update xk ← xk−1 + αkdk

end

Return x∗ = xk

Algorithm 2: Conjugate directions method for general functions

5 Convergence rate

6 Preconditioning
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